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81. Projective Spaces.

1.1. Polynomials. Let V' be n-dimensional vector space over an arbitrary field k. Its dual space V* is
the space of all k-linear maps V' —— k. Given a basis ey, es,...,e, for V, its dual basis for V* consists
of the coordinate forms x1,xs,...,x, defined by prescriptions

1,ifi=j
xi(ej):{

0, otherwise.

One can treat each polynomial f € k[z1,x9,...,x,] as a function on V whose value at a vector v € V
with coordinates (vy,vs,...,v,) w.T.t. the basis (e1,es,...,e,) is equal to f(v,v2,...,v,), i.€. to the
result of substitution of values v; € k instead of the variables z;. This gives k-algebra homomorphism

¢ : k[z1,29,...,2y] — {k-valued functions on V'} . (1-1)

1.1.1.LEMMA. The homomorphism (1-1) is injective' iff k is infinite.

Proof. If k is finite and consists of ¢ elements, then the space of k-valued functions on V' consists of ¢¢" elements and
is finite as well. Since the polynomial algebra is infinite, ker ¢ # 0. The inverse argumentation uses the induction
on n = dimV. When n = 1, any non zero polynomial f(x) has no more than deg f roots. Thus, f(z) = 0 as
soon f(v) = 0 for infinitely many v €V ~ k. For n > 1 we can write a polynomial f as a polynomial in z,, with

the coefficients in k[z1,22,...,2n-1]: f(@1,Z2,...,2n) = > fu(T1,22,...,2p—1) - ¥ . Evaluating all f, at an
14

arbitrary point (vy,vs,...,v,_1) € k»7!, we get a polynomial in z,, with constant coefficients and identically zero
values. It should be the zero polynomial by the above reason. Hence, each f, gives the zero function on k»~!. By
the inductive assumption, all f, = 0 as the polynomials. O

1.2. Affine space A" = A(V'), of dimension n, is associated with n-dimensional vector space V. The
points of A(V') are the vectors of V. The point corresponding to the zero vector is called the origin and
is denoted it by O. All other points can be imagined as «the ends» of non zero vectors «drawny» from the
origin. The homomorphism (1-1) allows to treat the polynomials as the functions on A(V'). Although
this construction does depend on the choice of a basis in V', the resulting space of functions on A(V),
i.e. the image of homomorphism (1-1), does not. It is called an algebra of polynomial (or algebraic)
functions on A(V'). A subset X C A(V) is called an affine algebraic variety, if it can be defined by some
(maybe infinite) system of polynomial equations.

1.3.Projective space P, = P(V), of dimension n, is associated with a vector space V of dimension
(n + 1). By the definition, the points of P(V') are 1-dimensional vector subspaces in V' or, equivalently,
the lines in A"l = A(V) passing through the origin. To see
them as «the usual points» one should use a screen, i.e. some
affine hyperplane of codimension one U C A(V'), which does not
contain the origin like on fig 101. Such a screen is called an affine

chart on P(V'). Of course, no affine chart does cover the whole of

P(V). The difference Uy wof P, \ U consists of all lines lying in

a parallel copy of U drawn through O. It is naturally identified
with P,_1 = P(U). Thus, P, = U U Uy = A" UP,_;. Iterating
this decomposition, one can split P, into disjoint union of affine
spaces: P, = A" UA" T UP, o =---=A”UA™ U ... WAL

an affine chart U

the infinity U
1.4. Global homogeneous coordinates. Let us fix a basis

Fig 101. The projective world. for V and use it to write vectors x € V as the coordinate rows
x = (xo, 1, ..., Tn). Two vectors z,y € V represent the same
point p € P(V) iff they are proportional, i.e. z, = Ay, for all v =0, 1, ... , n and some non zero Ack.

1i. e. different polynomials always give the different polynomial functions on V'
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Thus, the point p € P(V') can be coordinated by the collection of ratios (zo: z1: ... : @y). This ratios
are called homogeneous coordinates on P(V') w.r.t. the chosen basis of V.

Since we have usually f(z) # f(A\z) for a non zero polynomial f € k[zy,z1,...,2,], the polynomials
do not produce the functions on P(V') any more. But if f is a homogeneous polynomial, say of degree

d > 0, then its zero set (f)o o {v e V| f(v) =0} is well defined in P(V), because f(z) = 0 <=

f(Az) = X f(x) = 0. This zero set is called a projective hypersurface of degree d. The intersections of
such hypersurfaces! are called projective algebraic varieties.

For example, the equation 23 + 22 = 3 defines a curve C' C Py. When char (k) # 2, this curve is
called non degenerate plane conic.

We write S%(V*) C k[zo,>1,...,2,] for the subspace of all homogeneous polynomials of degree d.
Note that as a vector space over k the polynomial algebra splits into the direct sum

klzo,x1,...,2p] = d6>90 SUV*), and S¥V*)-SYV*) c SV,

i.e. k[zg,1,...,2,] is a graded algebra with graded components S%(V*). Since proportional equations
define the same hypersurfaces, the hypersurfaces S C P(V') of degree d correspond to the points of the
projective space P(S4(V*)).

1.5.Local affine coordinates. Any affine chart U C A(V) can by uniquely given by the equation
a(z) =1, where a € V*. We will write U, for this chart. One dimensional subspace spanned by v € V' is
visible in chart U, iff a(v) # 0. A point that represents this subspace
in U, is v/a(v) € U. If fix some n linear forms &1,&s,...,&, € V*
such that n + 1 forms a,&1, &, ..., &, form a basis of V*, we can use
their restrictions onto U as local affine coordinates inside U, C P,,. In
terms of these coordinates, a point p € P, corresponding to v € V is
coordinated by n numbers & (v/a(v)), 1 < i < n. These coordinates
depend on « and the choice of &’s. Note that they are rational linear
fractional functions of the homogeneous coordinates and a sentence «p
is running away from U, to infinity» means nothing but «a(p) — 0»,
which leads to unbounded increasing of the local affine coordinates.

1.5.1. Example: affine conics. Let us consider local equations for the plane

conic .
Fig 102. The cone.
z3 + 23 = 7} (1-2)
in some affine charts. In the chart U,,, given by the equation {zo = 1}, we can chose local affine coordinates
ti = 21|y, = T1/%o and ty = a:2|Uzo = z2/m9. Dividing the both sides of (1-2) by x3, we get for C' N Uy the
equation t3 —t? = 1,i.e. C NUp,, is a hyperbola. Similarly, in a chart U,, = {z¢ = 1} with local affine coordinates
to = wo/wa, t1 = x1/w2 We get the equation 2 + t? = 1, i.e. C N U,, is a circle. Finally, consider a chart U, ,
x To+ T

given by zo — z; = 1 with local affine coordinates tg = zo|, = = 0 st = (X + x|y, . = &

) T Xy BRI 2> Bl 1
After dividing by (z2 — z1)? and some eliminations, we see that C N U,,_,, is the parabola t; = t2.

Exercise 1.1. The affine cone z% + 2 = z3 in A® is drawn on fig 102. Picture there each of 3 previous affine
charts and outline their intersections with the cone.

1.6. Projective closure. Any affine algebraic variety X C A" is always an affine piece of projective
algebraic variety X C P, called a projective closure of X. Indeed, if X is given by polynomial equations
{ fu(t1,ta,...,tp) = 0}, we substitute ¢; = x;/x¢ and multiply the v-th equation by xgeg v Then the
resulting equations f:,(a:o, Z1, ..., Tp) = 0 become homogeneous and define a projective algebraic variety
X cC P,, such that XN Uz, = X, where Uy, is the affine chart xp = 1. Geometrically, X is the union of
X with all its asymptotic directions. Thus, the projective langauge allows to treat the affine asymptotic
directions as ordinary points lying at infinity.

1.7. Standard affine covering and gluing rules. Clearly, the whole of P, is covered by (n+ 1) affine

charts U, def , given in A"*! by equations z,, = 1. This covering is called the standard affine covering.

!maybe infinite families of hypersurfaces of different degrees
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For each v =0, 1, ..., n we take n forms

tz(”) = x|y, :a%’ where0 <i<n, i #£v
as the standard local affine coordinates on U,,. Topologically, this means that P, is constructed from (n+
1) distinct copies of A™ denoted as Uy, Uy, ..., U, by gluing them together along the actual intersections
U,NU, C P, (i.e. a point of U, is identified with a point of U, under this gluing rules iff they correspond
to the same point of P,,). In term of the homogeneous coordinates, the intersection U, N U, consists of
all z such that both z, and z, are non zero. This locus is presented inside U, and U, by inequalities

t,(,”) # 0 and tg') # 0 respectively. Thus a point t(#) € U, is glued with a point t) e U, iff

9 =1/t and £ =10 for i pw.
The right hand sides of these equations are called the transition functions from t®) to t) over U,Nn0U,.
For example, P; can be produced from two copies of A! by identifying the point ¢ in one of them
with the point 1/t in the other for all ¢ # 0.
Exercise 1.2%. If you have some experience in smooth topology, prove that real and complex projective lines
are analytic manifolds isomorphic to the circle S! (in real case) and to the Riemann sphere S? (in complex
case).

1.8. Projective subspaces. A closed projective algebraic subset is called a projective subspace if it
can be given by a system of linear homogeneous equations. Any projective subspace L C P(V') has a
form L = P(W), where W C V is a vector subspace. Note that 0-dimensional projective subspaces'
coincide with the points. Since codimpHP(W) = codimy W, we have L1 N Ly # @ for any two projective
subspaces Ly and Lo such that codimL + codimLy < n. For example, any two lines on Py have non
empty intersection?.

Two projective subspaces L and Ly in P, are called complementary to each other, if
)

LiNnLy=@ and  dimL;+dimLy=n—1. 2N

For example, any two skew lines in 3-dimensional space are
complementary.

Exercise 1.3.  Show that P(U) and P(W) are complementary in
PV)if V=U&aW.

1.8.1.LEMMA. If L1, Ly C P(V) are two complementary
linear subspaces, then any point p € P(V') \ (L1 U La) lies on
a unique line crossing the both subspaces.

Proof. We have V' = U; @ Us, where P(U;) = L;. So, any v€V has a
unique decomposition v = uy + ue with u; €U;. If v € Uy UUs, then
both wu;, us are non zero and span a unique 2-dimensional subspace

that contains v and has non zero intersections with both U;. U

Fig 1¢3. Projecting a conic.

1.9. Projections. For any two complementary projective

subspaces Li, Ly C P,, a projection from L, onto Ly is a map Wf; : (P, \ L;) —— Ly that sends
any point ¢ € Lo to itself and any point p € P, \ (I; U Lg) to £ N Ly, where £ is the unique line
passing through p and crossing both L; and L9 in accordance with n°®1.8.1. In homogeneous coordi-
nates (zg: ®1: ... : xp) such that Ly is coordinated by (zg: #1: ... : zp,) and Ly is coordinated by

(Tm41: Tmt2: ... @ Tp), the projection wfi is nothing but taking z, =0 for 0 < v < (m + 1).

1.9.1. Example: projecting a conic onto a line. Consider the projection 7, :  — £ of the plane conic (1-2)

onto the line £ = {zy = 0} from the point p = (1:0: 1) € Q. Inside the standard affine chart Us, where 25 = 1,
it looks like on fig 103. It is bijective, because the pencil of all lines passing through p is bijectively parameterized

that is, Py = P(k')
2in terms of A® this means that any two planes containing the origin are intersected along a line



6 Algebraic Geometry. Start Up Course.

by the points ¢ € £ and any such a line (pt) intersects @) exactly in one more point ¢ = ¢(t) in addition to p
except for the the tangent line at p, which is given by o = 5 and crosses £ at the point! t = (0 : 1 : 0)
corresponding to ¢(t) = p itself. Moreover, this bijection is birational, i. e. the corresponding (qo : ¢1 : ¢2) € @
and (0 : ¢ : t3) € L are rational algebraic functions of each other. Namely, (t1 : t2) = (q1 : (g2 — ¢o)) and
(g0 :q1:q2) = ((8] —13) : 2tats = (1 +13)).

Exercise 1.4. Check these formulas and note that while (¢;,¢2) runs through Z x Z the second formula gives
the full list of the pythagorian triples (go : ¢1 : ¢2) (i.e. all the right triangles with integer side lengths).

1.10. Matrix notations for linear maps. Let Hom(U, W) be the space of all k-linear maps from
n-dimensional vector space U to m-dimensional vector space W. Denote by Mat,«,(k) the space of
matrices with m rows, n columns, and entries in the field k. Any pair of basises {u1, ug,...,u,} C U and

{wi,wa,...,wn} C W presents an isomorphism Hom(U, W) —— Mat,, (k) that sends an operator

U —+ W to a matrix A = (a;j) whose j-th column consists of m coordinates of the vector a(u;) € W

m
w.r.t. the basis {wi,we,...,wn}, i.e. a(u;) = Y ayjw, or, using the matrix multiplication,
v=1

(a(ur), a(uz), ..., aluy)) = (w1, wa, ..., wy) - A.

Let us write  and % for the columns obtained by transposing coordinate rows of x = (z1,2,...,2y,) € U
and y= (y17y27 .. 7yn) == Ol(x) S W Then

(w1;w2>---:wm) : y:a(w) :a((U1,UQ,...,Un) : .’L') =
t,

= (a(ur), a(us), ..., alup)) -z = (wi,ws, ..., wn) - A

implies that iy = A - ‘.

1.11. Linear projective transformations. If dim U = dim W = (n + 1), then any linear isomorphism

U —2+ W induces the bijection P(U) — =~ P(W), which is called the projective linear transformation

or the linear isomorphism. A point set {p1,p2,...,pm} C P, is called linearly general, if any (n + 1) of
p; don’t lay together in any hyperplane P,_; C P,. Equivalently, the points {p;} are linearly general in
P, =P(V) iff (n + 1) vectors representing any (n + 1) of them always form a basis of V.

1.11.1. LEMMA. For any two linearly general collections of (n+2) points {po, p1,- .., pnt+1} € P(U) and
{90,q1,---,qnt1} € P(V), where dimU = dimV = (n + 1), there exists a unique up to proportionality
linear isomorphism V —~—~ W such that a(p;) = ¢; Vi. In particular, two matrices give the same
projective linear transformation iff they are proportional.

Proof. Fix some vectors w; and w; representing the points p; and ¢;. By the linear generality, we can take
{ui,us,...,ups1} and {wy,ws,...,wyy1} as the basises in U and W and identify a map o« € Hom(U, W) by
the square matrix in these basises. Then, a(p;) = ¢; for 1 < i < (n + 1) iff the matrix A of « is diagonal, say

with (dq,ds,...,dp+1) on the main diagonal. Now consider the first vectors ug and wg. Again by the linear
generality, all the coordinates of ug = (z1,%2,...,Zpy1) W.r.t. the basis {u;}1<i<(nt1) and all the coordinates of
wo = (Y1,Y2, -+ Ynt1) W.T. t. the basis {w; }1<i<(n+1) are non zero. Since the coordinates of a(ug) are proportional

to the ones of wy, we have y; : y; = (diz;) : (djz;) Yi,j. Hence, all d; are uniquely recovered from just one of
them, say dy, as d; = dq - (y;z1) : (2;y1)- O

Exercise 1.5.  Let ¢; and ¢y be two lines on P,. Fix any point p outside ¢; U £y and consider projective

linear isomorphism £, L {5 that sends t € ¢; to the intersection point (¢p) N ¥€2. Check that v, is a linear
isomorphism.

1.12. Linear projective group. All linear isomorphisms V' —— V form a group denoted by GL(V).
It acts on P(V). By n°1.11.1, the kernel of this action coincides with the subgroup of all scalar di-
latations H C GL(V'). Hence, the group of all projective linear automorphisms of P(V') is equal to the
factor group GL(V)/H, which is denoted by PGL(V') and called the projective linear group. Fixing a
basis {eg,e1,...,en} C V, we can identify GL(V) with the group GLy41(k) C Mat,y1(k) of all non

this intersection point lies at the infinity on fig 103
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degenerated square matrices. Under this identification the dilatations go to the scalar diagonal matrices

and PGL(V) turns into the group PGL, (k) o GL,,+1(k)/{scalar diagonal matrices AE}, of all non

degenerate square matrices considered up to proportionality.

1.12.1. Example: linear fractional group and cross-ratio. PGLy (k) consists of all 2 x 2 - matrices (Z Z) with

ad — be # 0 considered up to proportionality. It acts on Py via (xg : z1) — ((azo + bx1) : (cxo + dzq)). In
the standard affine chart Uy ~ Al with affine coordinate t = z1 /o this action looks like the linear fractional
transformation ¢t — (ct + d)/(at +b) .

Exercise 1.6. Verify by the straightforward computation that (AB)(t) = A(B(t)).
Theorem n° 1.11.1 says that for any 3 different points p, ¢, r there exists a unique linear fractional transformation «
such that a(p) =0, a(q) =1, and a(r) = co. This is clear, because p — 0 and r — oo force such a transformation
to take t s o - (t — p)/(t — r), where ¥ € k. Substituting ¢t = ¢, we get ¥ = (¢ — r)/(q — p), i.e. the required
transformation is
g—r t—p
qg—p t—r°
The right hand site is called the cross-ratio of 4 points ¢, p, g, r on Py.

t—

Exercise 1.7. Show that the cross-ratio does not depend on choice of coordinates and is invariant under the
action of PGLy on the quadruples of points.

1.12.2. PROPOSITION. If a bijective mapping

P \ {ﬁnite collection of points} . Py \ {ﬁm’te collection of points}

can be given by a formula p(zg : 1) = (fo(zo,z1) : fi(ze, 1)), where f; are rational algebraic functions,
then ¢ has to be a linear fractional transformation.

Proof. Multiplying (fo : f1) by the common denominator and eliminating common factors we can assume that
fi are coprime polynomials. To produce a well defined map, they have to be homogeneous of the same positive
degree d. Since ¢ is bijective, each ¥ = (Jg : ¥1) € Py \ {finite collection of points} has precisely one preimage. This
means that for infinitely many values of ¥ the homogeneous equation

V1 - fo(wo,x1) — Yo - fi(zo,z1) =0 (1-3)

has just one root up to proportionality, i. e. its left hand side is a pure d-th power of some linear form in (zg : z1).

All homogeneous polynomials of degree d in (x¢ : 1) considered up to a scalar factor form the projective space
Py = P(S?U*), where U is the 2-dimensional vector subspace underlying P; in question. When 1 varies through
Py, the equations (1-3) draw a straight line (fof1) inside this Py whereas pure d-th powers of linear forms form
there some twisted curve, which is called the Veronese curve of degree d. Lemma n° 1.12.3 below implies that for
d > 2 any 3 points on the Veronese curve are non collinear. Since in our case an infinite set of points on the line
(1-3) lies on the Veronese curve, we conclude that d = 1, i.e. ¢ is a projective linear isomorphism. ]

1.12.3.LEMMA. Let us define the Veronese curve of degree d as an image of the Veronese map
P, =P (U*) 24 Py =P (Sd(U*)) (1-4)

that takes a linear form v € U* to its d-th power ¢¢ € S¥(U*). If the ground field k contains more
than d elements, then for each k =2, 3, ..., d any (k + 1) distinct points of the Veronese curve can not
belong to the same (k — 1)-dimensional projective subspace.

Proof. Let us write ¢» € U* and f € S4(U*) as ¢ = apwo + g, f = i ay - (Zl) zd™vz¥ and use (ag : 1),
(ag: a1: ... :aq) as homogeneous coordinates on P; and Py respectively. UI_tOis enough to verify the case k = d,
which implies all the other cases. Consider the intersection of the Veronese curve with (d—1)-dimensional projective
hyperplane given by a linear equation ) A,a, = 0. Its preimage under the Veronese map (1-4) consists of all
(ag : 1) € Py satisfying non trivial homogeneous equation > A, - ozg*"af = 0 of degree d. Up to proportionality,
it has at most d + 1 distinct roots. O
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82. Projective quadrics.

In §2 we will assume that chark # 2.

2.1. Quadratic and bilinear forms. A zero set  C P(V) of non zero quadratic form ¢ € S?V* is
called a projective quadric. If 2 £ 0 in k, then the explicit expression for ¢ in homogeneous coordinates
can be written as
q(x) = Zaij:pixj =z A,
0.

where z = (g, z1, ..., z,) is the coordinate row,  is its transposed column version, and A = (a;;) is a
symmetric matrix over k, whose non-diagonal element a;; = aj; equals one half of the coefficient at z;z;
in ¢. This matrix is called the Gram matriz of ¢q. In other words, there exists a unique bilinear form
q(u,w) on V x V such that ¢(z) = q(x,z). This form is called the polarization of q. It can be expressed
through ¢ in the following pairwise equivalent ways:

Twy) = gz =AYy = L S u q(z) _alz+y) —qlx) —qly) _qlz+y) gl —y)

2

’ 8371 2 4

ij

Note that ¢ can be treated as a kind of scalar product on V. Then the elements of the Gram matrix
become the scalar products of basic vectors: a;; = q(e;, e;). Thus, tacking another basis

(eg, €y -y €)= (eo,e1, ..., en)-C,

we change the Gram matrix by the rule A —— A’ =1C - A-C.

Note that under changes of basis the determinant of the Gram matrix the Gram determinant det ¢
det A is multiplied by non zero square from k*. Thus, its class modulo multiplication by non zero squares
[det ¢] € k/k? does not depend on a choice of basis. Two quadrics are called isomorphic or projectively
equivalent, if their equations can be transformed to each other by a linear change of basis. A quadric is
called smooth, if det ¢ # 0. Otherwise, it is called singular. We see that projective equivalence preserves
smoothness and the class of det ¢ in k*/ k*2, where k* is the multiplicative group of k.

def

2.1.1. PROPOSITION (LAGRANGE THEOREM). The Gram matrix of any quadratic form q on V can
be diagonalized by appropriate change of basis in V.

Proof. If ¢ = 0, its Gram matrix is already diagonal. If not, then ¢(v) = g(v,v) # 0 for some v€ V. Take this v as
the first vector of the basis being constructed. Note that any u €V is uniquely decomposed as u = Av+w with A € k
and w € vt = {w € V| q(v,w) = 0}. Indeed, the only possibility is A = q(v,u)/q(v,v), w = u—(q(v,u)/q(v,v))-v
and it works. Thus, V =k - v & v and we can repeat the arguments to v ¢ V instead of V' e. t. c. d

2.1.2. COROLLARY. If k is algebraically closed, then any quadric can be defined in appropriate
coordinates by an equation of the form Y x? = 0. In particular, all non singular quadrics are projectively
equivalent.

Proof. Diagonal elements of the Gram matrix become units after the change e; — e;/\/q(e;). O

2.1.3. Example: quadrics on P; in appropriate coordinates are given either by an equation ax3 +ba? = 0 or by
an equation a 3 = 0. The second quadric is called a double point, because it consists of just one point (0 : 1), which
has «multiplicity 2» in any reasonable sense. Clearly, it is singular (i.e. det ¢ = 0). The first quadric is smooth
(i.e. det ¢ € k*) and either consists of two distinct points or is empty. More precisely, if —detq = —ab = 6% is
a square in k*, then Q@ = { (=8 : a), (§ : @) }. But if —b/a = — det ¢ (modk*?) is not a square, then evidently
@ = @. Note that the latter case is impossible when k is algebraically closed.

2.2. Quadric and line. It follows from the above example that there are precisely four positional

relationships of a quadric ) with a line £: either £ C @, or £ N @ consists of 2 distinct points, or £ N Q

is a double point, or £ N Q) = &. Moreover, the latter case is impossible when k is algebraically closed.
A line ¢ is called a tangent line to a quadric @, if £ either lies on @) or crosses () via a double point.
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2.3. Correlations. Any quadratic form ¢ on V induces the linear map V' —%. V* that sends a vector
v €V to the linear form
q(v) : wr— q(w,v)

The map ¢ is called the correlation (or the polarity) of the quadratic form ¢. The matrix of ¢ written in
dual bases {e;} C V, {x;} C V* coincides with the Gram matrix A. In particular, ¢ is smooth iff ¢ is an
isomorphism. The space

ker(q) déf kerqg = {UGV‘ E]V(w’v) =0 VU)GV}

is called the kernel of q. Its projectivization Sing ) def P(ker q) C P(V) is called a vertez space of () and
codimp(y)Sing ) is called a corank of Q.

2.3.1. THEOREM. The intersection )’ = LN is non singular for any projective subspace L C P(V')
complementary to Sing (Q; moreover, () is the cone over () with the vertex space Sing ), 1.e. Q) is the
union of all lines crossing both Q" and Sing Q.

Proof. Take any direct decomposition V =kerq@® U and let L = P(U). If ueU satisfy q(u,u’) =0 Vu' €U , then
automatically ¢(u,v) =0 VveV and u = 0, because of kergNU = 0. Since Q' = QN L is given by the restriction
g|u, it is non singular. Further, for any line £ = P(W) such that dim W Nker @ =1 we have dim WNU =1 and
corkq|y = 1. So, if £NSing Q) = {p} is just one point, then £ N L # & and either £ C @ or £N Q{p}. That’s all we

need. O
2.3.2. COROLLARY. A quadric Q C P, over an algebraically closed field is uniquely up to an

isomorphism defined by its corank, which can be equal to 0, 1, ... ,n.

Proof. Corank is the number of diagonal zeros in the diagonal Gram matrix. 0

2.4. Tangent space T,() to a quadric ) at a point p € () is defined as the union of all tangent lines
passing through p.

2.4.1.LEMMA. Let p and p’ be distinct points and pe @ = (q)o. The line £ = (pp') is tangent to Q
iff ¢(p,p’) =0, i.e. iff p and p' are orthogonal with respect to polarization of q.

Proof. Take some vectors u,u’ representing p and p’. Then £ = P(U). The restriction ¢g|y has the Gram matrix

<a<u,u> a<u,u'>) |

q(u',u)  q(u',u’)
It is singular iff g(u, u') = 0, because of G(u,u) = 0 by the lemma assumption. O
0
2.4.2. COROLLARY. p € SingQ <= T,() is the whole space <= 8q (p) =0 Vi. O
€T
2.4.3.COROLLARY. Ifp € (Q \ Sing@), then T,Q = {z € Py, | g(p,x) = 0} is a hyperplane of
codimension one. 0

2.4.4. COROLLARY. Let p ¢ @@ and a hyperplane C C P, be given by the equation q(p,x) =0 in z.
Then ) N L consists of all points where ) is touched by the tangent lines coming from p. O

2.5. Polar mappings. The spaces P(V') and P(V*) are called dual and denoted by P, and P)* when a
nature of V is not essential. Since any codimension 1 subspace U C V is defined by linear form £ e V*,
which is unique up to proportionality, P,* is nothing but the space of hyperplanes in P, and vice versa.

If Q = (¢)o € P(V) is non singular, then the linear isomorphism P(V) —— P(V*) induced by the
correlation ¢ is called a polarity of (). It sends a point p € P, to the hyperplane L C P, given by the
equation ¢(p, x) = 0 like in the previous Corollary. L is called a polar of p and p is called a pole of L with
respect to q. So, () is just the set of all points lying on their own polars. Note that some non singular
quadratic forms ¢ can produce empty quadrics ) over non closed fields but their polar mappings ¢ are
always visible.
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Exercise 2.1.  Show that p lies on the polar of ¢ iff ¢ lies on the polar of p (for any pair of distinct points and
any polarity).

Exercise 2.2. Consider a circle in the real Euclidean affine plane R%2. How to draw the polar of a point that
lies: a) outside b) inside this circle? Describe geometrically the polarity defined by the «maginary» circle
«given» in R? by the equation z? +y? = —1.

2.5.1. PROPOSITION. T'wo polarities coincide iff the corresponding quadratic forms are proportional.
Proof. This follows from n°®1.11.1 [l

2.5.2. COROLLARY. Over an algebraically closed field two quadrics coincide iff their quadratic equa-
tions are proportional.

Proof. Let Q = ’. We can suppose that the quadrics are non singular, because their equations are not changed
under direct summation with the kernel ker ¢ = ker ¢’. Non singular case is covered by the above proposition. []

2.6. The space of quadrics. All the polarities on P,, = P(V) are one-to-one parameterized by the

points of the projective space
Puints) = P(S?VF),
2

which will be referred as a space of quadrics. Given a point p € P(V'), the condition ¢(p) = 0 is a linear
condition on ¢ € P(S?V*), i.e. all quadrics passing through a given point p form a projective hyperplane
in the space of quadrics. Since any n(n + 3)/2 hyperplanes in P,,(,, ;3)/» have non empty intersection, we
come to the following quite helpful conclusion

2.6.1. CLAIM. Any collection of n(n + 3)/2 points in P, lies on some quadric. O

2.7. Complex projective conics. A quadric on the projective plane is called a projective conic. A
projective conic over C, up to an isomorphism, coincides either with a double line xo = 0, which has
corank 2, or with a reducible conic' 3 + 22 = 0, which has corank 1, or with the non singular conic
23 + 22 + 23 = 0. The space of all conics in Py = P(V) is P5 = P(S?V*).
2.7.1. Example: standard model for non singular conic. Let U be 2-dimensional vector space. Recall that the
quadratic Veronese map
P(U*) =P, —— P, = P(S?U*) (2-1)
sends a linear form ¢ to its square ¢2 (comp. with (n°5.4.1)). If we think of P(S2U*) as the space of quadrics on

P(U), then the Veronese embedding is a bijection between the points of P; and the singular quadrics on Py, which
are the double points. Thus, the image of (2-1) is the projective conic

Qv ={qeS’U*| detq=0}, (2-2)

consisting of singular quadrics on P;. It is called the Veronese conic.

Let us fix a basis (zg,21) for U*, induced basis {22, 2xox1, 22} for S2U* , and write £ € U*, ¢ € S?U* as
&(x) = tozo + t171, q(z) = qo 22 + 2q1 Toz1 + @2 23, Using (o : t1) and (qo : ¢1 : ¢2) as homogeneous coordinates
on P(U*) and P(S%(U*)), we can describe the conic (2-3) by equation

Qg2 —q; =0 (2-3)
and write the Veronese embedding (2-1) as
(to:t1) — (qo: qu : q2) = (3 : tot1 : ) . (2-4)

This gives precise homogeneous quadratic parameterization for non singular conic (2-3). If k is algebraically closed,
then any non singular conic Q C Py can be identified with @), by an appropriate basis choice. This gives another
way to produce a quadratic parameterization for a smooth plane conic besides one described in n° 1.9.1, where we
used a projection of the conic onto a line from a point lying on the conic.

2.7.2. PROPOSITION. Two distinct non singular conics have at most 4 intersection points.

Proof. Taking appropriate coordinates, we can identify the first conic with the Veronese conic, which has quadratic
parameterization ¢ = v(tg,t1). If the second conic is given by an equation g(x) = 0, then the ¢-parameters of the
intersection points satisfy the 4-th degree equation g(v(t)) = 0. O

1i.e. a pair of crossing lines
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2.7.3. COROLLARY. Any 5 points in Py lay on some conic. It is unique iff no 4 of the points are
collinear. If no 3 of the points are collinear, then this conic is non singular.

Proof. The existence of a conic follows from n°®2.6.1. Since a singular conic is either a pair of crossing lines or a
double line, any quintuple of its points contains a triple of collinear points. Thus, if no 3 of 5 points are collinear,
a conic is smooth and unique by the previous proposition. If the quintuple contains a triple of collinear points,
then the line passing through this triple has to be a component of any conic containing the quintuple. This forces
the conic to split into the union of this line and the line joining two remaining points. O

2.8. Complex projective quadrics on Pg, up to isomorphism, are: a double plane z% = 0; a reducible
quadric t3 4+ 2 = 0, which is a pair of crossing planes (or a cone with a line vertex over a pair of distinct
points on an complementary line); a simple cone x% + 22 4+ 22 = 0, which is a cone with one point vertex
over a non singular plane conic; and a non singular quadric 22 + 2% + x3 + 23 = 0. The non singular
quadric also has much more convenient determinantal model called the Segre quadric and described as
follows.

Let us fix a pair of 2-dimensional vector spaces U_, U, and write W = Hom(U_,U,) for the space
of all linear maps U_ Uy. Then P35 = P(IW) consists of non zero linear maps considered up to

proportionality and can be identified with the space of non zero 2 x 2 - matrices (ZOO 301> up to a
10 o011

scalar factor. By the definition, the Segre quadric

Qs = {U_ U, ‘ tk F = 1} = {A = (Oéoo a01> ‘ det(A) = agoa11 — agraig = 0} (2-5)

Q10 011

consists of all non zero but degenerate linear maps. It coincides with the image of the Segre embedding
Py x Py = P(U*) x P(Uy) > P(Hom(U_,U,)) = Py

u—E&(u)-v

that sends (&,v) € U* x Uy to the rank 1 operator £®wv : U_
spanned by v and the kernel is given by the linear equation £ = 0.

U, , whose image is

Indeed, any rank one operator U_ S U4 has 1-dimensional kernel, say, spanned by some v € U,..
Then F has to take any u € U_ to F(u) = &£(u) -v, where the coefficient £(u) is k-linear in u, i.e. £ € U*.
Thus, F = £ ® v and both £, v are unique up to proportionality.

Exercise 2.3. Show that any m x n matrix A of rank one can be obtained as a matrix product of m-column
and n-row: A = % - v for appropriate ¢ = (£1,&s,...,&m) €K™, v = (21, 22,...,2,) € k™, which are unique
up to proportionality.

Fixing some coordinates (& : &) in U* and (to : ¢1) in U4, we can write the operator { ® v by the matrix

_ (&t &ito
fov= (fotl 51751> '

So, the Segre embedding gives a rational parametrization

agp = &oto , o1 = &ito, aio =&t , o =it . (2-6)

for the quadric (2-5), where the parameter ((& : &), (to : t1)) € Py x P1. Note that Py x Py is ruled by
two families of «coordinate» lines £ x P; and P; x ¢t. Let us call them the first and the second ruling line
families. Since the parameterization (2-6) takes lines to lines, we get

2.8.1.LEMMA. The Segre embedding sends each coordinate line family to the ruling of (Js by a
family of pairwise skew lines. These two line families exhaust all the lines on (Qs. Any two lines from
different families are intersecting and each point of Qs is the intersection point of two lines from different
families.

Proof. A line & x Py, where £ = (& : &) € P(U*), goes to the set of all rank 1 matrices with the ratio

(1-st column) : (2-nd column) = &y : &; .
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They form a line in P3 given by two linear equations agp : ag1 = a1p : a11 = & : & . Analogously, s(P; x t), where
t = (to : t1) € P(Uy), goes to the line given in P3 by ago : a10 = a1 : @11 = to : t1 and formed by all rank 1
matrices with the ratio

(1-st row) : (2-nd row) = tg : ¢y .

Since the Segre embedding is bijective, each line family consists of pairwise skew lines, any two lines from the
different families are intersecting, and for any = € )5 there is a pair of from the different families that are
intersecting at x. This forces Qs NT,Qs to be a split conic and implies that there are no other lines on Q. [

2.8.2. COROLLARY. Any 3 lines on P3 lie on some quadric. If the lines are mutually skew, then this
quadric is unique, non singular, and is ruled by all lines in Ps intersecting all 3 given lines.

Proof. The space of quadrics in P3 has dimension 3-6 : 2 = 9. Thus, any 9 points in P3 lay on some quadric. If we
pick up a triple of distinct points on each line and draw a quadric through these 9 points, then this quadric will
contain all 3 lines (comp. with n°2.2). Since a singular quadric does not contain a triple of mutually skew lines,
any quadric passing through 3 pairwise skew lines is non singular and is ruled by two families of lines. Clearly,
the triple of given lines lies in the same family. Then the second family can be described geometrically as the set
of lines in Pj intersecting all 3 given lines. Thus the quadric is unique. U

Exercise 2.4. How many lines intersect 4 given pairwise skew lines in P3?

Exercise 2.5%. How will the answer be changed, if we replace a)P3 by A* b)C by R? Find all possible
solutions and indicate those that are stable under small perturbations of the initial configuration of 4 lines.

2.9. Linear subspaces lying on a non singular quadric. The line rulings from n° 2.8.1 have higher
dimensional versions as well. Let ), C P, = P(V') be non singular quadric and L = P(W) be a projective
subspace lying on Q.

n—1 .

2} , where [ ] means the integer part.

Proof. Let @, be given by a quadratic form ¢ with the polarization ¢q. Then

2.9.1. THEOREM. dim L < [

LCQ, < qw,ws) =0Vw,ws €W <= q(W) CAnn (W) ={£cV*|&(w) =0 YweW },

where ¢ : v — (v, *) is the correlation associated with @,. Since @,, smooth, this correlation is injective. Thus,
dimW < dim Ann W =dimV —dimW and dim L = dimW — 1 < (dimV)/2 -1 =[(n — 1)/2]. g

2.9.2. LEMMA. cork(H NQ,) < 1 for any codimension 1 hyperplane H C P,,.
Proof. If H = P(W), then dimker (qlw) < dim(W Ng~'(Ann W) ) < dimg ' (Ann W) = dim Ann W = 1. U

2.9.3.LEMMA. For any x €@y, the intersection @), N1, is a simple cone with the vertex x over a
non singular quadric Qn—2 in an (n — 2)-dimensional projective subspace in TyQp \ {x}.
Proof. Since T, Q) = P(ker ¢(x, *)) and ¢(z,z) = g(x) = 0, the restriction of ¢ onto T,Q has at least 1-dimensional
kernel presented by z itself. By the previous lemma this kernel is spaned by z. O

2.9.4. THEOREM. Let d,, = [(n —1)/2] be the upper bound from n° 2.9.1 and = € @, be an arbitrary
point. Then d,-dimensional subspaces L C @, passing through x stay in 1-1 correspondence with
(dn, — 1)-dimensional subspaces lying on Q5.

Proof. Fix some (n — 1)-dimensional projective subspace H C T,Q \ {z} and present Q,, N T,Q,, as a simple cone
ruled by lines passing through = and some @,,_o C H. Since any L C @Q,, which pass through z is contained inside
QnNTpQ.,, it has to be the linear span of x and some (d,, — 1)-dimensional subspace L' C Q,,_». O

For example, there are only 0-dimensional subspaces on )1 and (2. Next two quadrics, Q3 and ()4,
do not contain planes. But any point x € ()3 lies on two lines passing through z and 2 points of
Q1 C T,Q3 \ {z} and any point of @4 belongs to 1-dimensional family of lines parameterized by the
points of a non singular conic Qo C Ty@Q4 \ {z}. Further, non singular quadric Q5 C P5 does not contain
3-dimensional subspaces but for any point x € ()5 there are two 1-dimensional families of planes passing
through z. Each family is parameterized by the corresponding family of lines on Q3 C T, Q5 \ {z}, i.e. by
P, actually.
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83. Working examples: conics, pencils of lines, and plane drawings.

During this section we continue to assume that chark # 2.

3.1.Projective duality. For any 0 < m < (n — 1) there is a canonical bijection between the m-
dimensional projective subspaces in P, = P(V') and the (n — 1 — m)-dimensional ones in P o P(V*).
It sends a subspace L = P(U) to the subspace L* of P(Ann (U)), where

Ann (U) ¥ {¢eV* | £u) =0 YuelU }
is an annihilator of U. Note that L** = L, since Ann AnnU = {veV | {v) =0 V{€AmU } =U
under the natural identification V** ~ V. The correspondence L < L* is called a projective duality. It

inverts inclusions' and linear incidences?. The projective duality translates the geometry on PP, to the
one on P and back. For example, in Py-case we have the following dictionary:

aline ¢ C Py — a point £* €PY
the points p of the above line /¢ «—— the lines p* passing through the above point £*
the line passing through two points p1,ps € Py «— the intersection point for two lines p;*,p; C Py
the points p of some conic @ — the tangent lines p* of some conic Q*

the tangent lines £ to @ — the points £* of @Q*

Exercise 3.1. Explain the last two items by proving that the tangent spaces of a non singular quadric @ C P,
correspond to the points of some non singular quadric @* C PX. Show also that () and @™ have inverse
Gram matrices in dual bases of V' and V*.

HINT. If € = (€0,é1, ..., &) € V™ and z = (z0, 21, ..., Tn) € V in dual coordinate systems, then &(z) = £ - z.
Let Q C P(V), @* C P(V*) have inverse Gram matrices A, A~'. Since T,Q = P(Ann¢) <= ¢ = - A <
r=¢ A wehaver€Q <=2 At =0 (£ A7) AN AT ) =0 A =0=¢€Q”.

3.1.1. COROLLARY. Any 5 lines on Py without triple intersections are tangent to unique smooth
conic.

Proof. This assertion is projectively dual to n®2.7.3. Namely, let ¢; € Py be 5 given lines. There exists a unique
conic Q* passing through 5 points £ €P5. Then ¢; = £;* are tangent to the dual conic Q** = Q C Ps. O

3.2. Projective linear isomorphisms P; —— P; via conics. Consider a non singular conic ¢) and
p

a line £ and write () "t ¢ for the bijective map given by projection from a point p€ @) extended into p
by sending p — £NT,Q).

Exercise 3.2. Show that this bijection is given by some rational algebraic functions, which express coordinates
of the corresponding points through each other.

HINT. To express the coordinates of ¢ = 7} (x) through z, you take special coordinates where ¢ is given by
zo=0and p=(1:0:0); then ¢t = (0: z1 : z2). In order to get the inverse expression, only two skills are
quite enough: linear equations solving and finding the second root for a quadratic equation with the first
root known. The both procedures have a rational output.

So, if £1,£s are two lines and pi,ps are two distinct points on some non singular conic ), then the

composition 7%2” 1 def 775220 (7‘1’5;) - gives a projective linear isomorphism ¢; — 5 (see fig. fig 301). In

fact, any projective linear isomorphism £ —7+ ¥ can be presented? as 'y‘f;p ! for some @ and p1,p2 € Q.

Indeed, if v sends, say a1, b1,c1 € £1 to ag, ba, co € £o, we pick any pi1, pe such that no 3 out of 5 points
p1, P2, (a1 p1) N (azp2), (b1 p1) N (baps), (c1p1) N (ca p2) are collinear (see fig 302) and draw @ through

these 5 points. Then v = 752”1, because both have the same action on 3 points ay, by, ;.

Y.e L1 C Ly <= LY D LY

%i.e. L1, Ly, ..., L, are contained in some m-dimensional subspace L iff Ly, Ly,..., LX contain some (n —m — 1)-
dimensional subspace L*; for example: 3 points are collinear iff their dual 3 hyperplanes have common subspace of
codimension 2

3in infinitely many different ways
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Fig. 301. Composing projections. Fig. 302. How to find p1, ps.

3.3. Drawing a conic by the ruler. Let 5 distinct points pi, p2, a, b, ¢ lay on a non singular conic

Q. Denote the line (ac) by ¢, the line (be) by f9, and the intersection point (ape) N (bp1) by O
pP2p1

(see fig 303). Then the projective linear isomorphism ¢; —2 .+ {5 coincides with the simple projective

linear isomorphism £; —%» £y, which takes z €, to vo(z) = (x O) N £y (indeed, the both send ¢ — ¢,

a+—d, e— b, where d = (ap2) Ny and e = (bpy) N — see fig 303).

Fig. 303. Remarkable coincidence.

Fig. 3¢4. Tracing a conic.

This simple remark allows us to trace, using only the ruler, a dense point set on the conic passing
through 5 given points p1,pa,...,ps (see fig 304). Namely, let {1 = (p3p4), lo = (paps), O = (p1ps) N

(pop3). Then any line L O gives two intersection points £1 N L and ¢ N L. These points are sent to

each other by the projective linear isomorphism vo = ’ygp '. So, if we draw lines through p; and ¢ N L,

and trough po and £ N L, then the intersection point = of these two lines has to lay on (). On the fig 304
the points x1, x9, x3 are constructed by this way starting from the lines Ly, Ly, L3 passing through O.

b1
Pe
el P5 N | P2
z ~I R S —— \
TN~ VPN s N
~ \ X \
~. 7N, \
>~ \ e . \
~. 4 AN .
~. [P N, \
~d . \
>~ S .
Y ~< o \
N ., \
~. N, \
\\ AN Y
L N
S
\Qg‘
z
Fig. 305. Inscribed hexagon. Fig. 306. Circumscribed hexagon.
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3.3.1.PROPOSITION (PASCAL’S THEOREM). A hexagon p1, p2, - - - , P6 iS inscribed into a non singular
conic iff the points' (p1p2) N (paps), (p2p3) N (pspe), (p3pa) N (pep1) are collinear (see fig 303).
Proof. Draw the conic @ through 5 of p; except for py and put ¢, = (p1ps), lo = (p1p2), ¥ = (Psps) N (P2ps3),
x = (p3ps) N {1, z = (zy) Nlz. Then z € ¢, is the image of « € ¢, under the projective linear isomorphismy, =
APsPs : f; ——» {y like before. In particular, the intersection point (psps) N (psz) lays on Q. Hence, py € Q iff
pa = (psps) N (ps2). O

3.3.2. COROLLARY (BRIANCHON’S THEOREM). A hexagon p1,po,...,Ps is circumscribed around
a non singular conic iff its main diagonals (p1ps), (peps), (p3pe) are intersecting at one point (see fig.
fig 306).

Proof. This is just the projectively dual version of the Pascal theorem. ]

3.4. Linear isomorphisms of pencils. A family of geometrical figures is referred as a pencil, if it is
naturally parameterized by the projective line. For example, all lines passing through a given point p € Py
form a pencil, because their equations run trough the line p* € P by projective duality. More generally,
there is a pencil of hyperplanes H C P, passing through a given subspace L. C P, of codimension 2.
Such a pencil is denoted by |h — L| (read: «all hyperplanes containing L») or by L* € PX. Given two
such pencils, say L{*, L and 3 points a,b,c € Py, \ (L1 U Lg) such that 3 hyperplanes from Lz-X passing
through them are distinct in the both pencils, then these 3 points define a projective linear isomorphism
LY abe, L that sends 3 hyperplanes of the first pencil passing through a, b, ¢ to the corresponding ones
from the second pencil.

3.4.1. Example: linear identification of two pencils p; and py on P is given by any 3 points a, b, ¢ such that any

2 of them are not collinear with p; or ps. It sends (pi1a) — (p2a), (p1b) — (p2b), (p1¢) — (p2c). Let @ be the
(unique!) conic passing trough 5 points pi, ps, a, b, ¢. There are two different cases (see fig 307-fig 3¢8).

Yabe (Ea:) Ez
Fig. 3¢7. Elliptic isomorphism of pencils.  Fig. 3¢8. Parabolic isomorphism of pencils.

(A) Elliptic case: @ is non singular, i.e. all 5 points are linearly general. In this case the incidence graph® of
Yabe coincides with @, because the points of @ give the projective linear isomorphism p; —— pJ° that has the
same action on a, b, ¢. Moreover, the above discussions let us draw the line y4p.(¢,) for a given (£, € p;) by the
ruler as follows (see fig 307). First mark the point O = (p1b) N (p2c); then find the intersection point £, N (ac),
join it with O by a line, and mark the point where this line crosses (bc); then the line v,5.(¢;) goes through this
marked point.

(B) Parabolic case: @ is reducible, i.e. splits in two lines: (p1p2) and, say, £ = (ab). This happens when
¢ € (p1p2) (recall that no 2 points from a, b, ¢ are collinear with any of p;). In this case the incidence graph for
Yabe coincides with the line £ (see fig 3¢8).

Dualizing these examples, we get geometrical classification of projective linear isomorphisms £; — £5
between two given lines on Ps.

3.4.2. COROLLARY. There are exactly two types of projective linear isomorphisms ¢; — (5. Elliptic
isomorphisms 7y correspond bijectively to the non singular conics () touching both {1 and (5. Such g
sends x — y iff the line (xy) is tangent to Q) (see fig 309). Parabolic isomorphisms vy, are parameterized
by the points L € Py \ (¢1 Uls). Such ~y;, sends x — y iff the line (z y) pass through L (see fig 3010). O

1i. e. 3 intersection points of the line pairs passing through the opposite sides of the hexagon
%i.e. a curve traced by the intersection points £ N vape(€) while £ runs through p;
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Fig. 309. Elliptic isomorphism of lines.  Fig. 3010. Parabolic isomorphism of lines.

3.5. Towards Poncelet’s porism. Given two non singular conics @), @', we can try to draw an n-gone
simultaneously inscribed in @’ and circumscribed about Q: starting from some point p; € @' draw a
tangent line from p; to @ until it meets Q' in po, then draw a tangency from ps e. t. ¢c. Poncelet’s theorem
says that if this procedure comes back to p, = p1 after n steps, then the same holds for any choice of
the starting point p; maybe except for some finite set. The next two corollaries explain Poncelet porism
for triangles (i.e. for n = 3)

3.5.1. COROLLARY. Two triangles ABC and A'B'C" are both inscribed into the same conic Q iff
they are both circumscribed around the same conic Q'.

Proof. We check only «=» implication, then the opposite implication comes by projective duality. Consider two
lines £ = (AB), ¢’ = (A’B’) and elliptic projective linear isomorphism ¢ —— ¢’ composed as the projection of ¢
onto @) from B’ followed by the projection of @) onto ¢’ from B (see fig 3011). Since it takes A — L', C' — K’,
K +— C', L — A’, all the sides of the both triangles should touch the conic associated with v via n° 3.4.2. O

Fig. 3011. Inscribed-circumscribed triangles. Fig. 3012. Finding vo(z).

3.5.2. COROLLARY. Given two conics @), Q' such that there exists a triangle ABC inscribed into @
and circumscribed around )', then any point A’ € Q) is a vertex of a triangle A’B’C’ inscribed into Q
and circumscribed around Q'.

Proof. Take any A’ € () and pick B’,C" € @ such that the lines (A’B’), (A'C’) are tangent to @’ (see fig 3011

again). By the previous corollary, both ABC and A’B’C’ are circumscribed around some conic, which must
coincide with @', because there exist a unique conic touching 5 lines (AB), (BC), (CA), (A'B’), (A'C"). O

Exercise 3.3. Make n°3.1.1 more precise by finding necessary and sufficient condition on 5 lines in Py for
existence of a unique non singular conic touching all of them.
HinT. This is projectively dual to n°2.7.3

3.6. Making a projective isomorphism by the ruler. If an isomorphism ¢; Tty is given by its
action on some 3 points, say: a; — a9, by — by, ¢ — ¢2, then we can find the image v(z) of any
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x € /1 by the ruler. In parabolic case this is trivial (see fig 3010). In elliptic case the drawing algorithm is
projectively dual to the one discussed in n°3.4.1 (A). Namely, draw the line O* = (bjas); then pass the
line through # and (aja2)N(c1c2) and mark its intersection point with O*; now () is the intersection of
{5 with the line passing through the last marked point and (b1b2) N (¢1¢2) (compare fig 307 and fig 3¢12).
Exercise 3.4. Let Q C P, be non singular conic considered together with some rational parameterization
P, — Q. Show that for any two points p;,p» € Q and a line £ C P, a map Q SAN Q given by prescription:
Ty = )" & = 7 y is induced by some linear automorphism of P; (i.e. by some linear fractional
reparameterization). Find the images of pq, p» and the fixed points of the above map. Show that any bijection
Q — Q induced by a linear automorphism of P; can be (not uniquely) realized geometrically by two points
p1,p2 € Q and a line £ C P5 in the way described above. Is it possible, using only the ruler, to find (some)

p1, P2, £ for a bijection Q —— @ given by its action on 3 points a, b, ¢, € Q?

Hint. Try p2 = a.

Exercise 3.5%. Given a non singular conic @ and three points A, B, C, draw (using only the ruler) a triangle
inscribed in @ with sides passing through A, B, C. How many solutions may have this problem?
HINT. Start «naive» drawing from any p € @ and denote by y(p) your return point after passing trough A, B, C.
Is p— v(p) a projective isomorphism of kind described in ex. 3.47

Exercise 3.6%. Formulate and solve projectively dual problem to the previous one.
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84. Tensor Guide.

4.1. Multilinear maps. Let V7, V5,...,V, and W be vector spaces of dimensions dy,ds,...,d, and m

over an arbitrary field k. A map Vi x Vo x --- x V], —%+ W is called multilinear, if in each argument
(o, M+ ) =Xp( 0 ) ()

when all the other remain to be fixed. The multilinear maps _V1 X Vo x s X V, —— W form a
vector space of dimension m - [[d,. Namely, if we fix a basis {egz), eg), . ,e((;i)} for each V; and a basis
{e1,€2,...,en} for W, then any multilinear map ¢ is uniquely defined by its values at all combinations

of the basic vectors:

a1 ) o

gp(em 6(22), cee e&?) = Zal(,al"”"“’a") e e W
(a1,09,...,a0)

As soon as m - [[ d, numbers a, € k are given, the map ¢ is well defined by the multilinearity.

di
It sends a collection of vectors (vi,ve,...,v,), where v; = > xf)i) egf_? eViforl1<i<n,to
a;=1

o0 vm o) = S0 el o) al) e e

(a1,02,...;00)

the numbers a, can be considered as elements of some «(n + 1)-dimensional format matrix of
size m X dy X dg X +-- X dy», if you can imagine such a thingl.
Exercise 4.1. Check that a collection (vy,vs,...,v,) € Vi X Vo X -+ x V,, doesn’t contain zero vector iff there
exists a multilinear map ¢ (to somewhere) such that ¢(vy,va,...,v,) # 0.
Exercise 4.2.  Check that a multilinear map V; x V5 x --- x V, .U composed with a linear operator
F Fo
U —— W is a multilinear map V; x Vo x -+ XV,  + W as well.
4.2. Tensor product of vector spaces. Let 17 x Vo x --- x V), — T+ U be a fixed multilinear map.

Then for any vector space W we have the composition operator

the space Hom (U, W) of all Fr—For the space of all multilinear maps (4 1)
linear operators U ew VixVax oo xVy, 2o W
A multilinear map Vi x Vo X --- x V,, —— U is called universal if the composition operator (4-1) is an

isomorphism for any vector space W. In other words, the multilinear map 7 is universal, if for any W

F
and any multilinear map Vi x Vo x -+ XV, —?+ W there exist a unique linear operator U —— W such
that ¢ = For, i. e. the commutative diagram

U
F
\ ;
W

can be always closed by a unique linear dotted row.

4.2.1.CLAIM. Let Vi x Vo x --- x V, L Ui Vi x Vo x - xV, LN Us be two universal

multilinear maps. Then there exists a unique linear isomorphism U, . U,y such that o = v1y.

1a usual d x m - matrix, which presents a linear map V. —» W, has just 2-dimensional format
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. . . . F. F )
Proof. Since both Uy, U, are universal, there are unique linear operators U; —— U, and U, —= U; mounted in
the diagrams

Idy,
U1 U2
A
‘ \ / ”/
: /r1 S <
Fio VixVyx - = VixVox o xV, —U; Idy,
| / \ \72 v"]
‘ \:‘
Us
IdU2

So, the composition Fy Fi» = Idy,, because of the uniqueness property in the universality of U,. Similarly,
Fi2Fy = Idy,. O

4.2.2.CLAIM. Let {egi), eg), e ,e&?} € V; be a basis (for 1 <i <n). Denote by Vi @ Vo ® --- @V,
a (][ di) - dimensional vector space whose basic vectors are the symbols

e&ll) ® 6&22) Q... 6&7;) , 1<a;<d; (4-2)
(all possible formal «tensor productsy of basic vectors e,(,“ )). Then the multilinear map

VixVax oo xVy —=Vi@Vh® - 0V,

which sends a basis vector collection (€q,,€qy,---;€qa,) € VI X Vo X -+ XV, to the corresponding basis
vector (4-2) is universal.

F
Proof. Let Vi x Vo x «-- xV,, —?+ W be a multilinear mapand Vi @ Vo ® --- @V, — W be a linear operator.
Comparing the values at the basic vectors, we see that

p=For <= Fle) @@ ® ...0elM)=plel), e, ... eM).

Qp 041 [
O

4.3.The Segre embedding. The vector space Vi ® Vo ® --- ® V,, is called a tensor product of

V1, Va,...,V,. The universal multilinear map V3 x Vo x .-+ x V), . VioV® - - ®@V, is called

a tensor multiplication. For a collection of vectors (vi,ve,...,v,) € Vi X Vo x -+ x V], the image

7(v1,v2,...,v0,) is denoted by v1 ® v2 ® - -+ ® v, and called a tensor product of these vectors. All such

products are called decomposable tensors. Of course, not all the vectors of Vi1 @ Vo ® --- ® V,, are

decomposable and im 7 is not a vector subspace in V; ® Vo ® --- ® V,,, because 1 is multilinear but not

linear. However, the linear span of decomposable tensors exhausts the whole of V1 @ Vo ® --- ® V.
Geometrically, the tensor multiplication gives a map

PV x P(Va) X -+ x P(V}) s PV, @ Vo ® «-- @ Vi)

called a Segre embedding. If di = dimV; = m; + 1, then the Segre embedding is a bijection between
P, X Py, X -+ X Py, and a Segre variety formed by all decomposable tensors considered up to
proportionality. This variety lives in Py with N = —1+4[](1 +m;) and has dimension () m;) but does
not lie in a hyperplane. It is ruled by n families of linear subspaces.

4.3.1. Example: the Segre embedding P,,;, X Pry > Prtbmotmyme Sends & = (Zo: 11 ... @ Ty, ) € Pryy
and ¥y = (Yo: Y1: .- : Ymy) € Py, to the point s(z,y) € Puytmatmyms Whose (1 + mq)(1 + ms) homogeneous
coordinates are all possible products z;y; with 0 < i < m; and 0 < j < ma. To visualize this thing, take
P, = P(V*), Pp, = P(W), and Py, 4mytmyms = P(Hom(V,W)), where Hom(V, W) is the space of all linear
maps. Then the Segre map sends a pair (§,w) € V* x W to the linear map £ ® w, which acts by the rule
v— &(v) - w.

Exercise 4.3. Check that a map V* x W —— Hom(V, W) which sends (£, w) to the operator v — &(v) - w is
the universal bilinear map (so, there is a canonical isomorphism V* @ W ~ Hom(V, W))
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Exercise 4.4. Check that for £ = (g, 21, ..., Tm,) € V* and w = (Yo, Y1, - .-, Ym,) € W operator £ ® w has the
matrix a;; = T;y;.
Since any operator £ ® w has 1-dimensional image, the corresponding matrix has rank 1. On the other side, any
rank 1 matrix has proportional columns. Hence, the corresponding operator has 1-dimensional image, say spaned
by we W, and takes v — &(v) w, where the coefficient £(v) € k depends on v linearly. So, the image of the Segre
embedding consists of all rank 1 operators up to proportionality. In particular, it can be defined by quadratic

equations det (aij aik) = aijaq, — aikag; = 0 saying that all 2 x 2 - minors for the matrix (a,,) vanish.

agj  amp
4.4. Tensor algebra of a vector space. If V; =V, = ... =V, =V, then V& ey VR -V
n
is called an n-th tensor power of V. All tensor powers are combined in the infinite dimensional non
commutative graded algebra T*V = @© V%", where V®° L.
n=0

Exercise 4.5. Using the universality, show that there are canonical isomorphisms
(V®n1 ® V®n2) ® V®ns ~ /@M ® <V®n2 ® V®n3) ~ V®(n1+ng+n3)

which make the vector’s tensoring to be well defined associative multiplication on T*V.
Algebraically, T*V is what is called «a free associative k-algebra generated! by V». Practically, this
means that if we fix a basis {e1, e2,...,eq} C V', then T*V turns into the space of the formal finite linear
combinations of words consisting of the letters e; separated by ®. These words are multiplied by writing
after one other consequently and the multiplication is extended onto linear combinations of words by
the usual distributivity rules.

4.5.Duality. The spaces V" = V@V ® - - @V and V**" = V*@V*® --- ® V* are canonically

n n
dual to each other. The pairing between v = v @V ® --- ®v, E VO and { = £, QEH® -+ - ®E, € V*O
is given by a full contraction

(v, 6) € L&) (4-3)
=1

Let {e1,e2,...,en} C V and {&1,&,...,&} C V* be some dual bases. Then the basic words {e;, ®
e, ® - ®e;, }and {& @&, ® -+ ®E, } form dual bases for T*V and T*V* with respect to the full
contraction. So, V& ~ V*®"_ On the other side, the space (V™) is naturally identified with the space

of all multilinear forms V x V x --- x V. —— k, because V®" is universal. So, there exists a canonical
n
isomorphism between V*®" = V* @ V*® --- ® V* and the space of multilinear forms in n arguments
n

n
from V. It sends a tensor £ =& @& ® -+ @ &, € V" to the form (vi,ve,...,v,) — [] &(v;).

i=1

. . 1 J .. .

4.6. Partial contractions. Let {1,2,...,p} ~——{1,2, ..., m} —— {1,2, ..., ¢} be two injective
(not necessary monotonous) maps. We write i, and j, for I(v) and J(v) respectively and consider I =
(41,49, -, im) and J = (j1,jo2,---,Jm) as two ordered (but not necessary monotonous) index collections

of the same cardinality. A linear operator

CI
V*QV*® - @V*QVeVe - @V — V'eV*'® - - V*eVeVe -V

p q p—m qg—m

m

which sends {1 @6 ® - ®EOVI@V2® - ®ugto [[ &, (v),) Q &® @ wjis called a partial
v=1 igim (1) J¢im (J)

contraction in the indexes I and J.

LIf you like it, make the following formal exercise: deduce from the universality that for any associative k-algebra A and

vector space map V —J+ A there exists a unique algebra homomorphism T*V —~» A such that al, =f
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4.6.1. Example: the contraction between a vector and a multilinear form. Consider a multilinear form
o(v1,v9,...,0,)

as a tensor from V*®" and contact it in the first index with a vector v € V. The result belongs to V@Y and
gives a multilinear form in (n — 1) arguments. This form is denoted by i,¢ and called an inner product of v and

.
Exercise 4.6. Check that i,@(wy,wa, ..., wy_1) = @(v,w1,Wws,...,Wy_1), i. e. the inner multiplication by v is
just the fixation of v in the first argument.

4.7.Linear span of a tensor. Let U,/W C V be any two subspaces. Writing down the standard
monomial bases, we see immediately that (UNW)®" = U NWE™ in V&, So, for any t € V" there is
a minimal subspace span(t) C V whose n-th tensor power contains ¢. It is called a linear span of t and
coincides with the intersection of all W C V such that t € W®". To describe span(t) more constructively,
for any injective (not necessary monotonous) map

JZ(jlajZa'--ajnfl) : {1: 27"'5(7,”_1)};'{17 2,...,7’L}

J
consider a linear map V*@n=1) % v defined by complete contraction with ¢: it sends a decomposable
tensor p =& R E® -+ ®&,—1 to a vector obtained by coupling v-th factor &,, of v, with j,-th factor
oftforalll<v<(n—-1), ie

) =55 o).

4.7.1.CLAIM. As a vector space, span(t) C V is linearly generated by the images c] (V*®(”_1))
taken for all possible J.
Proof. Let span(t) = W C V. Then t€ W®" and im (¢/) C W VJ. It remains to prove that W is annihilated by

any linear form ¢ € V* which annihilate all the subspaces im (¢f). Suppose the contrary: let ¢ € V* have non

zero restriction on W but annihilate all ¢ (V*®("_1)). Then there exist a basis {wy,ws,...,w;} for W and a

basis {1,&2,...,&¢} for V* such that: & = &, the restrictions of &1,&,...,&; onto W form the basis of W* dual
to {w,}, and &1, ..., & annihilate W. Now, for any J and &;q,&s,...,&,_1 we have

0=(& ¢/ (6n®€® 06 1))=(6_ ® - 8& , BEBE _, ® - 0& ) (44)

s+1
where s = {1, 2, ..., n}\im (J) and J~' = (j;*,j5*,...,j; ") is the inverse to J map from im (J) C {1, 2, ..., n}
to {1,2,..., (n—1)}. Note that each basic monomial of yrn=b) containing as a factor &, = £ can appear as the
first operand in the right side of (4-4). But if we expand ¢ trough the basic monomials w;; ® wiy @ -+ ® wy,,
then the coefficients of this expansion can be computed as full contractions of ¢ with the corresponding elements
£l @&y @ - ® &, from the dual basis for W*®". By (4-4), such a contraction equals zero as soon one of &;_
equals & = £, which is dual to wy. So, span(t) is contained in the linear span of wa, ..., wy but this contradicts
our assumption. O

4.8. Symmetry properties. A multilinear map V x V x -+ xV —? W is called symmetric if it

doesn’t change its value under any permutations of the arnguments. If the value of ¢ is stable under
the even permutations and changes the sign under the odd ones, then ¢ is called skew symmetric.
Since the composition operator (4-1) preserves the symmetry properties, for the (skew)symmetric ¢ the
composition operator (4-1) turns into

the space Hom(U, W) of all Pl the space of all (skew)symmetric ws)
- 5 - Y -
linear operators U F W multilinear maps V xV x -+ xV — W
A (skew)symmetric multilinear map V x V x --- x V. —2» U is called universal if (4-5) is an isomor-

n
phism for any W. In the symmetric case the universal target space is denoted by S"V and called n-th
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symmetric power of V. In the skew symmetric case it is called n-th exterior power of V and denoted by
A"V,
Exercise 4.7. Show that, if exist, S™V and A™V are unique up to unique isomorphism commuting with the
universal maps.

4.9. Symmetric algebra S®V of V is a factor algebra of the free associative algebra T*V by a
commutation relations vw = wv. More precisely, denote by Fsym C T*V a linear span of all tensors

where the both terms are decomposable, have the same degree, and differ only in order of v, w. Clearly,

Fsym 1s a double-sided ideal in T*V generated by a linear span of all the differences v@w—-w®v € VoV.

The factor algebra S°*V def T*V/ Fym is called a symmetric algebra of the vector space V. By the

construction, it is commutative!. Since Fiym = @ (Feym N VE) is the direct sum of its homogeneous
n>0

components, the symmetric algebra is graded: S*V = @ S™V, where S"V def VO [(Fgym NVE™).
n>0

4.9.1. CLAIM. The tensor multiplication followed by the factorization map:

VxVx--xV I.ven I, gy (4-6)

n

gives the universal symmetric multilinear map.

Proof. Any multilinear map V' x V x -+ x V s W is uniquely decomposed as ¢ = For, where yen l - W
is linear. F' is factored through 7 iff F(:-- @ v@w® - ) =F(--- Quw®ov® ---), L. e iff (... ,0,w,...) =
ol yw,v,..0) 0

The graded components S™V are called symmetric powers of V and the map (4-6) is called a symmetric
multiplication. If a basis {e1,eq,...,eq4} C V is fixed, then S™V is naturally identified with the space
of all homogeneous polynomials of degree n in e;. Namely, consider the polynomial ring k[e;, eg, .. ., eq4]
(whose «variables» are the basic vectors e;) and identify V' with the space of all linear homogeneous
polynomials in e;.

Exercise 4.8. Check that the multiplication map

n

([1’[2""7“)'—),,1;[1[" the homogeneous polynomials
VxVx...xV -

n

of degree n in e;

d+n—1)‘

is universal and show that dim S™V = ( "

4.10. Exterior algebra A®V of V is a factor algebra of the free associative algebra T*V by a skew

commutation relations vw = —wwv. More precisely, consider a double-sided ideal Fgyew C T°V generated

by all sums v @w +w®v €V ®V and put A*V def T*V/ Zskew- Exactly as in the symmetric case, the

ideal Fyey is homogeneous: Fgiew = D (Fskew N VE), where (Fyew N VEM) is the linear span of all
n>0

sums

(the both items have degree n and differ only in the order of v,w). So, the factor algebra A®V is graded
by the subspaces A"V & V& /(7 N VER),

Exercise 4.9. Prove that the tensor multiplication followed by the factorization

VXVx- - xV T> V®n L»» An(V) (4—7)

n

! Again, if you like it, prove that for any commutative k-algebra A and a vector space map V I+ A there exists a

unique homomorphism of commutative algebras S°V —>» A such that al, =f
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gives the universal skew symmetric multilinear map.
The map (4-7) is called an exterior or skew multiplication. The skew product of vectors (vq,ve, ..., vy,)
is denoted by v1 Ava A - -+ Av,. By the construction, it changes the sign under the transposition of any
two consequent terms. So, under any permutation of terms the skew product is multiplied by the sign
of the permutation.

Exercise 4.10. For any U, W C V check that S"U NS"W = S®*(U NU) in S®V and AU NA"W = AU NU)

in A™V.
4.11. Grassmannian polynomials. Let {ej,e2,...,e4} C V be a basis . Then the exterior algebra
A*V is identified with a grassmannian polynomial ring k (e1,e2,...,eq4) whose «variables» are the basic
vectors e; which skew commute, that is, e; A e; = —e; A e; for all 4,j. More precisely, it is linearly
spanned by the grassmannian monomials e;; Ae;, A --- Ae;, . It follows from skew commutativity that
e; Ne; = 0 for all 4, that is, a grassmannian monomial vanishes as soon as it becomes of degree more
then 1 in some e;. So, any grassmannian monomial has a unique representation e;; Ae;, A --- Ae;, with

1< <ig < - <y < d.

4.11.1. CLAIM. The monomials ey o ei, Nei, N -+ Nej, , where I = (i1,i9,...,in) runs through

the increasing n-element subsets in {1,2, ... ,d}, form a basis for A"V. In particular, A"V = 0 for

n>dimV, dimA"V = (Z) ,and dim k (e, es,...,eq) = 2%

Proof. Consider (i)—dimensional vector space U whose basis consists of the symbols &7, where T = (i1,42,...,in)

runs through the increasing n-element subsets in {1,2, ... ,d}. Define a skew symmetric multilinear map
VixVaX oo XV —> U (€j1s€jas---,€5,) — sgn(o) - &1,

where I = (jy(1),Jo(2)s -+ »Jo(n),) 18 an increasing collection obtained from (ji, j2,.-.,Jx) by a (unique) permu-

tation o. This map is universal. Indeed, for any skew symmetric multilinear map V- xV x --- xV 2. w

n
F
there exists at most one linear operator U —— W such that ¢ = Foa, because it has to act on the basis as
F(&r) = ¢(eiy,€iqy---,€5,)) for all increasing I = (i1,4a,...,ip). On the other side, such F' really decomposes

@, because F(a(ej,,€j,,---,€j,)) = @(€),,€j,,--.,€j,)) for all not increasing basis collections (ej,,€j,,...,€j,) C

VxV x -+ xV as well. By the universality, there exists a canonical isomorphism between U and A"V which
n

sends &7 to e;, Nej, A -+ Ne;, =eg. U

Exercise 4.11. Check that
fle) A gle) = (—1)teel))de8l9) g(e) A f(e)

for all homogeneous f(e), g(e) € k{e1,ea,...,eq). In particular, each even degree homogeneous polynomial
commutes with any grassmannian polynomial.

Exercise 4.12. Describe the center of k (e1,ea,...,€q), i. . all grassmannian polynomials which commute with
everything.
d
4.11.2. Example: linear basis change in grassmannian polynomial. Under the linear substitution e; = >~ a;; §;
j=1

the basis monomials ey are changed by the new basis monomials £; as follows:

er = e Nei A - ANej, = (Zam’l €j> A (Z i o fj) A A (Z%J’n §j> =
J1 J2 Jn

= Z Z sgn(o) Firjo1y Ainjo(a) " Vinjoin) i NEa N - N = Z(IIJ & s
J

1<j1<j2 < <jn <N 0EGH
where ary is (n x n)-minor of (a;;) placed at (1,42, ...,i,) rows and (j1,j2,...,Jn) columns, and J runs through
all increasing index collections of the length #.J = n.
Exercise 4.13. Let |I| = > 4, denote a weight of the increasing index collection I = (iy,4y,...,4,) of length

#1I = n. Check that )
e, Nep= (=) #IOH#D o) Ney A -+ Aeg (4-8)
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for any two complementary index collections I and = {1,2,...,n} \ L.

4.11.3. Example: the Sylvester relations via grassmannian polynomials. Let us take two complementary index

d
collections T and T % {1,2,...,n} \ I and do a basis change e; = Zaif &; in the identity (4-8). Its left side

Jj=1
e;Nep turns to

( Z Qg 5[() A ( Z aLfgL) = (_1)%#I(l+#l) Z (_l)lKla[Kaff{ £1 A£2 AN /\Eda

K: L: K:
HEK=#T #L=(d—#I) H#K=#I

where K = {1,2, ... ,d} \ K. The right side of (4-8) gives (—1)2#7(1+#D (_1)/] det(aij)é A& N -+ ANq. So, for
any any collection I of rows in any square matrix (a;;) the following relation holds:

Z (1)K Mg = det(agy) (4-9)
#KK::#I

where ax & a7 denotes the (d —n) x (d —n) - minor which is complementary® to a;x and the summation runs
over all (n x n) - minors ayk contained in the rows (i1,42,...,1,).
If we take INJ # &, then starting from ey Aey; = 0 instead of (4-8) we get by the same calculation the relation

Z (—)EH gy s =0, (4-10)
K:
#EK =41
The identities (4-9) and (4-10) are known as Sylvester relations. Let us fix, say lexicographical, order on the
set of indices I and arrange all (n x n)-minors ary as (¢) x (%) - matrix A L (ar5). If we denote by A a
matrix whose (I.J)-entry equals ((—1)|I|+|J|6J1), then all the Sylvester relations are expressed by the single matrix

equality A . AW = det(ai;) - E.

4.11.4. Example: reduction of grassmannian quadratic forms. Any homogeneous grassmannian polynomial of
degree 2 can be written as
NGE+ENG+ - +6 0N (4-11)

in some basis (over any field k). Namely, we can suppose? that our grassmannian quadratic form is

gle) =e1 A (azea + -+ + apey) + (terms without er)

where as # 0 and & def ases + -+ + aye, does not contain e;, that is it can be included in the new basis
{C1,Coy- -, Cu} With ¢ = e; for i # 2. After the substitution ey = a5 ' (& — asls — -+ — an(y), €; = ¢ for i # 2,
we can write ¢ as ¢({) = G A+ G A (B3 + -+ + Bn(n) + (terms without ¢ and ¢2). So, in the next new base:
{&1,&, .., 6n ) with & = ¢ — B3¢z — -+ — BuCa, & = ¢ for i # 1 our ¢ turns to

q(¢) = & A& + (terms without &1 and &)
and this procedure can be repeated inductively for the remaining terms.
Exercise 4.14. Let A = (a;j) be a skew symmetric matrix (i. e. a;; = —aj;) and g(e) = > a;je; Aej be a
j

grassmannian quadratic form. Show that in the representation (4-11) the number r doesn’t depend on the
basis choice and equals rk A. (In particular, rk A is always even.)

1i. e. sitting in the complementary rows and columns
2may be after appropriate renumbering of the basic vectors
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85. Polarizations and contractions.

In this section we always assume that k is algebraically closed and chark # 2.

5.1. (Skew) symmetric tensors. A symmetric group &, acts on V®" permuting factors in the de-

composable tensors:  o(v;1 QU ® -+ ® vy) def V(1) ® Vg(2) @ @ Vg(n) Vo EG, . Subspaces

AT"V = {t e V®"|o(t) =sgn(o) -t Vo€, }
STV ={teV®|o(t)=t Voe&,}

are called the spaces of skew symmetric and symmetric tensors.

5.1.1. CLAIM. Let char (k) = 0. Restricting the canonical factorization maps

ven Tskew A"V ’ yen Tsym fSave ’
onto the spaces of (skew) symmetric tensors, we get the isomorphisms
ATV " L A"V and STV . SV (5-1)
Proof. In the skew symmetric case, a basis of AT"V is formed by the tensors

def
€li1,iz, min) — E : sgn(o) i, & €i,(2) Q- ® Ciyin)
ce6,

(sum of all the tensor monomials sent to the basic Grassmannian monomial e; = e;, Aej, A -+ Ae;, DY Tskew). SO,
Tekew (€(iy in,....in)) = nler. In the symmetric case, let us write €[m, m,,....m,] for the sum of all tensor monomials

containing m; factors ey, mo factors eo, ..., my factors ey, where >~ m, = n. These monomials form one &,,-orbit,
v
n! mi ma mq
Tl elements and collects all the decomposable tensors sent to e;"*e5* - -+ e, by Tgym.
. n
As above, the tensors €, m.,,....m,] form a basis for ST"V and gy, (e[

0

which consists of
L ) ) —_ _n  mi ma
1,92, 000]) T Ty lma! - mg!

Exercise 5.1.  Verify that the above sums e(;, i, i) and €, m......m, really give the bases for ST"V (over
any field of an arbitrary characteristic). Also note that if char (k) > 0 divides n, then all these basic
(skew) symmetric tensors are annihilated by factorization through (skew) symmetric relations.

Exercise 5.2.  Verify that if char (k) = 0, then V®" = I @ ATV = STV & A7)

ko sym » where the projection

Ve e STV along A" is given by the symmetrization map

sym

1
symy, © T Z o(r)

and the projection V®" —s AT™V along AR given by the alternation map

skew
1
alt, : 7— i Z sgn(o) - o(71) .
e,

5.2. Polarization of (skew) polynomials. The inverse maps to the isomorphisms (5-1) take

1
eil A e’iz A A ein L m ’ e('il:iZ:"'ain)
ol - ! (5-2)
eMeMm2 . . oMd 1= 772" d: .e
1 €9 d ! [m1,ma,....,mq] -

The both maps are called complete polarizations of (skew) polynomials and are denoted by f +—— pl(f).

5.2.1. Example: (skew) polynomials and (skew) symmetric multilinear forms. Full polarization pl(f) of a (skew)
homogeneous degree n polynomial f of one argument on V' can be considered as a multilinear form of n arguments
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on V. It sends (v1,v2,...,v,) to the full contraction f(’t}l,’l}g, ceeyUn) def (V1 ®V2 ® -+ @y, pI(f)) and has the

same symmetry properties as f, because for all 0 €&, te V&, £ V*®" we have <U(t) , 0(&) > = <t, £ >, which
implies (o(t), &) = (t, o7(&)).

Exercise 5.3. Check that for a symmetric quadratic form ¢(z) € S?V* we have

T, y) = 12+ Y) . gz —y) _ a(z +y) —Qq(w) —aly) _ % > 9q

Since any multilinear form ¢ may be presented via full contraction
e(v1,v2,...,0p) = (V1 QV2 @ -+ ®vp, §)

with some ¢ € V*®" the complete polarization identifies S"V* and A”V* with the spaces of all symmetric and

skew symmetric multilinear forms V' x V x .-+ x V. —— Kk, in n arguments on V.
n
Exercise 5.4. In symmetric case, show that a homogeneous degree n polynomial f(z) (in one argument
x € V) coincides with the restriction of the corresponding symmetric multilinear form f(ml, Z2,-.-,%y) (Inn
arguments z,, € V) onto the diagonal: f(z) = f(z, z, ..., z).

5.2.2. Example: duality on polynomials. Using the complete polarization and the full contraction between V&7
and V*®" we obtain (over a field of zero characteristic) a natural non degenerate pairing between A”(V) and

A™ (V™) as well as between S™(V') and S™ (V*). Namely, for two (skew) polynomials f, in e; €V, and ¢, in z; €V*,
def

we put (f, &) = (pl(f), pl(E) )-
Exercise 5.5. Let {e1,es,...,e,} CV and {z1,29,...,2,} C V* be dual bases. Check that:

0 , otherwise

1/n! ,forI=J
(er,as) =Y (5-3)
0 , for I #.J
milma! - mg! if =/, V
(e e st st = {2 0

5.3. Partial derivatives (symmetric case). For any vector v € V' and any polynomial f € S"V* the
contraction ¢} (pl(f) ®v) € V*"~! does not depend on the choice of contracted index i in pl(f), because
pl(f) € ST"V* is symmetric. Its projection to S"~'V* is called a polar of v w.r.t. f and is denoted by

pl, f.
dimV
Exercise 5.6. Show that deg(f)-pl,f = 0, f, where 9, is the derivative in v-direction, which takes f to > wv; %
i=1 ¢
(here v = Y wv;e;, {e;} is a basis for V and {z;} is a dual basis for V'*).

Exercise 5.7. Show that n!- f(vy,ve,...,0,) = 0y, 0y, -+ Oy, f for any f € S"V* vy, v9,...,0, € V.
It follows that 0, f does not depend on a choice of basis, is bilinear in v, f, and satisfies

mo! ag’l”f(vg) = (m1 +MQ)! f(Ul,Ul, ce., U1, 09,02, ... ,’UQ) =my! 81732 (’Ul) , (5—5)

mi m2

where (my +mg) = n = deg f. In particular, the left and right sides are bihomogeneous of bidegree

(mqy, me) in (v1,v2).

Exercise 5.8. Show that multiple polars: pl,, ,, ., f def pl,,pl,, - pl,, f are symmetric and multilinear in v;

and linear in f, that is come from a linear map S™V ® S"V* — S~V * which sends vjvs « -+ vy, @ f to

p1v17v2,...7vmf(w) = f(U17U27' s Ump, W, W, .- ,'IU).

5.3.1. Example: the Taylor formula. For f € S™V* the value f(v + w) can be computed as the full contraction
of f with (v+w)™ =3 (") v™w"™™ € S"V. This can be arranged as the Taylor formula:

m

fo+w) =2 ofw). (56)
v=0
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5.3.2. Example: span(f) for f € S™V*, that is a minimal subspace W C V* such that f € S™W, coincides
with span(pl(f)) described in n°4.7.1 as an image of the contraction map S" 'V ® S"V* — V*. So, in terms
of partial derivatives, span(f) is generated by the linear forms

o0 0 0

61‘1‘1 61‘@2 6:1,’1‘“_1

f(z) (5-7)

obtained from f by all possible (n — 1)-fold differentiations.

5.4. Veronese variety in Py = P(S™V™), where dimV =d+ 1, N = (Z) — 1, consists of pure n-th
powers of linear forms £ € P(V*). It has a rational parameterization given by the Veronese map

The result of n° 5.3.2 allows to present the Veronese variety by a system of quadratic equations. Namely,
f € S"V* equals £"(x) for some & € V* iff span(f) C V* coincides with the 1-dimensional subspace
generated by £. So, f is pure n-th power iff all the linear forms (5-7) are proportional to each other. If

we arrange the coefficients of these forms in the rows of some 2 x (d+1)-matrix, then their proportionality
means that all 2 x 2-minors of this matrix vanish.

5.4.1. Example: Veronese's curve. Let dimU = 2, Py, = P(U*), P,, = P(S"U*), {to,t1} be a basis of U*, and
(?) tit? " for 0 < i < n be the corresponding basis of S"V*. Then the Veronese embedding P; — P,, sends a
linear form (ot + a1t1) to

. . n S
(aato +ant)” = Y ajad - (1) e
i

Its image is a rational curve C,, C I, called Veronese curve or rational normal curve of degree n. If we use the
coefficients (ap: ar: ... : a,) and (@ : a1) as homogeneous coordinates for a polynomial Y- a;- (%) tity " € S"U*
i

n—i

and for a linear form agto + aqt; € P(U*), then C), will be presented parametrically as a; = af]al

On the other hand, for f(t) = Z a; - <TZL) tit" =" the linear forms (5-7) are exhausted by
i

ai an—l—i
a—téW f(t) =aito + ajp1t1, where 0<i<(n—1).
apg Qq . Qp—1
a as ... Qg

So,feCn<:>rk< ):1<:>aiaj—ai+1aj_1:0foraHO<i<j<n.

In particular, for n = 2 we get the Veronese quadric agas = a? in Ps. For n = 3 we have a rational cubic
curve, which is called a twisted cubic, given as an intersection of 3 quadrics agas = a%, ajaz = a%, apaz = a1as3.

Exercise 5.9. Draw the picture and discover that the first two quadrics are simple cones with vertices at
(0:0:0:1) and at (1:0:0:0); the third quadric is Segre’s one and is ruled by two line families; two cones
have a common line element a; = as = 0, which joins the vertices but does not lie on the Segre quadric; the
line element ag = a; = 0 of the first cone and the one a; = a3 = 0 of the second do lie on the Segre quadric
in the same ruling family. So, any two of 3 quadrics are intersected along the twisted cubic and one more
line, that is, the Veronese curve can not be given by use of 2 equations only!

5.5. Partial derivatives (skew-symmetric case). The contraction ¢ (pl(f) ® v) € V*"~! between
a vector v € V and a skew polynomial f € A"V* slightly depends on a choice of the contracted index
i: it changes the sign when ¢ is incremented or decremented by one, because pl(f) € AT"V* is skew
symmetric. Let us choose i = 1 and write pl, f for the projection of ¢}(pl(f) ® v) into A~ 1V*.

Since the consecutive polarizations defined by this rule do anticommute: pl,pl,f = —pl,pl, f, the
multilinear map

(’Ul U253 Um, f)levl p1v2 pl'um f

VXxVx- -« xVxA"V* » AT

m

comes from the linear map A™V @ A"V* —— APT™V*,
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Exercise 5.10.  Show that deg f - pl,f = 0, f, where 0, = Zvia%i’ as in ex. 5.6, and verify the following
properties of skew partial derivatives: a) 8,0, = —0,0, (in particular, 2 =0 YveV );
b) f(vl,vg,...,vn) = %801802 < Oy, fforany f e A"V* vi,v9,...,05 € V.
¢) 0u(fu A f2) = (Bufi) A f2 — (=1)4E 1 f1 A (8, f2), in particular,

Qe Tiy NTig N o+ ANy, = (=1)" oy Ao Amiy Az g Ao Ay,

€iy
5.5.1. Example: span(f) for grassmannian polynomial f € A"V is linearly generated by partial derivatives
an = 6“”1"7189’71'"72 T 89”]’1 f =n! <‘Tj1 T, @ - QTj, pl(f) >

where J = (41,72, -+, Jn-1) C {1, 2, ..., d} runs through all (nil) increasing ordered collections of (n—1) indexes
and {z;} € V* form a dual basis to some basis {e;} € V. If f =) arer w.r.t. the last base, then
T

Osf =n!- Z(—l)n_p(i’J) QLiy € (5-8)
idJ

where p(i, J) is the number of place where i stays in the increasing permutation I of J LI {i} (because x is the
only monomial in A”V* whose complete contraction with ey is non zero, see (5-3)).

5.5.2. Example: Pliicker relations. A skew polynomial f € A™V is called completely decomposable, if f =
v1 Ava A -+ Awy, is a product of n linear factors, or equivalently, if dim span(f) = n is minimal possible.
Exercise 5.11. Show that f is completely decomposable iff f Av =0 Vv € span(f).
So, like in n® 5.3.2 — n°® 5.4.1, the set of completely decomposable polynomials f € A"V is described by a system
of quadratic equations (95 f) A f = 0. By (5-8), a basic monomial e € A"V appears in

Qsf)Nf=nl- Z(*l)p(i"]) gy e | A (Z a161>
1

igJ
n+1
as nl- Y (=1 PRaD) a0 s (k) €k A €K\ (Ko}, 1-€. With the coefficient, which up to a constant factor
a=1
equals
def ;
Pik(HE Y (0P Eagak, (5-9)
t€eK\(KNJ)

where p(i, J, K) is the sum of the place numbers where i stays in the increasing version of J U {i} and in K.

Exercise 5.12. Show that this coefficient vanishes, if J C K
System of quadratic equations Py (f) = 0, which defines the variety of completely decomposable Grassmannian
polynomials, is known as the Pliicker relations. Note that these quadratic equations are not «independent», even
not pairwise different (see n°6.6.2 below).
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86. Working example: grassmannians.

6.1. Pliicker quadric in Ps. Let V be a 4-dimensional vector space and P5 = P(A?V). Then the
Pliicker quadric

def
Qr T {we AV | wAw=0}
is a non singular quadric in Ps. Fixing a base {eq, e1, e2,e3} for V and induced base e;; = e; Ae; for A%
and writing z;; for the homogeneous coordinate along e;;, we have (Z Tij-e; A ej> A (Z Tij - ei N ej> =
i<j 1<j
2 (zo1w23 — To2x13 + To3x12) - €0 A er Aex Aes, i.e. Qp has the equation

L0213 = 01223 + To3ZL12 -

In coordinateless terms, @p is given by quadratic form ¢(w) = ¢(w,w) whose polarization g(wi,ws) is a
bilinear form on A2V defined up to a scalar factor by the prescription

w1 N\ wo = a(wl,wg) -,

where 0 € A*V ~ k is any fixed non-zero vector. This form is symmetric, because even degree Grass-
mannian polynomials commute: wy; A wo = wy A wy.

6.2. Pliicker embedding. By the definition, a grassmannian Gr(2,4) is a set of all lines £ C P35 = P(V),
or equivalently, a set of all 2-dimensional vector subspaces U C V. A Pliicker map

Gr(2,4) = P(A2V)

sends a 2-dimensional subspace U C V to the 1-dimensional subspace AU C A%V. If U is spaned by
a pair of vectors uj,us (i.e. £ = P(U) pass trough uy,us € P(V)), then u(f) = w(U) = uy A ug up to
proportionality.

6.2.1. LEMMA. Two lines ¢1,¢y C P3 are intersecting iff — q(u(f1),u(f2)) = u(fy) Au(ly) = 0.

Proof. Let £; = P(Uy), o = P(Uy). If Uy NU, = 0, then V = U; & U, and there exist a base {e;} C V such
that Uy is spaned by eg,e; and Us is spaned by es,e3. So, u(Uy) = eg A er, u(Us) = e A ez and w(Uy) Au(Us) =
eoNep ANex Nes # 0. If Uy NUs # 0, then taking ug C Uy N Us we can write u(Uy) = ug A ug, w(Usz) = ug A usy for
some uq,us. S0, W(Ur) Au(Us) = ug Aug Aug Aug =0. ]

6.2.2. LEMMA. If dimV = 4, then w € AV is decomposable' iff wAw =0.

Proof. If w is decomposable, say w = u; A us, then w A w = uy Aus A uy A uy = 0, because of skew symmetry. To
get the inverse, take a base {{;} such that w turns into either w = { A& + € A& or w = & A& . In the first case
wWAw=2& NE NE NE #0,i.e. w is indecomposable. [l

6.2.3. COROLLARY. The Pliicker map is a bijection between the grassmannian Gr(2,4) and the
Pliicker quadric ()p C Ps.
Proof. For any two lines ¢ # £, on P3 there exists a third line ¢ which intersect /; and doesn’t intersect /5. Then
u(ly) Au(l) =0 and u(fs) Au(f) # 0 imply u(fy) # u(f), i.e. u is injective. Surjectivity follows from n°6.2.2. [

6.2.4. COROLLARY. For any point p = u({) € Qp the intersection Qp N T,Qp consists of all u(¢’)
such that f NV # @.

Proof. T,Q)» is a zero set of the linear form g(u(¢), *). By n°6.2.1, g(u(f),u(f')) =0 <= (Nl # @. O

6.3.Line nets and line pencils in P3. A set of lines on P3 is called a net if it is represented by a
plane 7 C Qp C P5. If 7 C Q5 is spaned by 3 non collinear points p; = u(¢;), i = 1,2, 3, then

T=Qp meQP N szQP N Tp3QP .

recall that homogeneous polynomial is called decomposable if it is factorized into a product of linear forms
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So, by n°6.2.1 and n° 6.2.4 the corresponding line net consist of all lines which intersect 3 given pairwise
intersecting lines. Hence, there are exactly two geometrically different line nets on Ps:

a-net is a set of all lines passing through a given point O € P3; the corresponding plain 7, (0) C Qp is
called a-plane. It is spanned by the Pliicker images of any 3 non coplanar lines passing through O.

B-net is a set of all lines laying on a given plane II € P3; the corresponding plain 7g(II) C @Qp is called
B-plane. 1t is spanned by the Pliicker images of any 3 lines which lay on II and don’t have a common
intersection.

Note that any two planes of the same type have

exactly 1-point intersection, namely: I~
/
/
Wﬂ(Hl)ﬂWﬂ(Hg):u(Hlﬂﬂg) //
Ta(01) NTa(02) = u((010z) ) ///
/

Two planes of different types mg(Il), 7,(0) do not /
intersect each other, if O € II. If O €I, then mg(I)N /
7o (0) is a pencil of lines £ C P such that O € £ C 1. (/

Exercise 6.1. Show that there are no other line pencils N
in Ps, i. e. eachline on @, C P5 has the form wg(II)N N
7o (O) for some O and II. h

HiNT. Consider the cone C = Qpr NTpQp. It has a
vertice at p and consists of all lines which pass
through p and lay on ). Fix a 3-dimensional
hyperplane H C T,Qp which doesn’t contain
p. Then G = C' N H is non singular quadric pé H ~”
on H. So, any line passing through p has a
form (pp’) = ma N 7g, where p’ € G and the
planes 7., g are spaned by p and two lines
passing through p’ on G (see fig 601).

Fig 601. The cone C = Qr NT,Qp.

6.4. Affine cell decomposition of Gr(2,4). Let H C T,Q)» be a 3-dimensional projective hyperplane
such that p ¢ H, as in above exercise, C = Qp NT,Qp, and G = H N Qp. Then C is the simple cone
with vertex p over G (see fig 6¢1) and we have the following diagram of inclusions

/ \ .
p > To N 7g C— Qp = Gr(2,4) = AUA' U U JuAduA?
\ / A2
T8

The right side decomposition is produced via replacing each stratum in the left side by the complement
to all the smallest strata it contain and identifying the resulting disjoint cells with affine spaces as follows:
(ma Nmz) \p =~ Al (because this is a projective line without a point), 74 \ (7o N 7g) ~ 75\ (7o N 75) ~ A2
(because the both are projective planes without a line), C'\ (o U mg) ~ Al x <G \ (Gn Tpr)> (because
C' is a cone over (), and finally, G \ (G N Tp/G) ~ A? and Q \ C ~ A*, because of the lemma below.

6.4.1.LEMMA. Let ) C P, be a quadric, p€ @ be a non singular point, and H ¥ p be a codimension
1 hyperplane. Then the projection from p onto H induces a bijection between @ \ (Q N 1,Q) and
A"l =H\ (Hn T,Q).
Proof. Any non tangent line passing through p have to intersect ) precisely ones more. All such lines are 1-1
parameterized by the points of A"~! = H \ (H NT,Q). ]

Exercise 6.2%. If you have some experience in topology, show that over C all odd integer homologies of Gr(2,4)
vanish and the even ones are Hy = Hy = H¢ = Hg = Z, Hy = 7Z @ Z. Also, try to compute the homologies
for the real grassmannian, where the boundary maps are non trivial.
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6.5. General grassmannian Gr(m,d) is defined as the set of all m-dimensional vector subspaces in
a given d-dimensional vector space V. If the nature of V' is important, we write Gr(m, V') instead of
Gr(m,d). In the projective language, Gr(m, d) is the set of all (m — 1)-dimensional projective subspaces
in Pg_y. If m = 1, then Gr(m,d) = Pg_y. There is a canonical bijection Gr(m,V) ~ Gr(d — m, V™)
induced by duality. It sends U C V to Ann U C V* and wise versa.

Exercise 6.3. Let dimV = 4. Fix an isomorphism V 2 V*, say presented by a non singular quadric
@ C P(V), and consider an automorphism of Gr(2,V) given by U —— Annq(U). Show that it maps the
a-planes on Gr(2,4) to the f-planes and wise versa.

6.6. Pliicker embedding Gr(m,V) ©——~ P(A™V) sends m-dimensional subspace U C V to the
1-dimensional subspace A™U C A™V. If U is based by the vectors {ui,ug,...,un} C U, then u(U) =
uy Aug A -+ Auy up to proportionality, because taking an other base, say v; = > a;ju;, we get

wU) =vi Avg A -+ Ay, =det (aij) - ur Aug A -+ Aty -

6.6.1. LEMMA. The Pliicker embedding is really injective.

Proof. If Uy # U,, then there exist a base in V' such that some vectors wy,ws, ..., w, of this base give a base for
U, N Uy, some other uy,us, ..., Uy, together with {w,} give a base for U, some other vy, vs, ..., v;_, together
with {w,} give a base for Us, and the rest e1,es, ..., €44 r_om are complementary to U; + Us. Let w € AT~V be

§—EAw

the skew product of all v, and e,. The skew multiplication by w A™V AV ~ k turns into a linear form

on A™V as soon as a base vector for A?V is fixed. This linear form does vanish at u(Us) and doesn’t at w(U;). O

6.6.2. Example: 2 x 2-minors of 2 x 4-matrices. Let dimV = 4 and a base {e;,es,e3,e4} C V be fixed. Then
11 a12 a3 Q14
G21 QA22 Q23 (24
the coordinates of uy,us. This matrix is defined by U up to the left multiplication A — C' - A by any C' € GL»(k)
(this corresponds to a base change in U). The Pliicker embedding sends A to

a1 QA1j
Uy N\ us = E det ¢ J e;Nej.
a2; G2j

1<j

a subspace U C V based by wuy,us can be presented as 2 x 4-matrix A = > whose rows are

So, the homogeneous coordinates of u(U) € Ps in the base {e;; = e; Ae;} are six 2 x 2-minors of A. In particular,
the left multiplications by C' € GLs doesn’t effect on the ratios between 2 x 2-minors of A. An other claim: six
numbers x1, T2, ..., xe give a collection of 2 x 2-minors for some 2 x 4 matrix iff they satisfy (maybe, after some
renumbering) the Pliicker equation z1xo = 324 + T576.

Exercise 6.4. Is there 2 x 4 - matrix with minors a) {2,3,4,5,6,7} b){3,4,5,6,7,8}7

6.7. Matrix notations and Pliicker coordinates on Gr(m,d). A point U € Gr(m,d) can be
presented by (mxd)-matrix Ay whose rows are the coordinates of some base vectors {uy,us, ..., un} C U
with respect to a fixed base {e1,e2,...,e4} C V. Such a matrix is not unique and is defined by U only up
to the left multiplication by any C' € GL,, (this corresponds to a base change in U). So, the grassmannian
Gr(m,d) can be considered as a factor space of Mat,, xq(k) by the left action of GL,, (k). Under the Pliick-
er embedding , the homogeneous coordinates of u(U') € A™V in the standard base e; = e;, Aej, A -+ Nej,
are equal to the maximal minors of A. They are stable under the left G L,,-action and are called Plicker
coordinates of U.

6.8. Affine covering and affine coordinates on Gr(m,d). Consider the standard affine card %; C
P(A™V) given by x; = 1, where z; is the coordinate along e; = €;, Aej, A -+ Ae; . The inverse image

def
Uy =

(41,49, ..,4m). Any such U has a unique matrix representation Ag) = (a(1)> with the identity m x m-

u=' (%) c Gr(m,d) consists of all U such that Ay has non zero maximal minor in the columns
]
submatriz staying in these columns. It is given by Ag) = A[}II - Ay, where Ay is an arbitrary matrix

representation for U and Ay C Ay is m X m-submatrix formed by the columns (i1,42,...,%my). So, the

points of Yy C Gr(m,d) are 1-1 parametrized by m (d — m) matrix elements (aff,}) staying outside the

columns (i1,49,...,%y) in Ag). In other words, we have an affine chart A™™) _~ §{; ¢ Gr(m,d)
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which covers an open dense subset of the grassmannian. The charts ; are called standard and cover
the whole of Gr(m,d) when I runs through the length m increasing subsets in {1,2, ... ,d}.
Exercise 6.5. Write down the explicit transition functions between the standard affine charts ;5 and s3 on
Gr(2,4).
Exercise 6.6%.  If you had deal with smooth topology, check that real and complex grassmannians are the
smooth (moreover, analytic) manifolds.

6.9. Cell decomposition. The Gauss method shows that for any U C V there exists a unique base
{ui,u9,...,up}, of U, such that the corresponding matrix Ay = (ay ) is a strong step matriz, that
is, (au,) contains the identity m x m-submatrix, say in columns (ji,J2,...,Jm), such that each row
vanishes at the left of the unity coming from this identity submatrix (i. e. for alli = 1,2, ... ,;m we have
ai; =0 Vj<ji).
Exercise 6.7. Prove that different strong step matrices give different subspaces in V.

So, there exist a bijection between Gr(m, d) and the set of all strong step matrices. The last one splits into
disjoint union of the affine spaces. Namely, all strong step matrices that contain the identity submatrix
in the fixed columns I = (i1, 49, ...,1,) have exactly

mn—m? — (i1 — 1) = (i = 2) = -+ = (im — m) = dim Gr(m,d) = > _(iy — )

v=1

free entries to put there any numbers from k. Hence, topologically, Gr(m,d) is a disjoint union of
(%) affine cells A; enumerated by length m increasing subsets I C {1,2,...,d}. The I-th cell is

m
homeomorphic to the affine space and has codimension ) (i, — v) in Gr(m,d).

v=1
6.10. Young diagram notations. Traditionally, the v-th difference (i, — v) in a length m increasing
subset I C {1,2, ... ,d} is denoted by Ay q1-p in order to have a partition (d—m) > =X > -+ >
Am 2 0 instead of the increasing collection 1 < 4; <149 < -+ < iy, < d. By the definition, a partition A

is a not increasing collection of non negative integers A = (A1, Aa, ..., Am). A length £(\) is a number of

the last non zero element in A. A weight of X is || def > Av. A Young diagram of X is a flushleft’ed

v
collection of cell rows whose lengths are A\, Ao, ..., Ap,. For example, the partition A = (5,4,4,1) has
|
length £(\) = 4 weight |A| = 14 and Young diagram . In other words, the partition is just the

Young diagram, its weight is the number of cells, and its length is the number of rows.
Exercise 6.8. Check that there is a bijection between the length m increasing subsets I C {1,2, ... ,d} and the
Young diagrams contained in the rectangle of size m x (d — m).
In terms of Young diagrams, the grassmannian Gr(m,d) is decomposed into the disjoint union of affine
cells enumerated by the Young diagrams contained in the m x (d — m) - rectangle. A-th cell has
codimension |A| and is isomorphic to A™d=m)=IAl *Tn particular there is a unique 1-point cell, which
has codimension m (d — m) and corresponds to the rectangle itself, and a unique open dense cell of
codimension zero, which corresponds to the empty diagram and coincides with the standard affine chart
Uf1,2,...m}- A topological closure of A-th affine cell is called a Schubert cycle and denoted by o).
Exercise 6.9.  Check that 6 Schubert cycles on the Pliicker quadric Gr(2,4) ~ Q» C P5 are: gog = Q»p;
022 =p=(0:0:0:0:0:1) € Ps; 010 = Qr NTpQ»; 011 = Ta(O), where O = (0: 0: 0 : 1) € Ps;
o299 = ma(Il), where II C P3 is given by zg = 0; 021 = mo(O0) N wa(Il).
Remark for who studied the topology. Clearly, the Schubert cycles generate the homologies of Gr(m,d). Moreover, for the
complex grassmannian they form the base of H.(Gr(m, C%),Z) over Z. It is a nice (but not simle) combinatorial problem, to
express the (topological) intersections of the Schubert cycles in terms of the Schubert cycles. The corresponding technique
is known as a Schubert calculus and is described in Griffits-Harris, Fulton-Harris and Macdonald. Roughly speaking, the
homology ring H.(Gr(m, (Cd),Z) is isomorphic to the truncated ring of symmetric polynomials via sending the Schubert
cycles o to the Schur polynomials sy.
Exercise 6.10%. Show that 019091 = 03y = 02, = 02, 020011 = 0, and 0%, = 090 + 011 in the integer homology
ring of complex Gr(2,4).
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HINT. To calculate o3, realize o10 as o1,0(£) = Qp N TuyQp = {£" C P3| £N{" # @}. Then, taking two
intersecting lines £ and £’ in P5 we get a10(€) No10(¢') = 7o (O) Umg (1), where O = £N ¢’ and II is spaned
by ¢ and ¢'.

6.11. Pliicker equations In general case, an image of the Pliicker embedding Gr(m, V) —— P(A™V),
i.e. the variety of decomposable quadratic grassmannian polynomials, is described by the quadratic
Pliicker relations considered in n°®5.5.2 and generalizing those we written in n°6.2.2 and n°6.6.2 for
dim V' = 4. Note that in the latter particular case we could write four generic relations from n°5.5.2
that correspond to all possible distributions of 4 = 3 4+ 1 indexes {1,2,3,4} between K and J.

Exercise 6.11. Check that they all produce the same quadratic equation A15A34 — A13424 + A14A53 = 0 on
2 x 2 - minors A;; of 2 x 4 - matrix A.
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87. Working example: Veronese curves.

In this section we always assume that k is algebraically closed and chark # 2.

7.1.Linear span of Veronese curve. Recall (see n°5.4.1) that the Veronese curve C,, C P, is the
image of Veronese’s map

P, = P(U*) — 2~ P, = P(S"U™) ,

which takes a linear form o = agtg + a1t1 € U™ to its n-th power:
n . _. . _.
Un(Oé) = an = Z <1,> 05604711 Ztét? ¢ .

As in n°5.4.1, we write polynomials f € S"U* in the form f =) (?) a; tht? " and use a; as homoge-

neous coordinates on P, = P(S"U¥).
Given an arbitrary hyperplane 7 = {a € P, | > Aja; = 0}, the intersection Cp, N7 consists of all
a = a(a) that satisfy the equation 3 A;aa} ™" = 0 whose left side is non zero polynomial of degree
(3
n. So, a hyperplane section of Veronese’s curve always consists' of n points counted with appropriate
multiplicities (typically, of n distinct points). In particular, the linear span of any (n + 1) Veronese’s
curve points gives the whole of P,,.

7.1.1. COROLLARY (ARONHOLD PRINCIPLE). To prove that some linear in f assertion holds for all
polynomials f, it is enough to verify it only for all powers of all linear forms. O

Exercise 7.1. Use the Aronhold principle to give another proof of the Taylor formula (5-6).

7.2.Projecting twisted cubic. Let us describe all plane projections of the twisted cubic C3 C P3 =
P(S3U*). Up to a projective isomorphism, the projection does not depend on the choice of a target
plane as soon as the center is fixed, because the projection of one target plane onto another gives an
linear isomorphism between the projection images. Let p = p(t) = {1(t){2(t){3(t) € P3 = P(S3V*) be
a projection center. After some parameter change we can suppose that either ¢, = fo = ¢3 = 2, (this
means that pGC), or by =4y =1y, b3 =1t (2), or {1 = (to +t1), by = (to +wt1), {3 = (to +w2t1),
where w = v/1 # 1 (that is, p(t) = 3 + ¢3 has 3 distinct roots).

In the first case p = (1 : 0 : 0 : 0); take a target plane to be ag = 0 with the coordinates (g : z1 :
73) = (a1 : ay : az). Then the projection is given by parametric equations (zg : 71 : ¥2) = (@ : gy : a?)
and coincides with the plane Veronese conic xqze = 27.

In the second case p = (0 : 1 : 0 : 0); take a target plane to be a; = 0 with the coordinates

(mo : @1 : w2) = (ap : a2 : az). Then the projection is given by parametric equations (g : 71 : 22) = (o :

apa? : a}) and in the affine chart {z¢g = 1} it turns into z = o?, y = a?, where x = x1 /20, y = 22/ 0,
and @ = ay /ag. So, we get a curve y2 = 23 or, in the homogeneous coordinates, 3 = z3xg. This curve
is called a cuspidal cubic, because of the singularity form at the origin.

In the third case p = (1:0:0: 1); take a target plane 7 = {ap = 0} with the coordinates (z¢ : z; :
z2) = ((ap — a1) : a1 : ag) (the first three coordinates w.r.t. the base {3,313t , 3tot?, t3 + ¢} }). So,
the projection from p = t% + 1} gives the parameterized curve (zg : 1 : 73) = ((a% —ad): a%al : aga%) .
In affine chart 29 = 1 we get, like above, z = a/(1 — a?), y = /(1 — a3) or zy = 2® — y3. This curve

has a self intersection point at the origin and is called a nodal cubic.

7.2.1. Example: geometric description of rational curves. A plane curve C C P, is called rational if there

are 3 coprime homogeneous polynomials po(t), p1(t), p2(t) of the same degree in ¢t = (¢o : ¢1) such that a map
P, ar—(po ():p1(a):p2(a))

> P, gives (maybe, after removing some finite sets of points from P; and C) a bijection
between P; and C .

Exercise 7.2. Intersecting C with lines, show that deg C' = degp;.

lrecall that we suppose the ground field to be algebraically closed
2geometrically, this means that p lies on a tangent line to Cs
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When degp; = d, a map (td : td7 ' ... totd™h 2 #9) — (po(t) : pi(t) : pa(t)) defines a projection of the
Veronese curve Cy C Py into some plane P C P;. So, we have

7.2.2. CLAIM. Each rational plane curve of degree d is an appropriate projection of the Veronese
curve Cy C Py. O

7.2.3. COROLLARY. A smooth plane cubic curve is not rational.

Proof. Rational cubic curve is a plane projection of the twisted cubic C3 C P3. But such a projection is either a
conic or a singular cubic. O

7.3.Simplices inscribed into the Veronese curve. Let p; = &, where 1 < i < n, { € U*, be an
arbitrary collection of n distinct points on the Veronese curve C,, C P, = P(S™U*). For each i consider
the pencil of hyperplanes passing through (n — 2)-dimensional face (pi, ... Pi—1,Dit+1, - - » Pn) OppoOSite
to p; in the (n — 1) dimensional simplex (p1,p2,...,pn). These n pencils are parameterized uniformly
by the points of P = P(U) as follows. For any £ € P(U*) denote by Ee P(U) the annihilator’ Ann ()
and for each ¢ take the product r; = é"\l, e ,@_1@“, e ,51 € S"'U. Define a plane 7;(u) C P(S"U*),
which corresponds to u € P(U) in i-th pencil, as the annihilator of ur; € S"U. This means that

mw) = {£(t) € S"U | F@, &Gy o E) =0}

where fis the full polarization of f considered as a symmetric multilinear form on U. In particular, for
f(t) =("(t) € C,, we have

Zﬁ(é\la ag’iflauagi+1: ;gn) = C(U) HC (g/)
v#£i

So, for any u € P(U) the plane m;(u) pass through all p, = & with v # i and through the point
p=E&" € C, whose ¢ annihilate u (i.e. such that u = £ ). In other words,

Co = mu) Nma(u) N - Ny (u) (7-1)

u

Since PGLy(k) acts on P(S"U*) via linear variable a linear isomorphism between projective lines is
uniquely defined by the images of any 3 distinct points, we get the following corollary.

7.3.1. CLAIM. The Veronese curve is uniquely recovered from any collection of its (n + 3) distinct
points a,b,c,p1,p2,...,pn as follows. Consider n hyperplane pencils through the (n — 2)-dimensional
faces of the inscribed simplex (p1,pa, .. .,pn) and parameterize them uniformly by uw€P; in such a way
that the hyperplanes passing through a, b, ¢ appear in each pencil when v = 0, 1, co. Then C), coincides
with the incidence graph (7-1) when u runs through the parameter line Py . g

7.4.Natural action of PGL; = PGL(U*) on P(S™U™) induced by the substitutions (to,t;) —
(ato + bt1, cto + dt1) sends the Veronese curve to itself. We call it the reparameterization of the Veronese
curve.

7.4.1.CLAIM. Let p1,p2,...,pp,a,b,c € P, = P(S"U*) be any n + 3 points with no (n + 1) on the
same hyperplane. Then there exists a projective linear isomorphism P, —— P,, that sends these points
onto Veronese curve C,,; this isomorphism is unique up to a reparameterization of the Veronese curve.

Proof. For eachi =1, 2, ... ,n identify P; = P(U) with a pencil of hyperplanes through p1, ... pi—1,Pit1, -+ , Pn
by sending u = eg, e1, (e1 — €g) to the hyperplanes that contain a, b, ¢ and denote by 7;(u) the u-th hyperplane
in the i-pencil. Let the hyperplane (p1, ps, - ..,p,) appear in i-th pencil when ¢

u = u;. We claim that wuq,us, ..., u, € P(U) are mutually distinct.
Indeed, consider 2-dimensional plane II = (a, b, ¢) and denote by ¢; and go A
its intersection with i-th and j-th (n — 2)-dimensional faces of (p1, pa,...,Pn)- i 3

Sitting in this plane, we will see the picture shown on fig 7¢1. Our i-th and !

Lif ¢ = qoto + aiti, then & = areo — ager, where {€o,e1} C U is the base of U dual to {ti;;,
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j-th pencils of hyperplanes are represented inside II by the pencils of lines
passing through ¢;, ¢» and the hyperplane (py,ps,...,p,) is represented by
the line (g1g2) (compare this construction with drawings from the §3).

Exercise 7.3.  Show that no 3 of ¢1,¢,a,b,c are collinear (in particular,
q1,q2 are distinct).
HINT. Use linear generality of p1,p2,...,pn,a,b,c.

For each pair i # j there are two ways to identify the parameter line P(U)
with the pencil of lines passing through O = (ag;) N (bp2): one takes u € U
to the line through m;(u) N (bc), another one takes w € U to the line through
mj(w) N (ac). These two parameterizations coincide, because they attach the same u’s to a, b, ¢. Since O, ¢1, ¢»
are not collinear, two lines corresponding to u = u;, u = w; (they join O with m;(u;) N (be) = (g192) N (be) and
mj(u;) N (ac) = (g1g2) N (ac) respectively) are distinct, i.e. u; # u;.

Now, denote by I' the incidence graph (7-1) build from our current pencils of hyperplanes. Let u; = Ann (&;)
for £,&,...,&, € U*. By the n°1.11.1, there exists a unique projective linear automorphism P, — P,, which
sends p; — & for 1 < i < n, a — 7, and b — tf. It identifies I' with the Veronese curve, because it sends
the hyperplane pencil through pi, ... pi—1,pit1, ... ,pn to the one through &, ... &, &, & in such a way
that 7;(u) goes to the hyperplane through " as soon as £ = Annw. Indeed, this takes place for u = e;, u = €g
and v = u; when a, b and p; go to t3, tI' and &. Hence, this holds for each u and for u = e; — ¢y we have
¢ — (to + t1)™. This proves the existence.

Uniqueness follows from the above construction as well. Namely, after appropriate parameter change we can
suppose that the isomorphism in question sends a, b, ¢ to tf, t}" and (to + ¢1)™. So, it induces the uniform
parameterization of hyperplane pencils trough p, and this parameterization coincides with the above one. So, the
images of p1,ps, ..., p, are uniquely recovered as & = Ann (u;). [l
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8.1.Noetherian rings. We write (f1, fa,..., fm) for the ideal {g1f1 + gofo + - - + gmfm| 9o € A}
spanned (as A-module) by {fi, fo,...,fm} C A. A commutative ring A is called Noetherian, if it
satisfies the next lemma:

8.1.1.LEMMA. The following properties of a commutative ring A are mutually equivalent
(1) any collection of elements {f,} contains a finite subset generating the same ideal as the whole set;
(2) any ideal admits a finite set of generators;

(3) for any infinite chain of embedded ideals Iy C I C I3 C --- there exists n € N such that
I, =1, Vv>n.

Proof. Clearly, (1) = (2). To deduce (3) from (2), take a finite set of generators for the ideal |J I, ; since they all
belong to some I,,, we get I, = I, for v > n. Finally, (1) follows from (3) applied to the chain I,, = (f1, f2,.--, fn),
where f; are chosen from {f,} in order to have f, & (f1, f2, ..., fu—1)- O

8.1.2. THEOREM (HILBERT’S THEOREM ON A BASIS). If A is Noetherian, then A[x] is Noetherian.

Proof. Let I C A[z] be an ideal. We write Ly C A for a set of leading coefficients of all degree d polynomials in
I. Clearly, each Ly and L def Uy Lq are ideals in A. Let Lo be generated by ai,as,...,a; € A coming from
fl(oo), fQ(OO), o 99 T and let max, (deg f,) = m. Similarly, write fl(k),fék), PN S(,If) for the polynomials whose

*9J S
leading coefficients span the ideal Ly for 0 < k < m — 1. It is easy to see that I is spanned by so 4+ -+ Sy—1 + Soo
polynomials f,g“). O

Exercise 8.1. Verify the latter claim neatly.
8.1.3. COROLLARY. If A is Noetherian, then Az, x2,...,xy,] is Noetherian. O
8.1.4. COROLLARY. Any finitely generated k-algebra is Noetherian for any field k.

Proof. A polynomial algebra k[z;,za,...,z,] is Noetherian by the previous corollary. Any its factor algebra A is
Noetherian as well: full preimage of any ideal I C A under the factorizing morphism k[z1, zs,...,z,] — A is
an ideal in k[z1, 2o, ..., 2,], i.e. admits a finite set of generators, whose classes span I over A, certainly. [l

8.2. Integrality. Let A C B be two commutative rings. An element b € B is called integer over A, if it
satisfies the conditions from n®8.2.1 below. If all b € B are integer over A, then B is called an integer
extension of A or an integer A-algebra.

8.2.1. LEMMA. The following properties of an element b € B D A are pairwise equivalent:
(1) ™ = a V™' 4+ - 4 ap_1 b+ ag for some m € N and some ay, ay, . .., ay, € A;
(2) A-module spanned by all nonnegative powers {b'};>o admits a finite set of generators;

(3) there exist a finitely generated faithful' A-submodule M C B such that bM C M.

Proof. The implications (1) = (2) = (3) are trivial. To deduce (1) from (3), let {e1,ea,...,en} generate M

m—bm

over A and let the multiplication map M M be presented by a matrix Y, i.e.

(beq, bea, ... bey) = (e1,€2,...,em) Y .

Note that if A-linear map M ——» M takes (e, ea,...,em) — (€1,€2,...,em) - X, where X is a square matrix
with entries in A, then the Sylvester relation det X -Id = X - X implies an inclusion (det X) - M C s(M). In
our case this can be applied to the zero operator M —“+ 0 and the matrix X = b-Id — Y. We conclude that

! A-module M is called faithful, if aM = 0 implies a =0 for a € A

37
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the multiplication by det(b-Id — Y") annihilates M. Since M is faithful, det(b-Id — Y) = 0. This is a polynomial
equation on b with the coefficients in A and the leading term b" as required in (1). U

8.2.2. Example: integer algebraic numbers. Let K O Q be a finite dimensional® field extension; then elements
z € K are called algebraic numbers. Such a number z is integer over Z iff there are some ¢y, ¢s,...,9,, € K such
that the multiplication by z sends their Q-linear span to itself and is presented there by a matrix whose entries
belong to Z.

8.2.3. Example: invariants of a finite group action. Let a finite group & act on a k-algebra B via k-algebra

automorphisms B —+ B, g € &, and let A = B® = {a € Bl ga=a Vge® } be the subalgebra of ®-invariants.
Then B is an integer extension of A. Indeed, if by, b, ...,bs € B form a &-orbit of any given b = b; € B, then the
polynomial 3(t) = [](t — b;) is monic?, lies in A[t], and annihilates b.

8.3.Integer closures. A set of all b € B that are integer over a subring A C B is called an integer
closure of A in B. If this closure coincides with A, then A is called integrally closed in B.

8.3.1.LEMMA. The integer closure of A is a subring in B (in particular, ab is integer for any a € A
as soon b is integer). If C' D B is an other commutative ring and ¢ € C' is integer over an integer closure
of A in B, then c is integer over A as well (in particular, any integer B-algebra is an integer A-algebra
as soon B is an integer A-algebra).

Proof. If p™ = Zpy—1 ™1+ - + 21 p+ 0, ¢ = Y1 ¢" 1+ - +y1 ¢+yo for p,q € B, x,,,y, € A, then A-module
spanned by p'¢? with 0 < i < (m —1), 0 < j < (n — 1) is faithful (it contains 1) and goes to itself under the
multiplication by both p+ ¢ and pq. Similarly, if ¢” = z,_1 ¢" "1+ .-+ +2; ¢+ 2 and all z, are integer over A, then
a multiplication by ¢ preserves a faithful A-module spanned by a sufficient number of products c"z{'1 zgz N

8.3.2. COROLLARY (GAUSS LEMMA). For any two commutative rings A C B let f(z),g(z) € B|z]
be two monic polynomials. Then all coefficients of h(x) = f(x)g(x) are integer over A iff all coefficients
of both f(x), g(x) are integer over A.

Proof. There exists® a ring C' O B such that f(z) = [[(¢t — a,) and g(z) = [[(¢t — 8,) in C[z] for some a,, 3, € C.
By n°8.3.1, all coefficients of h(z) = [[(t —a,) [[(t — B,) are integer over A <= all a,,, 3, are integer over A <=
all coefficients of f(z) and g(z) are integer over A. O

8.3.3.LEMMA. Let B D A be integer over A. If B is a field, then A is a field. Vice versa, if A is a
field and B has no zero divisors, then B is a field.

Proof. If B is a field integer over A, then any non zero a € A has an inverse a~! € B, which satisfy an equation
a ™ =aia' ™™+ - +am_1a ! + ag with a,, € A. We multiply the both sides by a™~! and get

-1 ) -1
a =a1+ - tam_1am  +agam T €A

Conversely, if A is a field and B is an integer A-algebra, then all non negative integer powers b¢ of any b € B
form a finite dimensional vector space V over A. If b # 0 and there are no zero divisors in B, then z — bz is an
injective linear operator on V, i.e. an isomorphism. A preimage of 1 € V is b~!. O

8.3.4. Example: algebraic elements and minimal polynomials. If A =k is a field and B Dk is a k-algebra, then
b € B is integer over k iff b satisfies f(b) = 0 for some f € k[z]. Traditionally, such b is called algebraic over k
rather than integer.

We write k[b] for a k-linear span of nonnegative integer powers {b"},>¢. If 357! € B, then we write k(b) for a

k-linear span of all integer powers {b"},cz. Clearly, k[b] C B is the minimal k-subalgebra containing 1 and b. In

other terms, k[b] = im (evy) = k[x]/ ker(ev;), where evy : k[z] _I@=I®) | Bis an evaluation homomorphism.

If b is algebraic, then ker(evy) = (f) for some non zero f € k[z], because k[z] is a principal ideal domain. This
f is fixed uniquely as a monic polynomial of lowest degree such that f(b) = 0; it is called the minimal polynomial

las a vector space over Q

2a polynomial is called monic or unitary, if its leading coefficient equals 1

3For any commutative ring A and any monic non constant f(z) € A[z] there exists a commutative ring C O A such that
f(z) =[I(z — ¢,) in C[z] for some ¢, € C. It is constructed inductively as follows. Consider a factor ring B = A[z]/(f)
(which contains A as the congruence classes of constants) and put b iy (mod f) € B. Then f(b) =0 in B[z]. Hence the
residue after dividing f(z) by (z — b) in B[z] vanishes and we get the factorization f(z) = (z — b)h(z) with h(z) € B[z].
Now repeat the procedure for h, B instead of f, A e.t.c.
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of b over k. Note that in this case 1, b, b%, ... , b%&(/)=1 form a basis for the vector space k[b] over k and if B has
no zero divisors, then k[b] is a field by n®8.3.3 (in particular, the minimal polynomial of b has to be irreducible).
If b is not algebraic, then ker(ev,) = 0 and k[b] ~ k[z] is a polynomial ring. It is infinite dimensional as a
vector space over k and it is not a field.
We generalize this alternative in n°8.5.1 below.

8.3.5.LEMMA. Let K = Q(A) be a fraction field of a commutative ring A without zero divisors, B
be any K-algebra, and b € B be algebraic over K with minimal polynomial f € K[x]. If b is integer over
A, then all coefficients of f are integer over A.

Proof. Since b is integer, g(q) = 0 for some monic g € A[z]. Then g = fh in K[z] for some monic h € K[z] and all
the coefficients of g, h are integer over A by the Gauss lemma from n°® 8.3.2. ]

8.4. Normal rings. A commutative ring A without zero divisors is called normal, if it is integrally
closed in @Q(A). Certainly, any field is normal.
Exercise 8.2. Show that the ring of integer numbers Z is normal.

HINT. A polynomial aopt™ + a1t™ * + -+ + am-1t + a,, € Z[t] annihilates a fraction p/q € Q with coprime
p,q € Z only if glag and p|am

8.4.1. COROLLARY. Let A be a normal ring with the fraction field K = Q(A). If f € A[z] is factorized
in K[z] as f = gh, where both g, h are monic, then g,h € Alz].

Proof. Indeed, all the coefficients of g, h are integer over A by n° 8.3.2. O

8.4.2. COROLLARY. Let A be normal ring with the fraction field K = QQ(A) and B be any K-algebra.
Then b € B is integer over A iff it is algebraic over K and its minimal (over K ) polynomial lies in Alx].

Proof. This follows immediately from n°® 8.3.5. O

8.5. Finitely generated commutative k-algebras. Let k be an arbitrary field. A commutative k-

algebra B is called finitely generated, if there is a k-algebra epimorphism k[z1,z2, ..., Tn] — "+ B. In
this case the images b; = w(x;) € B are called algebra generators for B over k.

8.5.1.LEMMA. A finitely generated k-algebra B can be a field only if each b € B is algebraic over k.

Proof. Let B be a field and {by,bs,..., b, } be some algebra generators for B over k. We use induction over m.
The case m = 1, B = k[b] was considered in n°8.3.4. For m > 1, if b, is algebraic over k, then k[b,,] is a field and
B is algebraic over k[b,,] by the inductive assumption. Hence, by n°®8.3.1, B is algebraic over k as well. So, it is
enough to show that b,, must be algebraic over k as soon m > 1.

Suppose the contrary: let b, be not algebraic. Then k(b,,) is isomorphic to the field k(z), of rational functions
in one variable, via sending b, — z. By the inductive assumption, B is algebraic over k(b,,,) and by, ba, ..., bym_1
satisfy polynomial equations with coefficients in k(b,,). Multiplying these equations by appropriate polynomials
in by, we can put their coefficients into k[b,,] and make all their leading coefficients to be equal to the same
polynomial, which we denote by p(b,) € k[by,].

Now, B is integer over a subalgebra F' C B generated over k by b,,, and ¢ = 1/p(b,,). By n°8.3.3, F is a field.
So, there exists a polynomial g € k[, 2] such that g(b,,,q) is inverse to 1 + ¢ in F. Let us write the rational
function g(z, 1/p(z)) € k(z) as h(zx)/p*(x), where h € k[z] is coprime to p € k[z]. Multiplying the both sides of

1 h(bm)
Lt ) e =1
< p(bm) ) P*(bm)
by p**t1(b,,), we get for b, a polynomial equation h(b,) (p(bm) + 1) = p**1(b,,). It is nontrivial, because
h(z)(1 + p(z)) is not divisible by p(x). Hence, b, should be algebraic over k. g

8.6. Hilbert’s Nullstellensatz. Let us write V(I) = {a € A, | f(a) =0 Vfel } C A" for affine
algebraic variety defined by a system of polynomial equations I C k[zy,z2,...,2,]. Certainly, V/(I) is
not changed when [ is extended to an ideal spanned by 1.

Vice versa, for any subset V' C A" we write I(V) = {f € k[z1,z2,...,25]| flv = 0} for a set of
all polynomials vanishing along V. Clearly, I(V') is always an ideal and I(V(I)) D I for any ideal I.
Generically, the latter inclusion is proper. For example, if I = (2?) € Clz], then V(I) = {0} C A!(C)
and I(V (1)) = (z).
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8.6.1. THEOREM (WEEK NULLSTELLENSATZ). Let k be an arbitrary algebraically closed field and

I C k[z1,22,...,2,] be an ideal. Then V(I) =@ iff 1 € I.
Proof. If 1 € I, then V(I) = @, certainly. Let I C k[z1,x2,...,x,] be a proper ideal. We must find a point p € A,
such that f(p) =0 for all f € I. We can assume that I is mazimal, i.e. any g ¢ I is invertible modulo I. Indeed,
otherwise an ideal J generated by g and I would be proper and strictly larger than I and we could replace I by
J; a finite chain of such replacements leads to some maximal ideal.

As soon [ is maximal the factor algebra K = k[x1, z2,...,x,]/1 is a field. Hence, any element of K is algebraic
over k C K by n°8.5.1. Since k is algebraically closed, this means that any polynomial is (mod I)-congruent to
some constant. Let 91,9, ...,9, be the constants presenting basic linear forms z1,zs,...,z,(mod I). Then any
polynomial f € k[z1,za,...,2,] is (mod I) congruent to f (1, s, ...,¥,) € k. In particular, f(d,2,...,9,) =0
for any f € I as required. [l

8.6.2. COROLLARY (STRONG NULLSTELLENSATZ). Let k be an arbitrary algebraically closed field
and I C k[z1,%2,...,2,] be an ideal. Then f € I(V(I)) iff f* € I for some k € N.

Proof. If V(I) = @, there is nothing to prove. Clearly, vanishing of f* along V(I) always implies vanishing of f
itself. So, the theorem is reduced to the following statement: if f vanishes along a monempty algebraic variety
V(I), then f* € I for some k.

To prove it, consider bigger affine space A"*! with coordinates (t,z;,s,...,x,) and identify the initial A"
with the hyperplane ¢ = 0 in this bigger space. If f € k[z1,2a,...,z,] C Kk[t, 21,2, ..., x,] vanishes along V (I),
then an ideal J C k[t,z1,x2,...,2,] spanned by I and a polynomial g(t,z) = 1 — ¢ f(z) has empty zero set
V(J) € A" because g(z,t) =1 on V(I). By the week Nullstellensatz 1 € J, i.e.

Qo (z, ) (1 —tf(z)) + i (t,z) fri(z) + -+ qs(x,t) fs(z) =1 (8-1)
for appropriate qo,q1,.-.,9s C K[t, 21, %2, ..., 2], f1, fa,..., fs C I. Consider a homomorphism
kit, x1, @2, ..., xn] — k(z1,22,...,2p)

that sends t — 1/ f(z), x, — z,. It takes (8-1) to the identity
(h(]-/f(l') ) .CE) fl(m) +ot qs(]-/f(w) ) ZI}) fs(m) =1

inside k(x1,®a,...,x,). Since I is proper, some of ¢, (1/f(z), z) actually have nontrivial denominators of the form
f?. Hence, multiplying by appropriate power f*, we get an expression ¢, (z) f1(z) + - - - + @s(z) fs(z) = f*(x) with
auek[$1,$2,---,xn]~ 0

8.7. Factorization. Let A be a commutative ring without zero divisors. An element ¢ € A is called
irreducible, if it is not invertible and ¢ = rs implies that one of r, s is invertible. An element p € A is
called prime, if it generates a prime ideal in A, i.e. if A/(p) is not zero and has no zero divisors.

Exercise 8.3. Check that p is prime iff it is not invertible and p|rs implies that p divides at least one of 7, s.

Exercise 8.4. Show that each prime element is irreducible.
A ring A is called factorial, if any a € A is a finite product of irreducible elements:

a=dq1q2 - gm

and such irreducible factorization is unique up to multiplication of its factors by invertible elements',
i.e. given two irreducible factorizations

/

Qg qgm=a=q ¢ ¢,

then m = n and (after appropriate renumbering) ¢; = s; ¢, for some invertible s; € A.

8.7.1. LEMMA. Any factorial ring A is normal.

Proof. Let a/8 € Q(A) satisfy a polynomial equation t" + a;t" ' + -+ + a,,_1t + a,, = 0, where a; € A. Then "
is divisible by . Since A is factorial, each irreducible divisor of 8 divides «, that is, a/f € A. O

vecall that if a = bs for an invertible s, then a and b are called associated (with each other) elements of ring
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8.7.2. LEMMA. A Noetherian ring without zero divisors is factorial iff all its irreducible elements are
prime.
Proof. In a Noetherian ring, any element f is a finite product of irreducible elements: in the contrary case f can
written as f = f1¢1, where f; is reducible and can be written as f = fogo an so on infinitely many times producing
an infinite chain of strictly increasing ideals (f) C (f1) C (f2) C (f2) C .... Further, if there are no zero divisors
and all irreducible elements are prime, then two irreducible factorizations []¢; = [] q;- have the same number of
factors and satisfy ¢; = s;q¢; for some invertible s; (after appropriate renumbering). Indeed, since prime ¢ divides
[T¢: it divides some g;, say gi. So, ¢1 = s1qj, where s; is invertible, because ¢; is irreducible. Now we have

a1 ( s1 I @ — [I ¢; | =0, which implies s; [[ ¢; = [] ¢}, and we can replace g, by s1¢> and use induction over
i>2 j=2 i>2 j=2
the number of factors.
It remains to note that in factorial ring all irreducible elements are prime: if ab = pq, where ¢ is irreducible,
then irreducible factorization of either a or b should contain an element sq with invertible s. O

8.7.3. Greatest common divisor. Let A be a factorial ring and a1, a2 € A have the prime factoriza-
tions:
a1 =q1 - GsQoy1 Gm s @2 = G Gsorr s
where no ¢, qg- are associated (the case s = 0, without any ¢’s, is also possible). The product q; - - - gs

(or 1, if s = 0) is called the greatest common divisor of aj, ay and denoted by ged(aq,az). Note that
ged(ar, ag) is defined up to invertible factor. Inductively,

ged(aq, ag, ..., an) = ged (ged(ag, ag, ..., an—1),an) -

Given a polynomial f = apz™ + a1z” ' + - + ap_17 + a, € Alz], then ged(ar,as, ..., a,) is called a
content of f and is denoted by cont(f).

8.7.4.LEMMA. cont(fg) = cont(f) - cont(g) for any f,g € Alz].

Proof. It is enough to check that cont(fg) = 1, if cont(f) = cont(g) = 1. If all the coefficients of fg are divisible
by some prime p € A, then fg (mod p) = 0 in the ring (A/pA)|[z], which has no zero divisors, because p is prime.
So, either f (mod p) =0 or g (mod p) = 0. O

8.7.5.LEMMA. If A is factorial, then A[z] is factorial as well.

Proof. Let k = (A) be the quotient field. By n®8.7.2, it is enough to show that any irreducible f € A[z] remains
to be irreducible inside the factorial ring k[z]. Let f = gh in k[z]. We can write g(z) = a=1¢/(z), h(x) = b= h/(z)
for some a,b € A and ¢',h’ € A[z] such that cont(g’) = cont(h’) = 1. Now ab f = ¢’h’, where cont(g'h’) = 1 by
n°8.7.4 and cont(f) = 1, because f is irreducible in A[z]. Hence. ab is invertible and h” = (ab)~'h’ € Alz]. This
leads to the decomposition f = h”g’ inside A[z]. O

8.7.6. COROLLARY. If A is factorial, then A[xi,xa,...,xy,] is factorial (in particular, normal). [
Exercise 8.5. Let k be an algebraically closed field of any characteristic,c X C A, (k) be an algebraic hy-
persurface given by a polynomial equation f(z1,2s,...,z,) = 0, where f € k[z1,22,...,2,], and let
g(z) € K[z1,29,...,2,] vanish at any point of X. Show that g is divisible by any irreducible factor of

d HINT. Since k[z1,z2,...,z,] is factorial, the result follows from Hilbert’s Nullstellensatz

8.8. Resultant systems. We fix a collection of m degrees di,da, ..., d, and write .7; = P(S¢V*) for
the space of hypersurfaces of degree d in P, = P(V). Let Z C %4, X Sa, X -+ X Sy, be a set of
all hypersurface collections S, So, ..., Sy, C P, such that (]S, # &. Then Z is an algebraic variety,
i.e. can be described by a finite system of multi-homogeneous polynomial equations on the coefficients of
forms (fi, fo, ..., fm) € SUV* x ... x §%V* defining the hypersurfaces Si, Ss,...,S,,. This equation
system depends only on n.dy,ds,...,d, and is called a resultant system. Indeed, consider an ideal
I C kfg,xy,...,z,) generated by f,. Then (S, C P(V) is empty <= V(1) C A(V) either is empty
or coincides with the origin O € A(V'). In the both cases each x; vanishes along V(I), i.e. by Hilbert’s
Nullstellensatz 2™ € I for some m, that is SV* C I Vd > 0. Since V (2, 27, ..., 2) = {O} this
condition is also sufficient. So, (S, = @ iff k-linear map:

Ud Sd*dov* e Sd*dlv* DD Sd*dnv* (907917...7gn)HZgU fv _ Sd (8'2)




42 Algebraic Geometry. Start Up Course.

is non surjective Vd > 0. In terms of the standard monomial bases, 4 is presented by a matrix whose
entries are linear forms in the coefficients of f,. Since for d > 0 the dimension of the left side in (8-2)
becames greater then the right one', Z coincides with the zero set of all d x d - minors of all p1g with d
large enough. By Hilbert’s theorem on a basis, this infinite equation system is equivalent to some finite
subsystem. Say, we will see in n°8.8.2 that for n = 1, m = 2 the smallest d producing a non trivial
restriction is d = dy + dy — 1, when ug becomes a square matrix; in this case & is a hypersurface given
by equation det pg,+q4,—1 = 0.

8.8.1. Example: projection P,,, x A™ —Z+ A" sends algebraic varieties to algebraic varieties, i. e. if

X ={(q,p) €P,, x A"| f,(q,p) =0}

is given by some polynomial equations f,(t,z) = 0 (homogeneous in t = (t1,ts,...,tm) € Py), then its projection
onto A™ also can be described by a system of polynomial equations.
Indeed, consider f, as homogeneous polynomials in ¢ with the coefficients in k[z1, s, ..., z,]. Then the image

m(X) C A" consists of all p such that the homogeneous in ¢ polynomials f, (¢, p) have a common zero on P,,. As we
have seen, this means that their coefficients, which are polynomials in p, satisfy the system of resultant equations.

8.8.2. Example: resultant of two binary forms. If k is algebraically closed, then each polynomial f(t) = ag t™ +
ajt™ 1t + .- +a,_1t+a, can be factorized as f(t) = ag [[(t —9,) = an [[(1 — 9, *t), where ¥1,792,...,9m
are all its roots. In homogeneous world, each degree d homogeneous polynomial

Alto,t1) = aptl +artotd ™ +ast2t 24+ - +ag_ 1t 1t +agtd

d d
o .- t t . .
has similar decomposition A(tg,t1) = [](afto — ajt1) = [] det (ao’ al”> , which means that A vanishes at d

i=0 i=0 i
points aq, s, ..., aq € P with homogeneous coordinates a; = (¢} : o). In particular, each coefficient a;, of A(t),
is expressed as bihomogeneous degree (i,d — i) polynomial in (&', a@”):

a;i = (=1)%o;(a/, "), where o;(a’,a") = Z (H aj - Ha;')
#I=i icl I

(here I runs through all increasing length 4 subsets in {1,2, ... ,d} and o; is a bihomogeneous version of the i-th
elementary symmetric function).
Now, let us fix two degrees m,n € N and consider a polynomial ring k[a/,a”, 8, 8”] in four collections of

variables o/ = (O/laaéa RN aiz) , off = (0/1/7 a‘lzla RN OCZ) , B = (ﬁi;ﬁé: s 7ﬂ;n) , B = ( {/, éla s 7ﬂ1/’:z) Then the
product
def /1 ar 1" - ki
Rap = ] (eip] —ai;) = [T AB) = =1 [ Blew) ,
gy i=1 i=1

n . . m . .
vanishes iff two homogeneous binary forms A(to,t1) = > a; t§ t7 7" and B(to,t1) = > b; t} t7"/ (whose coefficients
=0 Jj=0

a; = (=1)"ioi(a/,a”), b; = (=1)™7o;(B,5") have a common root. Clearly, R4 p is bihomogeneous of
bidegree (mn,mn) in («, 8) and may be expressed in terms of the coefficients of A, B. This expression is called
a resultant of the polynomials A(tg,¢1), B(to,t1) and generates the ideal of all resultant relations for two binary
forms. More precisely, R4.p up to a scalar factor coincides with the Silvester determinant

ap a1 ... Qap
ap ap e Qp
m
a a ... a
det 0 1 n
bo by ... bpy
bo b1 b
n
bp b1 ... by
m—+n

M
Indeed, consider a vector space U with a basis {to,#;} and a linear map S U @ S" U —=5 §™+"~1{J which

sends a pair of polynomials (hi(t), h2(t)) to A(t)hi(t) + B(t)hs(t) as in 8-2. The Silvester matrix is transpose

the leading terms of their expansions as polynomials in d are md™ /n! and d"/n! respectively
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to the matrix of M, p in the standard monomial bases. If a point (a, ) lies on the quadric ;] — o B} = 0,
then (af/to — ajt1) = (B)to — Bit1) up to a scalar factor. This linear form divides A(t), B(t) and any polynomial
A(t)hy(t) + B(t)ha(t). Hence, im My g # S™ "~ 1U. So, the Silvester determinant vanishes along each quadric
a;fB] —ai B} = 0 and, by Hilbert’s Nullstellensatz, it is divisible by R4 5. The quotient has to be a constant, because
the both polynomials are bihomogeneous of the same bidegree (mn,mn) in («, 8). Moreover, since the Silvester
determinant vanishes as soon A(t) and B(t) are not coprime, R4p spans the ideal of all resultant relations — so,
it is principal in the case of two binary forms.

8.8.3. Example: elimination technique. Let C;, Cs be two plane curves of degrees m and n given by equations
F(z) =0 and G(z) =0in = = (20 : @1 : z2). Consider F, G as (non homogeneous) polynomials in zo with the
coefficients in k(z1,z2) and take their resultant! Ry g(x1,22) € k[z1,z2]. If it is identically zero, then F' and G
have a common divisor in k(z1, z2)[xo].

Exercise 8.6. Deduce from the Gauss lemma that it can be taken with the coefficients in k[z1, z5].
So, if R =0, then C} and Cs have a common component. If R # 0, then (z1,zs)-coordinates of any intersection
point p € C; NC5 have to satisfy the resultant equation Rr ¢ (1, 2) = 0 which is homogeneous of degree mn. So,
the curves have either a common component or at most mn intersection points, which may be found by solving a
homogeneous polynomial equation in z;,xs only. These procedure is called an elimination of a variable.

resultant of non-homogeneous polynomials F(z) and G(x¢) is defined as the resultant of t§ F(t1/to) and t§'G(t1/to)



89. Projective hypersurfaces.

In this section we assume that k is algebraically closed and chark # 2.

9.1.Space of hypersurfaces. Projective space ]P’(SdV*) consists of all non zero d-th degree homo-
geneous polynomials considered up to a scalar factor. It is called e space of degree d hypersurfaces in
S

P, = P(V). Geometrically, each polynomial whose prime factorization is f(z) = [] pi(z)™ defines a
i=1

zero set
def

{welP,| f(z —0}—Umz- pi >

which is an union of the irreducible components Z,, = {x € P(V)| pi(x) = 0} counted with integer
multiplicities m;. We will also write Zy = m1Zy, + maZp, + -+ + msZp,. By ex. 8.5, each irreducible
component Z,, does not admit any further decomposition into a sum of proper subsurfaces.

Exercise 9.1. Find dim P(S?V*).
Traditionally, 1-, 2-, and 3-dimensional projective subspaces in the space of hypersurfaces are called,
respectively, pencils, nets and webs of hypersurfaces.

9.1.1. Example: pencil of plane curves ¢ = (C1Cy) C P(S?V*) on Py = P(V) is defined by any two distinct
elements C1,C € £. A curve \Cy + uCsy € £ (whose homogeneous coordinates w.r. t. the basis {C7,Cs}, of £, are
(X : w)) is given in Py by the equation Afi(z) + uf2(x) = 0, where fi(z) = 0 and fo(z) = 0 are the equations of
the basic curves Cy, Cs. In particular, each curve from the pencil (C7C5) contains all intersection points C; N Cs.
Another remarkable property: any pencil of plane curves contains a curve passing through any prescribed point
p € Ps. Indeed, curves passing through a given point form a codimension 1 hyperplane in the space of curves and
this hyperplane intersects each line of curves.

As an application of pencils, let us give another fruitful proof of the Pascal theorem from n°3.3.1. Given a
hexagon p;papspapsps inscribed in a non singular conic C', write x = p3ps N pep1, Yy = P203 N PsPe, 2 = P1P2 N DaPs
for the intersection points of its opposite sides. Fix some 7-th point p; € C, which differs from pq, ps, ..., ps, and
consider a pencil of cubic curves (Q1Q2) spanned by 2 completely splitted cubics formed by ‘opposite triples’ of
sides Q1 = (p1p2) U (p3ps) U (psps) and Q2 = (paps) U (paps) U (pep1)- All cubics of this pencil pass through 9
intersection points Q1 N Q2 = {p1,p2,.-.,D6 T, Yy, 2} and at least one of them, say @Q, pass through p; as well.
Since the conic C' has more than 6 common points with the cubic @, it should be a component of this cubic,
i.e. Q@ = C + some line, where the line has to pass through z,y,z & C.

9.2. Interaction with lines. Let S C P, be a hypersurface given by a homogeneous equation F'(z) = 0
of degree d and ¢ = (pq) € P, be a line spanned by p,q € V. Write (A : u) for internal homogeneous
coordinates of a point Ap + ug € £. In these coordinates, £ N S is given by the equation f(A,u) =0
obtained from F(z) = 0 by the substitution x = Ap + pg. By the Newton-Taylor formula,

fw) =FQAp+ pq) = ZA’ e () F(p',q"™"), where (9-1)
~ i iy def _d=)oF, i
7 d—i

Note that the bottom term F(p',¢"~ Z) is bihomogeneous of degree (i,n — i) in (p, q).

If f(A,u) =0 or, equivalently, F(p',q" ) =0 for all 4, then £ C S.

If f(A\,p) £ 0, then f(A,p) = [L.(a/u — a4\)* is a product of linear forms'. Each linear form
corresponds to an intersection point a = (o’ : @) = a/p+ a’’q € £ N S. The maximal power s; such
that f(A, p) is divisible by (o — ajA)% is called a local intersection index between S and ¢ at «. It is
denoted by (S,£)q. So, deg S =) c5ni(S;£)a as soon as £ ¢ S, i.e. a line either lies on S or intersect
S in deg S points counted with multiplicities.

9.3. Tangent lines and tangent space. A line ( is called a tangent line to S, if there is a point
p € SNL with (S,¢), > 2. We say that ¢ does touch S at p or that p is a tangency point.

'namely, f(X, p) = p?f(t,1), where t = X/p and f(t,1) € k[t]; now, f(¢,1) = [T(t — ;)™

44
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9.3.1. CLAIM. For any p € S and any q€P,, the line (pq) touch S at p iff ﬁ(p"_l, q) =0.
Proof. If p€ S, that is F(p") = F(p) = 0, the affine version of (9-1) near p takes the form:

d

Flp+tq) =t (Cll) F(p"~',q) +t* (2

)For)+

and (S, (pq))p is the maximal power of ¢ factored out of F(p + tq). It is > 2 iff ﬁ(p"_l, q) =0. O

9.3.2. COROLLARY. The union of all tangent lines through p€ S is a projective space
n
oF
() =0}.
=0

oF
It is either a hyperplane or the whole of P,,. The last happens iff o (p) =0 Vi. O
i

The space 1,5 is called a tangent space to S at p. If T,S = P,,, then S is called singular at p and p
is called a singular point of S. Otherwise p is called a smooth point of S. S is called smooth, if all its
points are smooth.

7,8 {yE}P’n

9.3.3. COROLLARY. Let q be either a smooth point on S or any point outside S. Then the apparent
contour® of S visible from q is slashed by the hypersurface of degree (d — 1)

e " OF
Gld—1) def {yeuvn Z;qiami(y)zo}.
OF =

q

n

In particular, ) g; a—(y) % 0 as a polynomial in y.
i=0 i

~ F
Proof. Indeed, (qy) touch S at y, if 0 = F(y"1,q) = pl,F(y) = % Yoo Ui g—(y) If this polynomial vanishes
T

identically in y, then taking y = q we get F(g) =0, i.e. ¢ € S. At the same time
F(q,q, ... ,q.y) =l "F(y) = pll *pl F(y) =0,

because of ﬁ’(y”’l,q) = 0. So, q is singular point of S. ]

9.4. Point multiplicities. A number multg(p) def Ilpin(é, S)p is called a multiplicity of pon S. A point
op

p €S is singular iff any line through p intersects S with index > 2 at p. So, p € S is smooth iff p has
the multiplicity 1. A point p has multiplicity > m iff all possible (m — 1)-typle partial derivatives of F
vanish at p.

F(@" " y") = 0} is called a r-th degree

polar of S with respect to p. If F(¢" ",y") vanishes identically in y, we say that the polar is trivial,
i.e. coincides with the whole of P,,. Intuitively, for a smooth point ¢ € S, the polar S(gr) is a degree r
surface which gives the most closed approximation for S near ¢ in a sense that the both have at ¢ the
same tangent hyperplanes (i. e. their linear polars at ¢ coincide), the same ‘tangent quadrics’ (i. e. their
quadratic polars at ¢ coincide), and so on up to coincidence of (r —1)-th degree polars. If g€ S is singular
of multiplicity m > 2, then all the polars of degree < (m — 1) w.r.t. p are trivial and the m-th degree

polar is non trivial but singular at p.

9.5. Polar hypersurfaces. A hypersurface Sér) def {y eP,

9.5.1. Example: space of singular conics. Let V be 3D vector space, P; = P(S2V*) be the space of conics on

Py, =P(V), and S C P5 be a locus of the singular conics. Let us fix some coordinates and present quadratic forms

q(z) € S?V* as q(z) = x- A - 'z with symmetric 3 x 3-matrices A. Since ¢ is singular iff det A = 0, we see that S is

an irreducible cubic hypersurface in P5. We would like to find its singular points and describe non singular tangent

hyperplanes. By Sylvester’s relations, det A = Z(fl)””ai,,A“,, where A;, is 2 X 2-minor situated outside i-th
14

Odet A
8aij o

Exercise 9.2.  Show that any m x n matrix a;; of rank 1 has a;; = \;u;, i.e. can be written as the product of
appropriate column YAy, Aa, ..., Ay) and row (p1, pa, .., fn)-

row and j-th column. So, (=1)"*7 A;; and a point g € S is singular iff rk A = 1.

1i. e. the set of all tangency points p # q where S touched by the tangent lines drawn from ¢
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HINT. A linear operator k" _TAT k™ has kA = 1 iff dimim A = 1; if w = (A1, A2,..., A\m) generates
im A, then A(v) = a(v) w, where k" —— k is linear form, say & = (1, ft2, . . ., fin) - . -

In our case A = (a;;) is symmetric and we should have p; = A;, i.e. a;; = A\jAj for some g, A1, A2 € k. So, A€ S
is singular iff ¢(z) = (3 A\jz;)” is a double line. Thus, the set of singular points of S coincides with 2-dimensional
Veronese’s surface ¥ C S, which parameterizes double lines in Ps.

Now, let q( ) =z-A-'r be a smooth point of S, i.e. a pair of distinct lines ¢; Uy C Py. Then the correlation

map V V* has 1-dimensional kernel spanned by v = #¢; N ¢y, that is rk (4) = 2 and the adjoint matrix

A= ((—1)"*7 A;;) is non zero. By the Sylvester relations: A- A=AA= det(A)-Id = 0, each row and each column

of A lies in the kernel of A, i.e. is proportional to v. Thus, rk A = 1 and (—1)""9 A;; = pipj, where (o @ pa @ p2)

are homogeneous coordinates of v. So, B = (b;;) € T,S,, <= Zbij . (—1)i+jA,~j =0 < Zbij pip; =0 <=
2 2

v-B-% = 0. In other words, the tangent space T,S at g =4, U ZJZ C Py consists of all conics pjassmg through the

pOlHt {i Nty €Ps.

Exercise 9.3. Extend this result to general case dimV = n + 1, i.e. show that a point ¢ on the hypersurface
S C P(S?V*), of singular quadrics on P,, = P(V), is non-singular iff the corresponding quadric @, C P(V)
has just one singular point v(g) € P(V) and prove that T,S consists of all quadrics passing through v(g).



§10. Working example: plane curves.

In this section we assume that k is algebraically closed and chark # 2.

10.1. Geometrical tangents at singularity. Let C' C P2 be a curve given by an equation F(z) =0

of degree d and peC be a (singular) point of multiplicity m > 2. Then all the polars C,(,V) (which would
be given by equations! F(p?, z*) = 0) are trivial for 0 < v < (m — 1) and m-th degree polar C,gm)

iven by F d=m gm) = 0) is non trivial but singular: its Taylor expansion near p
g g

Fp*™, (p+tg)™ Zt“( > pTm gy = " F(p g ™)

contains just one term and a line (p,q) either is a component of C,gm) (when 15( d=m g™y = Q) or

intersects CZ(,m) only at p with multiplicity m (when F(p®~™,¢™) # 0). So, CI(,m) splits into union of m

lines (pg;), where ¢; are the roots of F (p%=™,¢™) = 0 considered as degree m equation on ¢, where ¢ runs
through any fixed line £ Z p. (Of course, some of (pg;) may coincide when the roots became multiple.)
The lines (pg;) are called geometrical tangent lines to C at p.

Geometrically, genenc line (pq) through p, intersects C' at p with multiplicity m, because the Taylor
expansion F(p+tq) = (&)-#™-F(p*™,¢™)+ --- starts with non-zero m-th degree term. The geometric
tangents (pg;) are the lines whose intersection multiplicity with C at p jumps w.r.t. the generic value.
Algebraically, this means that F(pd=™, 2™) = & (z) & (@) - &mla) is the product of m linear forms

£1,&s, ..., & whose zeros are the geometmc tangents (pg;) (again, some of them may coincide).

10.1.1. Example: the simplest singularities. Given a curve C' C Py, an m-typle point p€ C is called an m-typle
node (or an m-typle selfintersection) if there are m distinct geometrical tangents 1, £a, ..., ¢, to C' through p.
Geometrically, this means that C has m mutually transversal branches through p. The difference (¢;,C), —m —1
is called an order of the contact between £; and the corresponding branch of C. A node is called ordinary if all
the geometrical tangents have the second order contacts with its branches, that is (¢;,C), = m +1 Vi.

Y

(N

}r

Fig. 1001. The node y? = z%(x + 1). Fig. 1002. The cusp y? = 2°.

A double point pe C is called a cusp (or a selfcontact) if the quadratic polar of p is a double line £. Geomet-
rically, this means that C' has two branches which do touch each other at p. The unique geometrical tangent ¢ at
p is called a cuspidal tangent. A local intersection number (¢, C), measures an order of the selfcontact for C' at p;
clearly, (¢,C), > 3. A cusp is called ordinary, if (¢,C), = 3 is minimal possible.

We say that C' has only the simplest singularities, if the singular points of C' are exhausted by ordinary double
nodes and ordinary cusps. Two cubic curves with the simplest singularities are shown on the figs. fig 1001-fig 1002.
For higher degree curves, the neighborhood of the simple singularity looks similarly?.

Exercise 10.1. Show that irreducible cubic curve has at most one (automatically simple) singularity.
HINT. A line £ has to be a component of a cubic C as soon as (¢,C) > 4.

10.1.2. Example: how much is to put a singularity on a curve? Given a point p€P,, then the polar map

F—3d—mp/gpd—m™

de* va*
1 = dew uy _ v oYMIE - (d—v)! 0"F
recall that F(p® ", z") = pl(F)(p,p, ... , D, T, Ty ... ,Z) = 4l o () = 7 B (p)
d—v v

2one can show that any smooth curve in P,, admits a plane projection that has only the simplest singularities

47
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is a linear epimorphism. Hence the curves whose m-degree polar coincides with a given collection of lines through
p form a projective subspace of codimension dim(S™V*) — 1 = m(m + 3)/2. For example, 5 parameters in a
curve equation are fixed by assuming that this curve has at a given point a cusp with a given cuspidal tangency.
However, these restrictions, if come from several distinct points, are not independent, in general.

10.2. Affine neighborhood of a singularity. Practical computation of geometric tangents usually
becomes simpler in affine chart with the origin in the singular point in question. Let C have an affine
equation f(x,y) = 0 in such a chart U. Write it as Z fu(z,y) =0, where each f,(x,y) is homogeneous

v>0
of degree v, and consider a line /.5 given parametrically as! x = at, y = Bt. Then C N/ is given by

the following equation on t:

F, B)E™ + frng1 (e, B) ™+ o+ fala, )t =0

where m is the degree of lowest non trivial homogeneous component of f and each f,(a, ) is actually
nothing but the v-th degree polar of p evaluated at ¢ = (« : ). Thus, the multiplicity of p coincides
with the degree of lowest non trivial homogeneous component of f and the directions (« : ) of the
geometrical tangents through p are the roots of this component, i. e. satisfy the equation ¢, (a, 8) = 0.

10.2.1. Example: analyzing singularities. Taking z = at, y = Bt in the nodal cubic equation y% —z2 —z3 = 0, we
get the lowest term (3 + a)(B — a) t2, which vanishes for (a : 8) = (1 : £1); so, there are two distinct geometrical
tangents & = £y. Local intersection number (¢,C), = 3 for each tangent line /, i.e. each tangent has the second
order contact with its branch. The cuspidal cubic on the fig 1002 has the lowest term 322, So, the second polar
is a the double line 2 = 0 with local intersection 3 with C' at the origin.

As an advanced example, consider a quartic given by the polynomial F(t) = t§ — t3t; + t3t3 — t3t3. Its
singularities are ¢t €[P» where all partial derivatives

OF [0ty = 4t3 — 3t3ty — 21ot3
OF/0t, = =213
OF |0ty = —t§ + 23ty — 2tits

vanish simultaneously. It happens at two points @ = (0 : 0 : 1) and b = (0 : 1 : 0). Take an affine chart with
x =to/ta, y = t1/t2 near a. Then F = 0 turns into 2% — y? — 2% + 2* = 0 with two simple geometrical tangents
x = ty at the origin. Since a local intersection number equals 3 for each tangency, a is an ordinary node. Taking
a chart with z = t5/t,, y = to/t; near b, we get the equation y? — 2* + 2%y — 2%y? whose geometrical tangent is
a double line ¢ = {z = 0} with (¢,C), = 4. So, b is the non ordinary cusp, where C' has a selfcontact of order 4.

10.3. Blow up. Geometrically, the substitution x = at, y = Gt lifts C' from P5 to a surface I' C Py x Py
called a blow up of pePy. It is described as follows. Identify a pencil of lines through p with any fixed
line P; = (ab) # p and consider the incidence graph T’ S {(€,q) € P x Py | £>¢q}. It is an algebraic
surface in Py x Po: if we put p=(1:0:0),a=(0:1:0),b=(0:0:1), take ¢ = aa + b, and consider
((a: B),(zp : 1 : x2)) as coordinates on P; x Py, then (zq : 21 : x2) € (pq) is equivalent to the quadratic
relation axs = Sx1.

Projection I — 2~ P, is bijective outside p, but o~ 1(p) ~ Py is the pencil of lines through p on P,
(see fig 1003). Amap ((a: ), t) — ((a: 8), (1: at: Bt)) € Py x Py gives a rational parameterization
for some affine neighborhood of this exceptional fiber in I'. Full preimage o~ (C), of a curve C C P,
passing through p, consists of 2 components: o~ (p) ~ P; and and some curve whose equation (in terms
of parameters (a : 3;t) on I') is a result of the substitution z = at, y = ft in the affine equation for C.

las in the beginning of this lecture, line lo.p has a form (p + tq), where ¢ = (a : 8) € Uss ~ Py is runing through the

infinite projective line of the chart U
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Py = (ab) = o0
Fig. 1003. Blow up. Fig. 1004. The Zeuthen rule.

10.4. Local intersection multiplicity. Consider two curves C,Cy C Py given by homogeneous equa-
tions F' = 0, G = 0 of degrees n, m without common divisors. Let v € C1 N Cy. We fix two points p, v
such that the line (pu) satisfies the conditions:

(pu) N CL N Cy = {u} & v ¢ (pu) (10-1)

and will use the triple {p, u, v} as a basis for Py. Let a point ¢(z) = u + zv tend to u (as x — 0) along
the line (pu). We restrict the both curves onto a varying line ¢(z) = (p, ¢(z)) and write ag(z), ... , an(x)
for the points C1 N 4(x) and Bo(x), ..., Bm(x) for the points Cy N £(x) (see fig 1004). These points are
the roots of two homogeneous polynomials f;(to,t1) = F(top + t1¢(z)), gz(to,t1) = G(top + tig(z)) in
t = (to : t1) with coefficients depending on the parameter . When z varies, the pints o, (), f,(x) draw
the branches of C; and Cy. Let f1(z), ..., 5 (x); aa(z), ... ,as(x) be all the branches that come to u
as z — 0.

Intuitively, over «a continuous field» like k = R, C, a local intersection multiplicity (C1,C3),, of the
curves at the point u, equals to the sum of orders of rs infinitesimals o;(z) — 8j(x) w.r.t. x as  — 0.
This naive geometric definition is known as the Zeuthen rule.

Algebraically, the sum of orders of infinitesimals o;(x) — 3;(x) coincides with the multiplicity of the
zero root of the resultant Ry, , considered as a polynomial in . Thus, over an arbitrary field k we
can define (C1,C2), as the multiplicity of the factor x in the prime factorization of Ry, 4, in k[z]. This
definition does not depend on a choice of p, v satisfying (10-1), because of the following

10.4.1. LEMMA. Consider the resultant Ry ,(p,q) € k[p,q|, of two binary forms f(to,t1) = F(top +

t1q), g(to,t1) = G(top + t1q), as a polynomial in p = (po,p1,P2), ¢ = (o,q1,q2). Then its irreducible
factorization in k[p, q] has a form':

Wo W1 w2
Ryg(p,q) =const- [[ det|po p1 p2 (10-2)
weCINC, 9 @ @

where the multiplicities m,, are computed by the Zeuthen rule with any choice of p, v satisfying (10-1).

lgeometrically, R; 4(p,q) = 0 defines in the space of lines (pq) a figure whose irreducible components are pencils of lines
centered at the intersection points and the multiplicities of these components are predicted by the Zeuthen rule



a0 Algebraic Geometry. Start Up Course.

Proof. Denote the determinants in the right side of (10-2) by Dy, (p, q). Geometrically, D,,(p,q) = 0is an irreducible
quadric, which consists of all pairs p,q € P whose joining line (pg) belongs to the pencil of lines through w. If
w € C1 N Co, then R(p,q) vanishes along the quadric D,,(p,q) = 0. Hence, by Hilbert’s Nullstellensatz, any such
Dy (p,q) divides the resultant. Vice versa, if R(p,q) = 0, then the restrictions of F'; G onto the line (p,¢) have

a common root, i.e. (p,q) pass through some w € C; NCy and [] D,,(p,q) vanishes at this (p,q). So,

weC1NCo
this product vanishes everywhere along V(R(p,q)) and, again by Hilbert, R(p,q) should divide some power of
[lwec,nc, Dw(p,q). To check the Zeuthen rule, fix p and ¢ = g(x) as on fig 1004. The condition (10-1) implies
that only D,,(p,¢(z)) with w = u vanishes at = 0 in the right hand side of (10-2). This vanishing determinant

D, (p,q(x)) = det(u,p,u + zv) = x det(u,p,v) is proportional to z. Il

10.5. Intersection theory of plane curves. It follows immediately from the Zeuthen rule, that the
local intersection multiplicities are distributive w.r.t. the curve branches, that is if C; has by branches
passing through v and Cs has by ones, then (Cy,Cs), is the sum of bibs mutual intersection indices
between the branches!.

Since each D (p,q) in (10-2) is bilinear in (p,q) and Ry 4(p,q) has bidegree (mn,mn), we get the
Bézout theorem:

10.5.1. THEOREM. > (C1,C9)y = degCy - deg Cy for any two plane projective curves without
weC1NCy
common components. O

10.5.2. Example: proper tangents and class. A tangent lane is called proper, if its tangency point is smooth.
A number of proper tangents to C passing through a generic point ¢ € Py is called a class of C' and denoted
by ¢ = ¢(C). If degC = d, then by n°9.3.3 the tangents coming form a point g € P, \ Sing (C) touch C at the

points of C'N ng‘”, where Céd_l) is (d — 1)-th degree polar of ¢q. If C is irreducible, then C N Céd_l) consists
of d(d — 1) points? counted with multiplicities. Besides the proper tangency points, C' N C’éd_l) contains also all

singular points of C, because each line trough a singularity is (non proper) tangent. So, class of irreducible curve
satisfies inequality ¢ < d(d — 1), which turns to equality iff C' is smooth.

10.5.3. Example: inflections. A smooth point p € C is called an inflection, if (C,T,C), > 3. An inflection is
called ordinary (or simple), if this number equals 3. If p € C is an inflection, then the quadratic polar C’,(,2) of p
has the zero restriction onto ¢ = T},C, i.e. £ is a component of 0;2). Note that p is a smooth point of the conic
C,g2), because C,()Z) and C have the same linear polar w.r.t. p and p is smooth on C. So, pe C is an inflection iff
052) = LU/l with £N ¢ # p. The points g € Py with degenerate quadratic polar C,gz) form a curve H¢, which
is called the Hessian of C. It is defined by the equation det Cq(2) = 0, which has degree 3(d — 2) in ¢, where

d = deg C. Hence, an irreducible curve of degree d > 3 has at most 3d(d — 2) inflections, which are contained in
C N He. Again, this intersection contains also all singular points® of C.

10.5.4. Example: affine localization. Let us restrict the picture fig 1004 onto affine chart where (pv) is the
infinity, (uv) is the z-axis, and (up) is the y-axis. Then the line pencil through p turns to the family of vertical
lines # = const. Consider affine equations f(z,y) = 0, g(z,y) = 0 for C;, C> as (nonhomogeneous) polynomials
in y with the coefficients in k[z]. Their resultant Ry 4(x) is a polynomial in 2 and vanishes at « = 0. The
multiplicity of this zero root coincides with (C1,C2)(0,0). If there are known some explicit analytic expressions of
all the branches y = «;(z) and y = f;(z) through z (even not algebraic, say several starting terms of the (formal
fractional) power series expansions are OK), then (C1,C2)(0,0) usually can be also computed explicitly by looking
at either the orders of a;(x) — §;(x) or the order of the resultant.

10.6. Dual curves. Let C C IP; be an irreducible curve given by an equation F(z) = 0 of degree d. For
any smooth pe C' its tangent 7, = T),C defines a point 7, = Ann7, € P* on the dual plane P5. When p
varies along C, 7, also is running through some curve C* C P called a dual curve for C. The degree of
dual curve, i.e. the number of its intersection points with a generic line ¥ = ¢* C P§, is nothing but the

Yin particular, (n1C1+n2Cs, D) = n1(C1, D)+n2(Cs, D), where m1C1 +m2Cs is a curve given by equation F;"' F}™ =0
and F; = 0, F> = 0 are the equations for C; and C»

2Note that this is not true in positive characteristic: for example, if char (k) = 2, then all tangents to the smooth conic
x§ = x122 pass through one common point.

3In fact, even for singular curves one can write precise equations between degree, class, number of inflections and some
data describing singularities; we’ll do this below for curves with simplest singularities.



§ 10. Working example: plane curves. 51

number of proper tangents to C' living in a generic pencil of lines (centered at a generic point ¢ € Py).
Thus deg(C*) = ¢(C).

10.6.1. CLAIM. C** = C; in particular, deg(C) = ¢(C™).
Proof. A tangent line ¢ = T,-C* C Pj, at a smooth point 77 € C*, is a limit of secant lines o = (77,75) as
T4 — 11 (see fig 1005 — fig 1006). The secant o represents a pencil of lines through ¢* = 71 N 1p € Py. Clearly,
0" — p1 as p2 — p1. 0
We also see on fig 1005 — fig 1006 that under the duality C' «—— C* selfcontacts (cusps) turns into

inflections and selfintersections — to multiple tangents'. In particular, if C has at most the simple
singularities, then special proper tangents of C'* are exhausted by simple inflections and double tangents.

BT B3

Fig. 1005. A curve C C Ps. Fig. 1006. The dual curve C* C P;.

10.7. Pliicker identities. Let C be a curve of class ¢ and degree d with singularities exhausted by

ordinary selfintersections of multiplicities m1, mo, ..., m, and s ordinary cusps. Then
)
c=d(d—1)=33x—Y my(m,_1) (10-3)
v=1

If we assume, in addition, that C has only ordinary inflections, then their number ¢+ = +(C') equals

1)
1=3d(d—2)—8x—3> my(my_1) (10-4)

v=1

These formulas are known as the Pliicker identities. We will prove them in the remaining subsections
using geometric approach traced back to Chasles, Cayley and Brill?
Exercise 10.2. Let q ¢ C lie neither on an inflection tangency nor on a geometric tangency through a singular
point of C'; we write C’éd*l) for (d—1)-th degree polar of g with respect to C'. Deduce (10-3) from the equality
(C, Cédil)) = d(d — 1) by proving that (C, C’éd*l))p equals 1 for smooth p, equals 3, if p is an ordinary cusp,
and equals m(m — 1), if p is an ordinary m-typle selfintersection.

HINT. In the first case p is smooth on Céd_l) and TpCéd_l) # T,C; in the second case p is smooth on Céd_l)
again, but TpCéd_l) coincides with the cuspidal tangency; in the third case p is an (m — 1)-typle point
on ng*”, but each geometrical tangency of C at p is transversal to Cédil), that is, intersects it with
multiplicity (m — 1). Now, use the Zeuthen rule.

If both C' and C* have at most the simple singularities, then the Pliicker relations written for the both
curves turn into

c=d(d—1)—3»x—2¢ t=3d(d—2)—8x—6¢
d=c(c—1)—-3:—-28 x#=3c(c—2)—81—6p

where 3 is a number of bitangents to C'. Any three of d, ¢, s, §, 3, ¢t can be found from these equations
as soon as the other three are known.

la proper tangency is called multiple, if it touch the curve in several distinct points
2we follow the book: J. G. Semple, L. Roth. Introduction to algebraic geometry. (Oxford, 1949)
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10.8. Blowing up A C P2 X P;. Identify P5 with the set of lines on Py and consider the incidence
graph

B Y {(p,q,0)| p,q €} CPyx Py x P}

It is given by two quadratic equations Y ¥z, = Y ¥y, = 0 on (z,y,9) € Py x Py x P, Topologically,
A is a 4-dimensional compact manifold. A projection % 2Py x Py is bijective outside the diagonal
A Y {(p,p)} C Py x Py. Each fiber o' (p,p) = {(p,p,) | £ > p} over (p,p) €A is naturally identified

with the line pencil through p on Py and 3-dimensional submanifold £ o o Y A) C £ is called an
exceptional divisor. Let us denote the projections of # onto consequent factors of Py x Py x P35 by 1y,
T, T3 and write A} = w7 1(\), Ay = 1y H(A), M = 73 1(\) for the full preimages of a generic line A living
on these planes. Topologically, A1, Ay, and M are 3-dimensional cycles on % and their homology classes
don’t depend on the choice of the line A in each plane. Any 1-parametric algebraic family of «pointeds
lines (pg) C Py can be pictured by an algebraic curve I' C %A. Topological location of such a curve is

described by a triple of numbers:

ap = #(T' N A;) — anumber of p-points in ' = {(p,q, )} laying on a generic line A C Py;
a9 #(I'N A2) — a number of g-points in T = {(p,q, )} laying on a generic line X C Py;
u = #F([T' N M) — anumber of lines £ in T' = {(p, q,£)} passing through a generic point! \* €P,.

Strongly speaking, we should use the topological intersection indices instead of «the numbers of points».
But for all I' we will consider below there is an open dense set of lines? such that all corresponding
Ay, As, M intersect I' transversally in a finite constant number of points. We will always suppose that
a1, ag, p are calculated using Ay, As, M taken from these open dense sets®. The triples (p,q,¢) € T
with p = ¢, i.e. the intersection points I' N E, are called exceptional. Typically, I' has a finite number
of exceptional points. Our goal is to equip the exceptional points with appropriate multiplicities and
express the number £(T') of «exceptional points counted with multiplicities» through «y, as, p in the
following three examples.

10.8.1. Example: join family. Let Cy,Cs C Py be two curves of degrees d;,ds without common components.
Fix any point u € Py outside the both curves and all the lines joining pairs of their intersection points. Then

I'={(p.q.0)eB|peCi, qCs, (5u}

is a curve in £ given by an obvious triple of algebraic equations. Its exceptional points are (p,p, (pu)) with
p € C1 NCy, that is £(T') counts the intersections of Cy and Cs. Further, a; = as = d;d2, because a generic line A
intersect, say C1, in d; distinct points py,po,...,pq, and for each of them C5 N (up,) consist of dy points. Finally,
@ = dids too, because there is a unique line ¢ = (uA™) passing through a given A* and this line contains d;ds
distinct pairs (p;,q;) with p; € Cy N4, g; € Co N, if XX is general enough.

10.8.2. Example: secant family. In the above example, let ¢, = Cy = C be the same irreducible curve of
degree d given by an equation F(z) = 0 and u be a point outside the curve, all its singular tangents, and all lines
joining pairs of distinct singularities. Then a closure of {(p,q,¢) € B| p # ¢, p,q<€C, {>u } is a curve given by
the equations F(z) = F(y) = ¥(u) =0 in (z,y,d) € Py x Py x P§. Exceptional points of this curve are (p, p, (pu))
such that mult(C, (pu)), > 2, i.e. either (pu) = T,,C or p € Sing(C). So, £ counts singular points of C' and proper
tangents coming from ¢ to C. By the same reasons as above, a; = as = u = d(d — 1) in this case.

10.8.3. Example: tangent family. Let C be as above and T" be a closure of {(p,q,¢) € B| p # q, p,qeC, L =
T,C } (it is given by the equations F(z) = F(y) = F(z!,y) = 0). Exceptional points of T are (p,p, ) such that
mult(C, £), > 3, i.e. either inflection tangents at smooth p or geometric tangents at singular p. So, {(I') counts
inflections and singularities. Since a simple tangent at a smooth point p intersect the curve in (d — 2) more points
q, we have a; = d(d—2). Clearly, u = c¢(d — 2), because there are ¢ proper tangents to C' through generic A* € Py
by the definition of class. Finally, as = d(c — 2), because a generic line intersects C' in d distinct smooth points
¢1,42,-..,qq and for each of them there are (¢ — 2) proper tangents (g;p) touching C' at some p # ¢;: when a point
q ¢ C tends to some g; € C, precisely 2 of ¢ tangents through ¢ turn to T,,C (see fig. fig 1007; other arguments
will appear in n°10.10.4 and ex. 10.3).

'here A C P5 is the pencil of lines through a point \* € P,
2in the space of all lines
3it will be an exercise for readers, to check the existence of such open sets of lines in each of examples below
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10.9. A correspondence on P; is called algebraic of type m-n, if the pairs of corresponding points
(p,q) € Py x Py form an algebraic curve v C Py x P; given by an irreducible bihomogeneous polynomial
g(t',t") of bidegree (m,n) in (t',t") = ((t{ : t}), (t§ : ¢{)). This T = q

curve is called a graph of the correspondence. So, images of a given J

point p € Py are presented by the equation g(p,t) = 0 in t € P; and
preimages — by the equation g(t,p) = 0. Since these equations have L. 7
respectively m and n ordinary distinct roots for almost all! p, a generic
point has n distinct images and m distinct preimages under an m-n
correspondence.

A point e € Py is called a fized point of the correspondence, if it
corresponds to itself?, that is, if g(e,e) = 0. So, the set of all fixed points is y N A, where A = {(t,1)} C
Py x Py is the diagonal. Since g(¢,t) is homogeneous of degree m + n in t = (tp,t1), any algebraic m-n
correspondence has m +n fixed points counted with multiplicities, where the multiplicity of a fixed point
e means the local intersection multiplicity (v, A).), of the curve g(#',t") = 0 and the line ¢ = " at
the point (e,e) €. In particular, it can be calculated by the Zeuthen rule applied in any affine chart
Al x Al = Ay 3 (e,e).

Fig 1007. Two proper tangent lines
disappear as ¢ — g;.

10.9.1. CLAIM. Let U C Py be an affine chart with the origin at a fixed point e of a correspondence
v, « be an affine coordinate on U, and y1(x), yo(x), ... , ym(x) be all v-images of x which tend to 0 as
z — 0. Then (y,A),0) equals the sum of orders of infinitesimals y;(x) — ¥ with respect to z.

Proof. Let (z,y) be affine coordinates on A? = U x U (see fig 1008). Since the both lines z = 0 and y = 0 contain
just one intersection point (0,0) € yNA we can use the line pencil z = const parameterized by the z-axis to calculate
(7,A)(0,0) as the sum of orders of infinitesimals a;(z) — 8;(z) where a; and 8; run trough the intersections of a
vertical line x = const respectively with v and with A. So, a;(z) = y;(z) and there is just one B(z) = x. O

10.10. Exceptional point multiplicities. A curve I' C 4, of pointed lines (p, ¢, £), defines an algebraic
correspondence on Py as follows. Fix a point a € P2 such that it lies on precisely p distinct lines £ of T’
and a generic line through a contains exactly «; distinct p-points and exactly as distinct ¢g-points of T'.
Then consider the pencil of lines through a as P; in question and say that (ap) «— (aq) iff (p,q,¢) €T
for some3 ¢. This is an algebraic aj-aip correspondence, because a generic point has ag images and oy
preimages, certainly. A line through a corresponds to itself under 4 precisely in two cases: either it
belongs to T, i. e. contains 2 points p # ¢ such that (p,q,f) € ', or it pass through an exceptional point
e such that (e, e, ) € I' for some /.

e=p=q Y1

Fig. 1008. Fixed point. Fig. 1009. Exceptional point.  Fig. 10010. Intersection point.

Let us define the multiplicity of an exceptional point (e, e, £) € I" as a multiplicity of the corresponding
fixed point (ae) of the correspondence 4r. By n°10.9.1, it can be calculated geometrically as follows.
Parameterize the pencil of lines through a by some line L. # a, which pass through an exceptional point
e (see fig fig 1009), and fix on L an affine coordinate = centered at e. Let (ay1), (ay2), ..., (aym), where

that is, for all p outside some finite subset on P; where the both discriminants vanish
2of course, besides itself, a fixed point may have several other (pre) images as well
3of course, £ = (pq), if p # q
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Y, € L, be all lines corresponding to (az) and tending to (ae) as x — e. Then the multiplicity of (pe)
equals the sum of orders of infinitesimals y;(z) — x w.r.t. z as z — 0.

10.10.1. CLAIM (CHASLES-CAYLEY-BRILL FORMULA). The total number of exceptional points
counted with multiplicities equals {(T") = ay + ag — p.

Proof. Since deg(yr) = (a1, as), it has a; + ay fixed points. By the choice of a, each line (ap) such that (p, ¢, (ap)) €
T for some ¢ # p, g € (ap) has multiplicity 1 as a fixed point for 4. The residuary contribution of exceptional
fixed points equals £(T). O

Fig. 10011. Fig. 10012. Fig. 10013.

10.10.2. Example: exceptional point multiplicities in join family (continuation of n°10.8.1). In this case the
multiplicity of an exceptional point (e, e, (ce)) € T' coincides with the local intersection number (Cy,Cy). (see
fig. fig 10010). Indeed, use the line pencil centered at ¢ to compute (C1,C3). by the Zeuthen rule as it was
explained in the previous lecture. If we take a outside all geometric tangents to the both curves at e and such
that e is the only intersection point of C; and C> on (ae), then (Cy,C5), is a sum of orders p — ¢; w.r.t. ¢ as
t — 0. But it is clear from fig. fig 10010 that p — ¢; is like  — y; and ¢ is like = as soon the both lines (ce) and
(ae) do not touch the branches of Cy, Cy at e. So, £(T') is the sum of local intersection numbers of C; and Cy,
i.e. (Cl, Cz) = E(F) =1 +ay — n = d1d2 + dldz — d1d2 = dldz. We get the Bézout theorem.

10.10.3. Example: exceptional point multiplicities in secant family (continuation of n° 10.8.2). There are 3 types
of exceptional points here. A proper tangency (e, e, (ce)) (see fig 10011) has multiplicity 1, because any z closed to
e has a unique image y coming to e when z — e and y — z is like  — e. If e is an ordinary m-typle selfintersection,
then a line through ¢ closed to (ce) contains m p-points running through m branches of C; each such p-point
produces (m — 1) ¢g-points coming from other (m — 1) branches; so, there are m(m — 1) differences y —x and each of
them is like (z—e) (see fig 10012) as soon (ce) does not touch any branch. If e is an ordinary cusp (see fig. fig 10013,
where the line pencil through a is parameterized by the cuspidal tangent), then any z closed to e produces two
p-points (intersections of (az) with two branches of C) and each of them has just one g-point (intersection of (cp)
with the other branch of C); it is easy to see from fig. fig 10013 that (z —y) ~ (p — q) ~ (z —€)3/? as z — e. So,
the cuspidal point contributes 2 - (3/2) = 3. Hence,

é
c+ Y my(m, —1)+3x=¢(D) =a1+ay—p=d(d—1)+d(d—1)—d(d—1) =d(d — 1)

by the Chasles—Cayley—Brill formula. This gives the first Pliicker identity.

Fig. 10014. Fig. 10015. Fig. 10016.
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10.10.4. Example: exceptional point multiplicities in tangent family (continuation of n°10.8.3). We see on
fig 10014 — fig 10016 that each difference (y — z) is like (x — e) for all three types of exceptional points. An
inflection point (fig 10014) produces a unique difference and has a multiplicity 1; each of m branches through an
m-typle selfintersection (fig 10015) produces (m — 1) differences, so the multiplicity equals m(m — 1) here; a cusp
(fig 10016) produces 2 differences and has multiplicity 2. Hence,

5
L+Zmu(mu—l)+2%:§(F):a1+a2—u:d(d—2)+d(c—2)—c(d—2):d2—4d+20

by the Chasles—Cayley—Brill formula. Since ¢ = d(d—1) — > m,(m, — 1) — 3 3¢, we get the second Pliicker identity
t=3dd—-2)-3> m,(m, — 1) — 8.

Exercise 10.3. Let ¢ be a smooth point of C' in n°10.8.2 and n°10.10.3. Check that a multiplicity of an
exceptional point (¢, ¢, T.C) €T equals 2 (so, we have really as = d(¢ — 2) in n° 10.8.3).



§11. Affine algebraic — geometric dictionary.

In this section we assume that the ground field k is algebraically closed.

11.1. Affine varieties: their ideals and coordinate algebras. Let X = V(J) C A" be an affine
algebraic variety given by some ideal J C k[z1,zo, ..., x,] of polynomial equations. We write I(X) for the
ideal of all polynomials vanishing along X. If k is algebraically closed, then by Hilbert’s Nullstellensatz

I(X) = Jdéf{fek[xl,xg,...,xn]]f”EJ for some n€N }

is the radical of J. Clearly, V(J1) C V(J2) <= /J1 D /Jo. A finitely generated commutative k-algebra

K[X] Y K[z1, 2, . .., 2]/ T(X)

is is called a coordinate algebra (or a structure algebra) of the affine algebraic variety X C A". Ge-
ometrically, k[X] consists of functions X L NN k obtained by restricting the polynomials f €
k[z1,z2,...,2,] onto X C A". These functions are called regular algebraic functions on X. Thus,
algebra k[X] is reduced, i.e. has no nilpotent elements: f* =0 = f =0.

Exercise 11.1. Let X = {0} € A,, be the origin. Describe I(X) and k[X].

11.1.1. PROPOSITION. FEach reduced finitely generated algebra A over an algebraically closed field
can be realized as A = k[X] for some affine algebraic variety X.

Proof. Since A = Kk[z1,Z9,...,2,]/] is reduced, f* € I = f € I for any f € k[z1,22,...,2,]. By Hilbert’s
Nullstellensatz, this means that X = V(I) C A™ has I(X) = I and A =Kk[z1,Za,...,2,]/1(X) = Kk[X]. U

f=f)

11.2. Points. Given a point p € X, the evaluation map ev, : k[X] k coincides with the

factorization k[X] — ™) pivi/m where m, % {f € K[X]| f(p) = 0}. Hence, m, = ker(ev,)
is a proper maximal ideal in k[X]. It is called @ mazimal ideal of p.

11.2.1.PROPOSITION. If k is algebraically closed, then the correspondences p «+— ev, «— m,

establish bijections between the points of X, the homomorphisms k[X] —— k identical on k, and the
proper maximal ideals in k[ X].
Proof. Each k-algebra homomorphism k[X] — k is surjective and its kernel is a proper maximal ideal in k[X].
Vice verse, for any maximal ideal m C k[X] the factor algebra k[X]/m is a field and is finitely generated as a
k-algebra. By n®8.5.1 it is algebraic over k and hence coincides with k, because k is algebraically closed. Thus,
m is the kernel of the canonical factorization homomorphism k[X] — k[X]/m = k and the correspondence
ev, «—— m, is bijective.

Clearly, p # ¢ = m, # m,, because we can always find a linear form A" —2+ k such that p €my, but p & my.
To show that each proper maximal ideal m C k[X] is a maximal ideal of some point p € X let us write k[X]

as k[zq, 22, ..., 2,]/I(X). Then full preimage of m is also a proper maximal ideal m C k[z1, s, ..., 2Z,], because
m D I(X) and k[z1,z2,-..,x,]/m = k[X]/m = k. We conclude that V(m) C A" is nonempty and is contained in
X. So, there is a point pe X such that f(p) =0 for any fem, i.e. m C m,. Since m is maximal, m = m,,. O

11.3. Algebraic varieties via spectra. A set of all proper maximal ideals in a given k-algebra A
is called @ mazimal spectrum of A and is denoted by Spec,, (4). We can treat an affine algebraic
variety over an algebraically closed field k pure algebraically as a maximal spectrum Spec,, (A) of an
arbitrary finitely generated reduced k-algebra, A whose elements f € A are considered as the functions

Spec,, (4) moflmodm) |y

11.4. Regular morphisms of algebraic varieties. Any map of sets X .y produces a pull back

homomorphism ¢* from the algebra kY, of all k-valued functions on Y, to the algebra k¥, of all k-valued

functions on X. It sends Y I, k to the composition

def

cf o x ey Log.
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A map X —2+ Y between affine algebraic varieties is called o regular morphism of algebraic varieties,
if * sends the regular algebraic functions on Y to the regular algebraic functions on X, i.e. induces a
well defined homomorphism of coordinate algebras

*

K[Y] -2 K[X] .

11.4.1.PROPOSITION. Let A, B be finitely generated reduced algebras over any algebraically closed
field k. Then each homomorphism B ¥+ A such that (1) =1 is a pull back homomorphism ¢ = ¢*
for a unique regular map Spec,, (A) — Spec,, (B). This map ¢ sends a maximal ideal m C A to its
full preimage ¢*~'(m) C B and can be treated as a pull back homomorphism ¢ = o*, for B N A, if
the points of Spec,, (A), Spec,, (B) are treated as k-algebra homomorphisms A — k, B — k.
Proof. Let, Spec,, (A) —— Spec,, (B) be a regular morphism, p € Spec,, (A) be a point, and f € B be a function
on Spec,, (B). Then f(o(p)) = 0 <= ¢*f(p) = 0, i.e. f € my,) <= ¢*(f) € m,. So, if B YL Aisa pull

back of some Spec,, (4) —— Spec,, (B), then ¢ has to send m, — ¢~ '(m,) for each p € Spec,, (A). On
the other hand, 1~'(m) C B is proper maximal ideal for any proper maximal m C A, because ¢*(1) = 1 =

B/~ (m) =im (¢»)/(mNim () ~ k. So, ¢ : Spec,, (A) ) Spec,, (B) is well defined map of sets.
To compute its pull back homomorphism, note that for any be B, p€Spec,, (A) we have

©*b(p) = b(p(p)) =b (mod my(,) ) =b (mod ¢~'(my) ) = ¢(b) (mod my,) = Yb(p) .

mp'_’wil(m

So, ¢* = 1) as required. [l

11.5. Geometric schemes. Let A be an arbitrary algebra over a field k. All nilpotent elements of A
form an ideal n(A4) C A. It is contained in any proper maximal ideal m C A, because A/m = k has no

nilpotent elements. So, a factor algebra A,eq def A/n is reduced and has the same maximal spectrum
X = Spec,, A = Spec,, Areq- If k is algebraically closed, then the intersection of all maximal ideals in
Ared 18 zero, because it consists of all functions vanishing everywhere on the affine algebraic variety X.
Hence, the intersection of all maximal ideals in A coincides with n(A4).

Exercise 11.2.  Show that in general situation, when A is an arbitrary commutative ring, n(A) coincides with

the intersection of all proper prime! ideals p C A

A pair (A4, Spec,, 4), where A is an arbitrary finitely generated algebra over algebraically closed field,
is called an affine geometrical scheme. Affine algebraic variety X = Spec,, A = Spec,, Areq is called
a support of this scheme. Intuitively, the scheme differs from X by allowing some «infinitezimalsy,
i.e. nilpotent «functions» whose «numerical values« vanish everywhere on X. Usually, these nilpotents
encode some «multiplicities» attached to X.

11.5.1. Example: an intersection of affine algebraic varieties X, Y C A" is defined as V(I(X) + I(Y)), i.e. by
the union of all equations for X and Y. If the intersection is non-transversal, a factor algebra

A= Kzy, 2o, ..., 20]/(I(X) + (V)

is not reduced. Say, if I(X) = (z), I(Y) = (2? — y) in k[z,y], then the factor algebra A = k[z,y]/(z,y> — z) ~
k[y]/(y?) has quadratic nilpotent y. Geometrically, the intersection of the line X = V(z) and the parabola
Y = V(2? — y) consists of unique point Spec,, (k) = Spec,,, Ared, Where they touch each other with multiplicity 2.
This multiplicity can be extracted from non reduced algebra A but it is lost under the replacement of A by A,eq.
Thus, if we want, say, to develop an intersection multiplicities technique, then we have to treat intersections as
geometric schemes rather than algebraic varieties and investigate the difference between A and A,cq.

(¥"¢) (B, Spec,, B) of schemes is a pair that

By the definition, a regular morphism (A, Spec,, A)
consists of an algebra homomorphism B —— A and a regular map Spec,, (A) —— Spec,, (B) such that
©*f(p) = f(p(p)) for all f € B, p € Spec,, (4). Note that now ¢* can not be recovered from ¢, because

the latter one knows nothing about the nilpotent infinitesimals.

'an ideal p C A is called prime, if A/p has no zero divisors
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11.6. A direct product of affine algebraic varieties. Let A, B be finitely generated k-algebras.
Then the tensor product of algebras’ A ® B is a finitely generated k-algebra with the multiplication

(a®b,a®B)—aa®bs A2 B .

(A® B) x (A® B)

11.6.1. PROPOSITION. A set-theoretical product X x Y, of affine algebraic varieties X = Spec,, 4,
Y = Spec,, B, is naturally identified with Spec,, (A ® B). Both projections

XX xxy My

are regular morphisms w.r. t. the structure of an affine algebraic variety on X x Y prescribed by this

identification and for any two regular maps X £z v, Y there exists a unique regular map
7% X xy that fits into commutative diagram
X xY

&
s

Proof. Assume for a moment that A ® B is reduced and define X x Y as Spec,, (4 ® B) and the projections 7,
my as the regular maps whose pull-back homomorphisms are the canonical algebra inclusions

A a—a®1 A®B 1®b—b B - B
Then the last asseveration of the proposition turns to the universal property which characterlzes the tensor product
of algebras. Namely, if Z = Spec,, (C’) then for any two algebra homomorphisms A <, " B there is a
P79V, ¢ such that (p* @ Y*)oar = p* and (p* @ Y*)off = ™.

Exercise 11.3. Deduce this property from the universality of the tensor product of vector spaces discussed in §4.
In particular, for the points of Z, i.e. the regular morphisms Spec,, (k) —— Z (or, equivalently, the algebra
homomorphisms C — k)), we get a set-theoretical bijections

unique homomorphism A ® B

Spec,, (4) x Spec,, (B) ~ Hom(Spec,, (k), X) x Hom(Spec,, (k),Y") ~
~ Hom(Spec,, (k), X x Y) ~ Spec,, (A ® B) .

Thus, it remains to show that A ® B is reduced. We can write f € A® B as Y _ a, ® b,, where the functions
b, € B are linearly independent over k. If f produces the identically zero function on X x Y, i.e. f(p,q) = 0
V(p,q) €X x Y, then > a,(p) - b, = 0in k[Y]. Hence, all a,(p) =0 VYpeX . Thus,alla, =0in A and f =0in
A®B. O

11.7.Zariski topology. Any affine algebraic variety X = Spec,, A admits a canonical topology whose
closed sets are V(I) = {x€ X | f(x) =0 Vfel}, where I C A is an arbitrary ideal. This topology is
called the Zariski topology.

Exercise 11.4.  Check that V(I) satisfy the closed set properties, namely: @ = V(1); X = V(0); NV (L,) =
V(X 1,), where 3" I, consists of all finite sums ° f, with f, € I,; V(I) UV (J) = V(IJ), where I.J is an
ideal spanned by all products ab with a1, be J.

Since any ideal I C k[X] is finitely generated, each closed set is a finite intersection of hypersurfaces:

V() =V (f1, fa,---, fm) =V (f,). Hence, any Zariski open set is a finite union of principal open sets
def

2(f) = X\V(f) ={zeX]| f(x) # 0}.

las a vector space over k it coincides with the tensor product of vector spaces A, B and consists of all finite sums
> a, ®b, with a, € A, b, € B; for example, k[z] ® k[y] is naturally isomorphic to k[z, y]




§ 11. Affine algebraic — geometric dictionary. 59

The Zariski topology has a pure algebraic nature. Since the Zariski neighborhoods express rather
some divisibility conditions than any distance relations, their properties are far enough from the metric
topology standards.

11.7.1. Example: irreducible closed sets. A topological space X is called reducible, if X = X; U X5 for some
proper closed subsets X7, Xo> C X. This is a vapid notion in the usual metric topology, where everything is
reducible. In Zariski topology, the reducibility of X means an existence of non zero functions fi, fo € k[X] such
that f; vanishes along X; and f, vanishes along X5,. Since f; fo vanishes everywhere, fifo = 0 in k[X]. So, X is
reducible iff k[X] has zero divisors. For example, a hypersurface {g(z) = 0} C A™ is irreducible iff ¢ is a power of
an irreducible polynomial. Irreducible algebraic sets are similar to the prime numbers in arithmetics.

11.7.2. PROPOSITION. Any affine algebraic variety admits a unique finite decomposition X = |J X;,
where X; C X are irreducible proper closed subsets such that X; ¢ X; V i # j (they are called irreducible
components of X ).

Proof. A decomposition is constructed step by step. If X is reducible, the first step takes X = Z; U Z,, where
Z, 2 are proper closed subsets. Let X = |JZ, after n steps. If each Z, is irreducible, then for each v and any
irreducible closed subset Y C X either Y NZ, =@ or Y C Z,, because of Y = |J(Z, NY). So, if we take away
all Z, contained in some other Z,, then we get the required decomposition and it is unique. If there are some
reducible Z, after n steps, (n + 1)-th step replaces each of them by a union of two proper closed subsets. If this
procedure would never stop, then it produces an infinite chain of strictly embedded subsets X D Y; DYy D ...,
i.e. an infinite chain of strictly increasing ideals (0) C I; C Iz C ..., which does not exist in the Noetherian
algebra k[X]. U

11.7.3. Example: «big» open sets. Zariski topology is week and non Hausdorf. For example, Z C A! is Zariski
closed iff Z is finite. If X is irreducible, then any non empty open U;,U, C X have a nonempty intersection,
because in the contrary case X = (X \ Uy) U (X \ Ua).

Exercise 11.5. Prove that f = g in k[X], if X is irreducible and f|, = g|, over some open non-empty U C X.
Hint. If U = 2(h), then X = V(h) UV (f — g).

11.7.4. Example: Zariski topology on X x Y is finer than the product of Zariski topologies on X and Y, because
the closed Z C X x Y are not exhausted by the products of closed subsets on X, Y. For example, if X =V = A!,
then any curve, say a hyperbola V (zy — 1), is closed in Zariski topology on A! x A! = A% whereas the products
of closed sets on A! are exhausted by finite unions of isolated points and coordinate lines.

11.7.5. PROPOSITION. A regular morphism X LY of algebraic varieties is continuous in Zariski
topology.
Proof. A preimage ¢~ '(Z) of a closed Z = V(I) C Y consists of all € X such that 0 = f(p(z)) = ¢* ' f(z) for
all fel. So, it coincides with the zero set of an ideal ¢* (1) C k[X]. g

11.8. Decomposition of regular morphism. Let X —%+ Ybea regular morphism of affine algebraic

varieties. Then, k-algebra homomorphism k[Y] e, k[X] can be decomposed as
K[Y] —r im () ——r K[X] .
Since k[X] is reduced, im (¢*) C k[X] is reduced too, i.e. there is an affine algebraic variety
Z = Spec,, im (¢*)

such that X —2» Y is decomposed as X —» Z 22+ Y and k[V] R k[Z] is surjective, k[ Z] A, [X]
is injective. The injectivity of ¢} means that non zero function f € k[Z] can not vanish along ¢;(X),
i.e. p1(X) C Z is dense. The surjectivity of ¢} means that o induces an isomorphism between Z and
a closed subset V (ker o) C Y given by the ideal! ker(p}) = ker(¢) C k[Y]. In other words, the Zariski
closure Z = ¢(X) C Y is an affine algebraic variety and the maps X —— ¢(X) —— Y are regular
morphisms.

Inote that this ideal is automatically radical
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11.9. Dominant morphisms, closed embeddings, and finite morphisms. If X is irreducible and
a homomorphism k[Y] A k[X] is injective, then the corresponding morphism X —? Y is called
dominant. Geometrically, this means that ¢(X) =Y. If X is reducible, then ¢ is called dominant when
its restriction onto each irreducible component of X is dominant.

A morphism X —~ Y is called a closed embedding, if k[Y] AN k[X] is surjective. This means that
¢ identifies X with V(kerp*) C Y.

Exercise 11.6. Show that any dominant morphism of irreducible affine varieties X —?+ Y can be decomposed
as

Xl asyxam "Tay, (11-1)

where 1 is a closed embedding and 7 is the natural projection along A™.
HINT. Let A = k[X], B = k[Y]. A has a natural structure of a finitely generated B-algebra provided by the

*

inclusion B <+ A; thus, there is an epimorphism of B-algebras Blz1, 22, ..., Tm] —% A for some m.

Given a regular morphism X —2—+ Y, then the coordinate algebra k[X] can be considered as an
algebra over ¢*(k[Y]) = klp(X)] C k[X]. A morphism ¢ is called finite, if k[X] is integer over ¢*(k[Y]).
Since k[X] is finitely generated as algebra over ¢*(k[Y]) (even over k), finiteness of ¢ means that k[X] is
finitely generated as ¢*(k[Y'])- module, i.e. there are some fi, fo,..., fm € k[X] such that any hek[X]
can be written as h =) ¢*(g;) fi for some g, €k[Y].

11.9.1. PROPOSITION. Let X —2» Y be a finite morphism of affine algebraic varieties. Then p(Z) is

closed for any closed Z C X and induced morphism Z Pz, ©(Z) is finite. Moreover, if X is irreducible

and Z # X, then po(Z) #Y.

Proof. Let I = I(Z) C k[X] be the ideal of Z C X. Then Z 2% ¥ has ¢, : k[Y] ~“-» K[X] —» K[X]/I. Since
k[X] is finitely generated as ¢*(k[Y])-module, k[Z] = k[X]/I is finitely generated as a module over

K[(2)] = ol% (IV]) = o* (kY /(I N " (K[YD)
i.e. Z —— ¢(Z) is a finite morphism. To prove that p(Z) = ¢(Z), we can restrict ourself onto irreducible
components of Z, i.e. suppose that Z is irreducible. Let B = k[Z], A = k[¢(Z)] C B, and f1, fs,..., fm generate
B as A-module. Since |, takes a maximal ideal m, C B to the maximal ideal m, N A C A, a point g € Spec,, (4)
does not belong to Spec,, (B) iff its maximal ideal m; C A generates non proper ideal in B, that is m,-B = B. In

this case we can write f; = > B, f, for some f;, € mg; that is the zero homomorphism of A-modules: B — 0,
which takes each f; to zero, can be presented in terms of the generator system {f,} by the matrix E — (8,;).
Hence, the multiplication by det(E — (f3;;)) annihilates B. Since there no zero divisors in B = k[Z], we get
det(E — (Bi;)) = 0. But det(E — (8;;)) =1+  where f€m,. So, 1em, and my; C A is non proper as well.

To prove that ¢(Z) #Y for Z & X, let us take a non zero function f € k[X] vanishing along Z and write the
integer equation of the lowest possible degree for f over ¢*(k[Y]) as

P4+ (g) M+ 0 (gmat) T (gm) =0

Computing its left side at any z € Z, we get ¢*(gm)(z) = 0, that is gm(p(z)) = 0. So, if ¢(Z) =Y, then g, =0
along Y, i.e. ¢*(gm) = 0 in k[X]. Since k[X] has no zero divisors, the minimal equation above is divisible by f.
Contradiction. O

11.10. Normal algebraic varieties. If YV is irreducible, then k[Y] has no zero divisors. Its quotient
field is called the field of rational functions on Y and is denoted k(Y"). An irreducible variety Y is called
normal, if k[Y] is a normal ring, i.e. there are no rational functions f € k(Y") \ k[Y] integer over k[Y].
By n°8.7.1, any algebraic variety X with factorial coordinate algebra k[X] is normal. For example, all
affine spaces A™ are normal.

11.10.1. PROPOSITION. Let X —— Y be a surjective finite morphism. If Y is normal, then ¢(U) is
open for any open U C X and each irreducible component of X is surjectively mapped onto Y .

Proof. We will identify k[Y] with a subalgebra of k[X] embedded into k[X] via ¢*. To prove the first assertion,
we can suppose that U = 2(f) is principal. Then for any p € 2(f) it is enough to find a € k[Y] such that
p(p) € D(a) C p(2(f)). Consider a map

1/} =X f - X p—(¢(p),f(p)) - Y X% Al . (11_2)
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It is regular and finite, because its pull back homomorphism is the evaluation map

t—f

O* K[Y x AY] = K[Y][t] k[X] (11-3)
and k[X] is finitely generated as k[Y]-module. We can treat evaluation (11-3) as taking values in a k(Y")-algebra

B =k(Y) ® k[X], which consists of all fractions b/a, where b € k[X], a € k[Y], a # 0, modulo the equivalence
kY]

bja' ~b"ja" <= b"a’ —b'a’ divides zero in k[X]

(k[X] is mapped into B via f — f/1). Since f is integer over k[Y], f is algebraic over k(Y") and the kernel of

the extended evaluation k(Y")[t] ) Bisa principal ideal (pf) C k(Y')[t] spanned by the minimal polynomial
pr(t) =tm + at™ 1t + -t amoit + apm € K(Y)[t] for f over k(Y). By n°8.4.2, the the coefficients of 1y belong
to k[Y], i.e. uy € k[Y x A']. Thus, ker¢* = (py) and imvp = Spec,,, (K[Y x AY]/(uy)) = V(pg).

In other words, regular morphism (11-2) gives a finite surjection of X onto hypersurface V(us) CY x Al and
the initial morphism ¢ is obtained from (11-2) by projecting this hypersurface onto Y. Thus, for any y € Y the
set o1 (y) C X is surjectively mapped by f onto the set of all roots of the polynomial

p(yit) =t™ +ar () t™ "+ - 4 ap(y) € K[t]

obtained by evaluating the coefficients of uy at y € Y. In particular, Z(f) N ¢~'(y) is sent by f to non-zero

roots. We conclude that y € o(2(f) iff ps(y;t) € k[t] has a non zero root (i.e. py(y;t) # t"™). Since p € Z(f),

the polynomial p1f(p(p);t) should have some non zero intermediate coefficient a;(¢(p)) # 0, ¢ < m. This forces

i (y;t) to have a non zero root over each y € Y(a;) C Y. We conclude that ¢(Z2(f)) D Z(a;) > (p) as required.
What about irreducible components, consider the irreducible decomposition X = UX,. Then

U; = X\ LéX,, = Xz\ L?Jﬁ(XlﬂX,,)

is open in X and dense in X;. Since ¢(U;) is non empty open subset of Y, ¢(X;) = ¢(U;) =Y. U
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12.1. Localization. Let U C X be an open subset of an affine algebraic variety and u € U. A function
UL+ kis called regular at u, if there are p,q € k[X] such that ¢(u) # 0 and f(z) = p(z)/q(x)

Ve € 2(q) NU. All functions U K regular at any v € U form a commutative ring denoted by
Ox(U) or by I'(U, Ox). 1t is called a ring of local regular functions on U C X.

12.1.1. CLAIM. Let X be irreducible and h € k[X]. Then any f € Ox(Z(h)) can be written as
f(z) = r(x)/h%(z) for appropriate r € k[X], d € N. In particular, for h = 1, we get Ox(X) = k[X].
Proof. If f € Ox(2(h)), then Yue Z(h) there are p,,q, € k[X] such that ¢,(u) # 0 and f(z) = p.(z)/q.(z) for
all 2 € P(qu) N 2(h). So, Nyer V(qu) sits inside V(h) and, by Hilbert’s Nullstellensatz, some power h? belongs
to the ideal spanned by gy, i.e. there are some uy,uy, ..., U, € Z(h) such that h? = 3" q,, g, for appropriate
91,92, -, 9m € k[X]. At the same time, f(z)qy, () = pu,(z) for each v and any z € Z(h), including = €
2(h) NV (qy,). Indeed, let g, (w) = 0 for some w € 2(h). Rewriting f = pu,/qu, a8 Pw/qw With g, (w) # 0,
we get pu, (2) quw(z) = qu, (T) pw(zx) for all z € D(h - qu, - qw). By ex. 11.5, this holds for any 2 € X at all. In
particular, p,, (w) = qu, (W) pw(w)/qw(w) = 0. We conclude that fh =" fqu, g» = . pu, 9v € k[X]. O

12.1.2. COROLLARY. Any principal open set 9(f) = Spec,, k[X][f~!] is an affine algebraic variety,
the inclusion 9(f) — X is a regular map with the pull back homomorphism k[X] — k[X][f~!]. O

12.2. Structure sheaf. The correspondence 0y : U +—— Ox(U) is called a structure sheaf of an
affine algebraic manifold X. If U = |JW; is an union of open sets, then U ok is regular iff each its

restriction f |y, is regular on W;. Conversely, a collection of functions W; N k such that f; = f; on
W; N W; gives a unique regular function f € Ox (UW;) whose restriction onto W; is f; for all i.

Note that although n°12.1.2 says that open sets are locally affine, a generic open U C X is not
an affine algebraic variety and in general there is no natural 1-1 correspondence between the points of
Spec,, Ox(U) and the ones of U.

Exercise 12.1. Let U = A™ \ O be the complement to the origin. Show that Oy~ (U) = k[A"] for n > 2.
HINT. Use the covering U = |J Z(z;) and n°12.1.1.

12.3. Algebraic manifolds. Let X be a topological space. An open subset U C X is called an algebraic

affine chart on X, if there exists an affine algebraic variety X, and a homeomorphism X, U U. Two

algebraic charts X, —VL U and Xy 2+ W on X are called compatible, if their transition map
Owo = Pwopy |, which identifies ¢ 1 (U N W) € X, with ¢, (U N W) C Xy, is a regular isomorphism

of algebraic open sets, i.e. its pull back T’ (gp;vl(U NW), Oxy) fwy, (go;l(U NW), Ox,) is a well
defined isomorphism of k-algebras. A (finite) open covering X = |JU, by mutually compatible algebraic
charts is called a (finite) algebraic atlas on X. Two algebraic atlases are called equivalent, if their union
is an algebraic atlas too. A topological space X equipped with a class of equivalent (finite) algebraic
atlases is called an algebraic manifold (of finite type).

Exercise 12.2. Check that projective spaces and Grassmannians are algebraic manifolds of finite type as well
as any zero set of a collection of multihomogeneous polynomials on P,,, x P,,, x --- x P, .

12.3.1. Example: a direct product X x Y of algebraic manifolds X, Y is an algebraic manifold too. Its atlas
consists of all pairwise products U x W, where U C X, W C X are affine algebraic charts on X, Y.

12.3.2. Example: separability. The standard atlas on P; consists of two charts ¢; : A — U; C Py, i =0,1,
and @5 (Up NUL) = ¢, (Up NUy) = {t € A'| t # 0} is the complement to the origin. The charts Up; = Al
are glued together along A! \ {O} via transition map ¢o; : t — 1/t. If we replace it by the identity map
o1 : t — t, then we get an other manifold called «A' with doubled origins, which looks like : .
Such the pathology is known as a non-separability. It has appeared, because the latter gluing rule @g; is «on-
complete» and could be extended from A! \ {O} to a larger set. This can be formalized as follows. Two inclusions
Up ~— Uy N Uy —— U; give an embedding Uy N U; —— Uy x U;. In the case of Py, this is an inclusion
(A'\ O) —— A? given as x = t; y = 1/t; it identifies Uy N U, with a closed subset V(zy —1) C A2 = Uy x U;. In
the second case, the embedding Uy NU; —— Uy x U; = A2 is given as z = t; y = t and has a non-closed image




§ 12. Algebraic manifolds. 63

A\ {(0,0)}, where A = V(z —y) C A? is the diagonal. An algebraic manifold X is called separable, if an image
of the canonical embedding U N W —— U x W is closed for any two affine charts U, W C X. Since this image is
nothing more than the intersection of diagonal A C X x X with the affine chart U x W on X x X, a manifold X
is separable iff the diagonal A C X x X is closed. For example, A" and P,, are separable, because the diagonals
in A" x A" and in P, x P, are given, accordingly, by the equations z; = y; and z;y; = z;y;.

12.4. Regular functions and morphisms. Let U C X be an open set. A function U . k is
Pw

called regular, if each point v € U has an affine neighborhood X, —— W 3> wu such that fop €
Ox,, (cp_l(U N W)) In other words, a local function on X is regular, if it induces a local regular

functions on each affine chart. Regular functions U — k form a commutative ring & (U); a corre-
spondence U —— O (U) is called a structure sheaf on X. More generally, a map of algebraic manifolds

X —2+ Y is called a reqular morphism, if its pull back is well defined homomorphism of k-algebras:

Oy (U) LA Ox (o~ 'U) for any open U C Y. For example, a set of regular morphisms X —— A!
coincides with O (X).

12.5. Rational maps. A regular' morphism U £, Y, which is defined only on some open dense
U C X, is called a rational map from X to Y. One should be careful in composing rational maps,
because an image of the first map may be completely outside the domain where the second is defined.

12.5.1. Example: a projection A"t — "+ P sending a point A € A" to the line (OA) € P, is a rational
surjection defined on U = A™ \ O. In terms of the standard affine chart

An&Ui:{(to,tl,...,tn)EPn‘tizl},

*

the pull back homomorphism p, (U;) —— Opnsr (7 (U;)) sends

f(ml,x2,...,$n) S k[a:l,xz,...,a:n] = Op (Uz)

n

to the rational function

fltoste, ooy tn) = flto/tiy oo s tica [ty tiga[tiy oo s tn/ti) € Opnsai(D(t;)) = Opna (n(U7))

12.6. Closed submanifolds. Any closed subset Z C X of an algebraic manifold X has natural structure
of algebraic manifold. Namely, for any affine chart U the intersection Z NU is a closed subset of U, that
is an affine algebraic set Spec,, (Ox(U)/7,(U)), where .Z,(U) = {f € Ox(U)| f|, = 0} is the ideal
of ZNU on U. The correspondence U —— #,(U) is called the ideal sheaf of the closed submanifold
Z C X. This is a subsheaf of the structure sheaf. It consists of all local regular functions vanishing

along Z. A regular morphism of arbitrary algebraic manifolds X —%+ Y is called a closed embedding, if
¢(X) C Y is a closed submanifold and ¢ gives an isomorphism between X an ¢(X). One can say that
an algebraic manifold X is affine iff it admits a closed embedding into affine space. Similarly, a manifold
X is called projective, if it admits a closed embedding X —— P, for some m.

12.6.1. Example: closed submanifold X C Y is separable as soon Y is, because the diagonal in X x X is a
preimage of the diagonal in ¥ x Y under an embedding X x X —— Y x Y. In particular, any affine or projective
manifold is separable and has a finite type.

12.6.2. Example: graph of morphism. Let X —“+Y bea regular morphism. A preimage of the diagonal

A C Y x Y under an induced morphism X x Y oxldy, Y x Y is called a graph of ¢ and is denoted by I',.

Geometrically, T, = {(z, f(z)} C X xY. It is closed, if Y is separable. For example, a graph of a regular morphism
of affine manifolds Spec,, (A) —— Spec,, (B) is given in A® B by the equation system 1® f = ©*(f) ® 1, where
f runs through B and B —+ A s the pull back of ®.

12.6.3. Example: family of closed submanifolds. Any regular morphism X —" + Y may be considered as a

family of closed submanifolds X, = 7~ (y) C X parameterized by the points y € V. If X YV, X sy

las above, the regularity means that the pull back &y (W) L, Ox (¢~ 1(W)) is a well defined k-algebra homomorphism
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are two families with the same base, then a regular morphism X —2+ X' is called a morphism of families (or a
morphism over V), if it sends X, to X, for any y € Y, i.e. if 7 = n'op. A family X —"» Y is called constant or

triviel with a fiber F, if it is isomorphic over Y to the direct product F' x Y Ly

12.6.4. Example: blow up a point p € P,,. Lines passing through a given point p € P, form a projective
space £ ~ P,_1, which can be identified with any hyperplane H C P, such that p ¢ H. An incidence graph
By =4, q) € ExP,|qel}is called a blow up of p € P,,.

If n > 2, then the projection o, : %, — P,, is bijective outside ¢ = p, but a preimage a;l(p) C %, coincides
with E; this fiber is called an exceptional divisor.

The second projection g, : %, — E fibers %, as a line bundle over E. This line bundle is called a
tautological line bundle over E. Its fiber o over a point £ € E coincides with the line £ C P,, itself.

If we fix homogeneous coordinates (tg: ¢1: ... : t,) on P, such that p=(1:0: --- : 0) and identify E with
the hyperplane H = {(0: ¢ : -+ : ¢n)} C Py, then (q,t) € By, iff qit; = qjt; forall 1 <i < j <n,ie iff
1 0 --- 0
tk |0 ¢ - qn | =2.
to t1 - tn

Thus, %, is closed submanifold of H x PP,.

12.7. Closed morphisms. A regular morphism X —? .V is called closed, if p(Z) C Y is closed for
any closed Z C X. Of course, any closed embedding is closed. The theorem from n°11.9.1 says that any

finite morphism of affine manifolds is closed. By n®8.8.1, the projection P, x A —— A" is also closed.

12.7.1.PROPOSITION. If X is a projective manifold, then the projection X x Y —— Y is closed
for any manifold Y.

Proof. Taking an affine chart on Y, we can suppose that Y is affine, i.e. that X x Y is a closed submanifold of
P, x A™. Then our projection is the restriction of the closed map P,, x A —— A™ onto the closed subset
X xY CcP, x A" O

12.7.2. PROPOSITION. If X is projective and Y is separable, then any morphism X —2+ Y is closed.
Proof. Since Y is separable, the graph I'y) C X x Y is closed. Z x Y is also closed in X x Y for any closed Z C X.
But ¢(Z) is the image of I', N (Z x Y') under the projection X x Y — Y. O

12.7.3. COROLLARY. If X is a connected projective manifold, then Ox(X) = k. Moreover, each
regular map from X to any affine manifold contracts X into one point.

Proof. Let us identify & = A! with an affine chart on P; and consider a global regular function X L kasa regular
morphism X AN P;. Since f(X) & Py is closed and connected, it is one point. In particular, if X —Z . Anis
regular, then each coordinate form x; € k[A"] takes a constant value along ¢(X). O

12.8. Finite morphisms of manifolds. A regular morphism of arbitrary algebraic manifolds X .y
is called finite, if W = ¢~ '(U) is an affine chart on X for any affine chart U C Y and the restriction

W W, U is a finite morphism of affine algebraic varieties. It follows from n°11.9.1 that any finite
morphism is closed and a restriction of a finite morphism onto any closed submanifold Z C X is a finite
morphism as well. Moreover, if X is irreducible, then each proper closed Z C X goes to a proper closed
subset of Y.

12.8.1. Example: a projection of any projective manifold X ¢ P, from any point p ¢ X onto any hyperplane
H Z p is a finite morphism. To check this, let us fix the coordinates as in n°®12.6.4 and follow the notations
of that example. Consider a standard affine chart on H, say U,, = {¢ = (0 :uy : --+ t up—y1 : 1)} C H. Its
preimage Y = 7' (U,,) C X under the projection from p lies inside the cone over U, with the punctured vertex
p (because p € X). The blow up maping o, identifies this punctured cone with the affine space A" = U, x A! via
the substitution ¢t = ¥p+gqy, wheret = (tg: t1: ... : t,) is the homogeneous coordinate on P,,, p=(1:0: ... : 0),
qu=0:u1: - tup_1:1)€U,,. If X is given by a system of homogeneous equations f,(t) = 0, then Y is given
in affine coordinates (u,t) by equations

£0p+q0) = o (W) 0™ + o (W) 9 + - 4 o) =0. (12-1)
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So, Y is affine and it remains to check that k[Y] = k[u][9]/(f,(Ip + qu)) is a finitely generated k[u]-module. To
this aim it is enough to find an integer equation with ao(u) = 1 in the ideal spanned by equations (12-1). Then

already a factorization through this equation leads to a finitely generated k[u]-module.

Note that the leading coefficients a(()”) (u) have no common zeros in U, . Indeed, if all a((]'/) (u) vanish at u = uo,

then the homogeneous versions of (12-1)
(v) NN C) Y R ) ()9 =
g (u0) 95" + oy (uo) 95" + -+ + ag (o) Dy

(they are obtained by substitution ¢ = Yo p + ¥1 q,, and describe the intersection X N (pgqy,)) have the solution
(¥o : ¥1) = (1:0), which corresponds to the point p ¢ X.

Thus, the ideal spanned by the leading coefficients a(()y) (u) is non proper and contains the unity as required.

Exercise 12.3. Check that a composition of finite morphisms is finite and prove that any projective manifold
admits a finite surjective morphism onto a projective space.

12.8.2. COROLLARY. Each affine manifold X admits a finite surjective morphism ¢ onto appropriate
affine space A™.
Proof. Let X ¢ A", where A" is embedded in PP, as the standard chart Uy. We write H, for P, \ Uy and X C P,
for the projective closure of X. A projection of X from any point p € Hy, \ (Y N HOO) onto any hyperplane L # p
induces a finite morphism from X = X \ (X N Hy) to A"t = L\ (LN Hy). If it is non surjective, we repeat
this procedure. O

12.9. Dimension. For an arbitrary algebraic manifold X and an arbitrary point x € X, the maximal
n € N such that there exists a chain of irreducible closed subsets

{l’}:XogXlg-"an_ngnCX. (12—2)

is called a dimension of X at x and is denoted by dim, X.
Certainly, if X is irreducible, then X,, = X in the maximal chain (12-2). If X is reducible, then
dim, X coincides with the maximal dimension of irreducible components passing through =.

Exercise 12.4. Show that dim, X = dim, U for any affine chart U > p.
HinT. Let X1, X2 C X be two closed irreducible subsets and U C X be an open set such that both X; N U,
X NU are nonempty. Then X = Xo <= X; NU = X, NU, because X; = X; NU.

12.9.1.LEMMA. Let X —>—~ Y be a finite morphism of irreducible manifolds. Then dim; X <
dim,) Y for any x € X and the equality holds iff p(X) =Y.
Proof. By ex. 12.4, we can assume that both X, Y are affine. Then n®11.9.1 implies that each chain (12-2) in X
produces a chain --- ¢ ¢(X;) € ¢(Xit1) & --- of closed irreducible submanifolds in Y. Vice versa, if ¢(X) =Y,
then given a chain Yy C Y1 & -+ &G Y,-1 €Y, =Y, for each i we can choose an irreducible component X; of
¢~ 1(Y;) mapped surjectively onto Y;. This gives a chain (12-2) in X. g

12.9.2. PROPOSITION.  dim, A" =n at any p € A".

Proof. Clearly, dim A® = 0. Suppose inductively that dim A"~! = n — 1. Since any proper closed X C A" has a
finite projection on A”~!, the above lemma implies that dim, X < (n — 1) for any p. Thus, dim, A" < n. On the
other hand, there is a chain (12-2) consisting of affine subspaces passing through p. So, dim, A" > n. O

12.9.3. COROLLARY. Let X be an irreducible affine manifold and X —2~ A™ be a surjective finite
morphism. Then dim, X = m at each p € X. In particular, m doesn’t depend on a choice of ¢ and
dim, X is the same for all p € X. O

Exercise 12.5. Prove that dim(X x Y) = dim X + dimY for any irreducible manifolds X, Y.

Exercise 12.6. Let V(f) C A" be given by irreducible f € k[z;,x2,...,x,]. Show that dimV (f) =n — 1.
HINT. Find a surjective finite projection V(f) — A™™! (comp. with ex. 12.3 and n° 12.8.2).

12.9.4. LEMMA. If X is irreducible, then dim, V(f) = dim,(X) — 1 for any non constant f € Ox(X)
and any p € V(f).

Proof. We can assume that X is affine. Fix some finite surjection X —— A™ and consider the induced map

b=mxf: X —22m@ @) amooa
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as in the proof from n°11.10.1. It maps X finitely and surjectively onto affine hypersurface V(us) C A™ x Al
where
pp(u,t) =t + g (u) "+ o () € Klug, ug, - ..y u[t]

is the minimal polynomial for f over k(A™). Write H C A™ x A! for a hyperplane given by equation ¢t = 0.
Then V(f) =¢~' (H NV (us)). The intersection H NV (uy) is a hypersurface of H given in H = A™ by equation

ay,(u) = 0. Thus, there is a finite surjection V(f) A V(ay,) C A™. Now the proposition follows from ex. 12.6
and n° 12.9.1. O

12.9.5. COROLLARY. dim,, V(f) > dim,(X) —1 for any algebraic manifold X, an arbitrary f € k[X],
and any p € V(f). O

12.9.6. COROLLARY. For any two closed submanifolds X1, Xo C A" and any ¢ € X1 N Xs

dlmx(Xl N XQ) > dlmm(Xl) + dlmz(Xz) —n.

Proof. Write X3 SAT A" X, <#2, A" for the corresponding closed embeddings. Then X; N X5 is the preimage of

diagonal A C A™ x A™ under the map X; x X, c P1XP2 L An % AP Tt s given inside X; x X, by the pull backs
of n equations x; = y;, which define A inside A™ x A". It remains to apply n® 12.9.5. O

12.9.7. COROLLARY. If dim(X;) 4+ dim(X3) > n for some closed X1, X9 C Py, then X1 N X9 # &.
Proof. Let P, = P(V)). Consider affine cones® X|, X} C A"T! = A(V) formed by the lines passing through the

origin O € A"™! and belonging to X, X5 respectively. By the previous corollary, dimeo (X] N XY) > dimo (X;) +
1+ dimp(X3)+1—n—12>1. So, X{ N X/ is exhausted by O. U

12.9.8. THEOREM. Let X —2+ Y be a dominant morphism of irreducible manifolds. Then:
(1) dimy ¢ H(p(z)) > dim X — dimY for any = € X;
(1) there exists open dense U C Y such that dim¢~!(y) = dim X —dimY for all y € U.

Proof. In (1) we can replace Y by an affine neighborhood of ¢(z), i.e. assume that Y is affine. Appropriate finite
projection Y —= A™ reduces (1) to the case Y = A™ = Spec,, k[u, us,--.,un], ¢(x) = 0. Now ¢~1(0) is an
intersection of m hypersurfaces V(¢*(u;)) in X and the required inequality follows inductively from n° 12.9.5.

In (2) we can suppose that both X, Y are affine and ¢ is obtained by restricting the projection ¥ x A™ —o» Y
onto some closed submanifold X C Y x A™ (comp. with the decomposition (11-1) from ex. 11.6). Now we are
going to apply the arguments from n° 12.8.2 fiberwise over Y.

Namely, consider the closure X C Y x P,, and choose a hyperplane H C IP,, and a point p € P,,, \ H such
that the section Y x {p} C Y x P, is not contained in X. The fiberwise projection from p onto H is well defined
over an open subset U C Y complementary to ﬁ((Y X {p}) N Y), where 7 : Y x P,, — Y is the projection
along P, (this is a closed morphism). Replacing Y by any non empty principal open subset of U, we get a finite
morphism X —— Y x A™~!. After a number of such replacements we can suppose that ¢ is a finite surjection
X — Y x A" followed by the projection ¥ x A™ —s» Y. Now all fibers have dimension n = dim X —dimY". [

12.9.9. COROLLARY (CHEVALLEY’S SEMI-CONTINUITY THEOREM). For any morphism of alge-
braic manifolds X —2» Y and each k € Z a subset X}, def {z € X | dimg o~ (¢(z)) =k} is closed in X

Proof. We can suppose that X, Y are irreducible. If k£ < dim(X) — dim(Y"), then X} = X by the above theorem.
For k > dim(X) — dim(Y") we can replace Y by Y’ = Y \ U, where U is the same as in n°12.9.8, and X — by
X' = p~1(Y'). Clearly, X;, C X’ and we can repeat the arguments decreasing the dimensions of X, Y. O

Exercise 12.7. Show that isolated points in the fibers of a morphism X —2» Y fill an open subset in X.

12.9.10. COROLLARY. For any closed morphism X —%+ Y and each k € Z a subset

v ©{yeY|dmp(y) >k}

lthey have the same equations as X1, X» but these equations are considered now as affine rather than homogeneous
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is closed in Y. O

12.9.11. COROLLARY. Let X —>—+ Y be a closed morphism with irreducible fibers of the same
dimension. Then irreducibility of Y implies that X is irreducible as well.
Proof. Let X = X’ U X”. Since each fiber ¢ ~1(y) is irreducible, it completely belongs to one of X', X”. Applying
n°12.9.10 to the restriction X’ ety Y, we see that a set of all fibers completely contained in X’ is mapped
to some closed subset Z' C Y. Similarly, all fibers completely contained in X" are also mapped to some closed
Z" Y. So, Y =2"UZ" but both Z’, Z" should be proper as soon as X', X" were proper. [l



8§13. Working example: lines on surfaces.

13.1. Variety of lines on surfaces of given degree. We are going to analyze the set of lines lying
on a surface S C P3 of a given degree d.

Exercise 13.1. Carry out the complete analysis for d = 2.
To this aim consider the space Py = P(S?V*), of surfaces of degree d in P3 = P(V), and identify the set
of all lines in P(V') with the Pliicker quadric Qp C P5 = P(A?V). Let

I ¥ ((S,0)ePyxQp| LCS}CPyxQp

be the incidence graph.
13.1.1. CLAIM. I is closed submanifold of Py X @ p.

Proof. 2-dimensional subspace spanned by u,w € V coincides with the image of the contraction map V* — V|
which sends £ € V* to (&, u Aw ). So, the line £ = (uw) lies on a surface S given by F = 0iff F((£, uAw)) =0
identically in £ € V*. In coordinates, let e, form a basis of V, £, be the coordinates of £ w.r.t. the dual basis
of V¥, and u Aw = ) puvey Aey,, where p,, = —p,,, are the associated Pliicker coordinates on P5 D ). Then
wEV
<£, w A w> => & - (D>, pivey). Substitute this into F, expand the result through the monomials in &, and write
i
down that all coefficients of this expansion vanish — this gives a system of polynomial equations on the coefficients
of F' and p;; describing ' C Py x Qp C Py x Ps. O

13.1.2. CLAIM. Projection T’ 2, Qp is surjective; all its fibers are projective spaces of dimension
d(d+1)(d+5)/6 — 1.
Proof. Let a line £ C P(V') be given by o = #; = 0. Then S D £ iff S has an equation 0 = x5 - Fa(x) + 23 - F3(x),
where Fy, F3 € S%1V* are arbitrary homogeneous polynomials. These equations form a vector space W, which
coincides with the image of the linear operator ST~1V* @ SI-1y* (1.9)=w2l 4239 | gdyr« whose kernel consists of
all (f,g) such that x5 f = —x3g that is possible iff f = x3h and g = —z5h for some h € S?~2V*, Hence, the kernel
is isomorphic to S2V* and dim W = 2 dim(S%1V*) — dim(S¢1V*) = 1 <2d(d+ 1)(d+2) — (d—1)d(d+ 1)) -
d(d+1)(d+5)/6. O

13.1.3. COROLLARY. T is an irreducible projective manifold of dimension d(d + 1)(d + 5)/6 + 3.
Proof. This follows at once from n®12.9.11 and n°® 12.9.8. O

13.1.4. CLAIM. A generic' surface Sy C P3 of degree d > 4 does not contain lines.

Proof. By n°12.7.2, the image of the projection I' —» Py, that is the set of all surfaces containing some lines,
is closed irreducible submanifold of Py = P(S4V*). By n°®12.9.8, its dimension equals dim I' minus the minimal
dimension of non-empty fibres of 7;. We see that the image is proper as soon dimI' < N, i.e. when

d(d+1)(d+5)/6+3< (d+1)(d+2)(d+3)/6.
This holds for all d > 4. O

13.1.5. CLAIM. Each cubic surface S3 C P3 contains lines; generically, this is a finite set of lines.
Proof. Taking in the previous proof d = 3, we get dimI' = N = 19. Thus, to show that 7 is surjective, it is enough
to find a non-empty 0-dimensional fiber of 7, i.e. to present a cubic surface containing a finite set of lines.

Let us find all the lines, say, on a cubic C' with affine equation zyz = 1. This affine piece does not contain the
lines at all, because . = g + at, y =yo + 8t, 2z =29 + vt lies on C iff afy =0, afzy + Byxo + yaye = 0, and
ayozo + Brozo +vxoyo = 0, but zoyozg = 1, which leads to contradiction when we go from the left to the right: for
example, a =0 = f=0o0ry=0= =7 =0. To describe C at infinity, put z = x1/zo, y = z2/x0, 2 = z3/x0
and rewrite its equation as x1z273 = 3. Thus, C' N {zo = 0} consists of 3 lines: z; = x5 =0,i =1, 2, 3. ]

Exercise 13.2%. Find all lines on the (smooth) Fermat cubic C, given by 322 = 0.

lat least any one from some dense open subset in the space of all degree d surfaces
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HINT. Cpr is preserved by the permutations of the coordinates; up to permutations, a pair of linear equations
for £ C Cr can be reduced by the Gauss method to zo = azs + Sx3, x1 = yz2 + dx3; substitute this in
Fermat’s cubic equation, show that afvyd =0 e. t. c.

13.2.Lines on a smooth cubic. Now, let S C P35 be a smooth cubic surface with equation F(x) = 0.

13.2.1.LEMMA. A reducible plane section of S can split either into a line and a smooth conic or into
a triple of distinct lines.

Proof. We have to show that a plane section 7 NS can not contain a double line component. If there is a double
line £ C NS, we can take the coordinates where 7 is given by x5 = 0 and £ is given by x5 = 23 = 0. Then
F(z) = 22Q(x) + 23L(x) = 0 for some linear L and quadratic ). Let a be an intersection point of ¢ with the
quadric Q(z) = 0. Then z3(a) = z3(a) = Q(a) = 0 implies that all partial derivatives OF/0x; vanish at a, i.e. S
is singular at a. O

13.2.2. COROLLARY. A point of S can belong to at most 3 lines lying on S and these lines should
be coplanar.

Proof. Indeed, all lines passing through p € S and lying on S belong to S N7T},S. O

13.2.3.LEMMA. Given ¢ C S, there are precisely 5 distinct planes w1, mo,..., 75 containing £ and
intersecting S in a triple of lines; moreover, if m;; NS = (U {; UL}, then {; N {; = £; N E;- =N Z;- =0
Vi # j (in particular, S contains some skew lines) and any line on S skew to { must intersect for each i
precisely one of ¢;, (.
Proof. Fix a basis {eo, e1, €2, e3} for V such that £ = (ege;), given by equations xo = x3 = 0, lies on S. Then the
equation F(z) = 0, defining S, can be written in this basis as:

L00($2,$3) JJ(Z) + 2L01($2,$3) - Lol +L11($2,.’E3) JL’% +2 Q0($2,I3) ~xo+ 2 Q1(£E2,£E3) B A +R($2,$3) =0 (13—1)

where L;j,Q,, R € k[x2, 3] are homogeneous of degrees 1,2, 3 respectively. Let us parameterize a pencil of plains
passing through ¢ by the points ey = J2e2 + ¥3e3 € (ese3) and write (¢ : ¢ : t2) for homogeneous coordinates in
the plane my = (egerey) w.r.t. these basic points. An equation for the plane conic (my N.S) \ £ is obtained from
(13-1) by the substitution & = (tg : t; : Jat3 : ¥3t3) and canceling the common factor t3. The resulting conic has

the Gram matrix
Loo(¥) Loi(9) Qo(")
G=|Ln(¥) L) Q:i(9)
Qo) @Q1(¥) R()

whose determinant is homogeneous degree 5 polynomial in ¥ = (J5 : ¥3)
D(92,95) = Loo(¥) L11 () R(Y) + 2 Lo1 (9) Qo (9) Q1 (9) — L11(9)QF (V) — Loo (9) QT (Y) — Lo1 (9)*R(V) .

Thus, it has 5 roots counted with multiplicities. We have to show that all these roots are simple. Each root
corresponds to a splitting of the conic into a pair of lines ¢/, £”. There are two possibilities: the intersection point
¢ N ¢ lies either on £ or outside £.

In the first case, we can fix a basis in order to have ¢’ = (ege2) and £” = (eg (€1 + €2)). These lines are given
by equations z3 = 1 = 0 and z3 = (1 — x2) = 0. Such the splitting corresponds to the root ¥ = (1 : 0). Its
multiplicity equals the highest power of ¥3 dividing D(¢2,v3). Since £,¢',¢" C S, the equation (13-1) has a form
z122(21 — T2) + 23 - ¢(x) with some quadratic ¢(x). Thus, elements of G that may be not divisible by 5 are
exhausted by Li; = z2 (mod ¥3) and Q1 = —23/2 (mod 93). So, D(¥3,93) = —Loo@?% (mod 9%). This term is of
order 1 in #3 as soon x1 23 and 2225 do come in (13-1) with non zero coefficients. But the first is the only monomial
that gives non zero contribution into OF/0x; computed at e; € S and the second — in OF/0x4 at ey € S. Hence,
they do come.

In the second case we fix a basis in order to have ¢ = (eges), £ = (eres), which are given by equations
z3 = 21 = 0 and 23 = zo = 0. This splitting corresponds to the same root ¢ = (1 : 0). Now equation (13-1) turns
to zor122 + 73 - ¢(z) and non zero modulo Y3 entry of G is only Lo; = 22/2 (mod ¥3). Thus, D(J2,93) = —L3, R
(mod %), which is of the first order in ¢3 as soon z3z3 and zoz1z2 do really appear in (13-1). The second does,
because otherwise F is divisible by x3. The first is the only monomial that gives non zero contribution into OF'/0x3
computed at e; € S.

The rest assertions follow immediately from n° 13.2.2, n° 13.2.1 and remark that any line in P intersects any

plane. O
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13.2.4. LEMMA. Any four mutually skew lines on S do not lie simultaneously on a quadric and there
exist either one or two (but no more!) lines on S intersecting each of these four lines.

Proof. If four given lines on S lie on some quadric @, then @ is smooth and the lines belong to the same line
family' ruling this quadric. Each line from the second ruling family on () lies on S, because a line passing through
4 distinct points of S has to lie on S. Hence, @ C S and S is reducible. It remains to apply ex. 2.4. |

13.3. Configuration of 27 lines. Take 2 skew lines a, b C S and construct 5 pairs of lines ¢;, £
predicted by n°13.2.3 applied to ¢ = a. Let us write ¢; for those lines that do meet b and ¢, for
remaining lines, which do not. There are 5 more lines ¢/ coupled with ¢; by n°13.2.3 applied to £ = b.
Each ¢} meets b but neither a nor ¢; with j # i. Thus, £ intersects all £} with j # i.

Any line ¢ C S, different from 17 just constructed, is skew to a, b but meets either ¢; or ¢, for each
i. By n°13.2.4, all lines meeting > 4 of ¢;’s are exhausted by a, b. Let ¢ meet < 2 of £;’s. Then, up to
a permutation of indices, ¢ meets ¢, £,, ¢4 and, say, either £ or ¢5. In the both cases we already have
two distinct lines a, £¢ # c intersecting all these 4 lines. This contradicts to n° 13.2.4.

We conclude that ¢ intersects precisely 3 of 5 lines #;.

13.3.1.LEMMA. Remaining lines ¢ C S are in 1-1 correspondence with 15 triples
{i, 5, k} € {1,2,3,4,5}.

Proof. There is at most one line ¢ intersecting a given triple of ¢;’s — this is the second possible line besides a
meeting all these ¢;’s and the rest }’s (all 5 are mutually skew). On the other hand, by n°®13.2.3, for each i there
/

are precisely 10 lines on S intersecting ¢;: 4 of them are a, b, ¢}, ¢/ and other 6 have to intersect exactly 2 of the

rest four £;’s. So, we have 1-1 correspondence between these 6 lines and 6 = (3) choices of pairs of £’s. Il

Thus, we have proven

13.3.2. COROLLARY. EFEach smooth cubic surface S C P3 contains precisely 27 lines and their inci-
dence combinatorics is the same for all S. O

Exercise 13.3. Let & C Gy7 be a group of all permutations of the 27 lines preserving all the incidence relations

between them; find the order of &. (G- 3€+,6=0F81C = |@| MAMSNY)
Exercise 13.4%.  Consider the field of 4 elements F; < F, [w]/(w? + w + 1), where F» = Z/(2). The extension
F, C F, has a conjugation automorphism? z — z def 22, which lives F, fixed and permutes two roots of the

polynomial w? + w + 1. Show that unitary® 4 x 4 - matrices with entries in F, modulo the scalar matrices
form a (normal) subgroup of index 2 into the group & from ex. 13.3.
HINT. The unitary group preserves the Fermat cubic Cr (see ex. 13.2) whose equation over F4 turns to the
standard Hermitian form Y z;T;.

lcomp. with n°2.8.1-n°2.8.2
2quite similar to the complex conjugation in the extension R C C
3i. e. satisfying M - M* = E
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14.1. Categories. Let us evade an explicit formal definition of «a category»!. Informally, a category
€ consists of objects, which form a class? denoted by Ob %, and for each pair of objects X,Y € Ob¥
there is a set of morphisms Hom(X,Y) = Homy(X,Y'). These sets are distinct for distinct pairs X, Y.
It is convenient to think of the morphisms as the arrows X —— Y. All these data have to satisfy the
following properties:

e for any ordered triple of objects X, Y, Z € Ob ¥ there is a composition map

(b)) porp

Hom(Y, Z) x Hom(X,Y) Hom(X, 7) ,

which is associative: (xop)oth = xo(poth);
e for any X € Ob¥ there is a unique® identity morphism Idy € Hom(X, X) that satisfies
poldx = ¢, Idxop =9
for any morphisms X Z.v,Y YL X and any Y € Ob¥%.

Probably, the reader is familiar with some «big» categories like topological spaces and continuous maps
as the morphisms, or finitely generated k-algebras with unity and algebra homomorphisms preserving
unity, or affine algebraic varieties with regular maps, e. t. c.

Of course, there are much simpler examples of categories. Say, each partially ordered set can be
considered as a category in which Hom(X,Y") consist of one arrow, if X <Y, and is empty, if X and
Y are non comparable. Further, any monoid M (i.e. a semigroup with unity) can be considered as a
category with just one object X and Hom(X, X) = M.

Two objects X,Y € Ob% of an arbitrary category are called isomorphic, if there are two arrows

X % Y (called inverse isomorphisms) such that potp = Idy, o = Idy.

Given a category %, one can always construct an opposite category €°PP with the same objects

Ob @°PP = Ob % but inverted arrows Homeopp (X,Y) def Homy (Y, X). The duality ¢ < €¢°PP is called

reversing of arrows.

We have seen that the category of finitely generated k-algebras looks like an opposite category for
the category of affine algebraic varieties over the same field k. To make this statement more precise we
need a tool «for comparing» the categories.

14.2. Functors are <homomorphisms of categoriess». More precisely, a covariant functor € — 2 is a

map Ob¥% X FX), Ob 2 together with a collection of maps

F(yp)

Homy (X,Y) 2= Homgy(F(X), F(Y))

defined for each pair X,Y € Ob% and preserving the compositions, i. e. satisfying
F(pop) = F(p)oF(¢)

as soon ot is defined. Note that this forces F(Idyx) = Idp(x).

ike in the calculus, where «the sets» are usually successfully employed without proper logical background

2explicit logical formalization of this notion requires quite deep settling down into logical casuistry laying fahr enough
from our current subject; we would like to consider «the category of all sets», whose objects do not form a set, certainly;
but they can be described by means of appropriate «second order langauge», which exists, and that is all we need here

3uniqueness can be formally deduced from the defining relations, because two identity morphisms Id, Id% satisfy
Idx = Idxold% = Id%
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Dually, a contravariant functor € —— & is a covariant functor €°P? —— 2. In other words, a
covariant functor is an «antihomomorphism of categories», that is takes

Homy (X, Y) “=2%0 Hom, (F(Y), F(X))

for each pair X,Y € Ob % and satisfies F(potp) = F(10)oF ().

For example, the dualization, which takes each vector space V over k to its dual V* and each linear
map V —? + W to the dual map W* AN V*, is a contravariant functor from the category of vector
spaces and linear maps to itself. The double dualization gives then an example of a covariant functor.

For any € we always have the identity functor € e, %, which acts identically on the objects and
the arrows.

An other trivial series of examples is given by forgetful functors. They act from categories of sets
equipped with an extra structure! to the category .Zet of ordinary sets. Such a functor also acts
identically on objects and arrows — it just forgets the extra structure.

Less trivial is

14.2.1. Example: Hom-functors. Each X € Ob % produces two functors from % to category of sets.
A covariant functor hX : ¥ —— Fet takes an object Y to h¥ (V) def Hom(X,Y) and an arrow ¥; —— Y5 to
the composition map h¥ (@) : A¥X (V1) = Hom(X,V;) —2""Y » Hom(X,Ys) = h¥(V3).
A contravariant functor hx : € — .Zet takes an object Y to hx (V) ef Hom(Y, X) and an arrow Y; —— Y;
to the composition map hx(p) : hx(Y2) = Hom(Ys, X) _Yrvow Hom(Y;,X) = hx(Y7).
Exercise 14.1. Show that in the category .#Zod(K), of modules over commutative ring K with K-linear mor-

phisms, the functor h¥ takes any exact triple of modules 0 A B C 0 to an exact
triple

0 — Hom(X,A) — Hom(X, B) — Hom(X, C)
whose rightmost arrow is non surjective in general. Formulate and prove the similar property of the con-
travariant functor hx.
14.3. Natural transformations. Given two (covariant) functors F,G : ¢ —— &, a morphism of
functors® F L. G is a collection of arrows F(X) Ix, G(X) € Homy(F(X),G(X)) (parameterized by

X € Ob %) such that for any morphism X —?+Y in ¥ we have the following commutative square? of
morphisms in Z:

FX) L9, peyy
fxl lfy (14-1)
aw) L ar)

For example, the canonical embedding V <™V V** of a vector space into double dual* is a natural
transformation from the identical functor on the category of vector spaces to the functor of double
dualization.

Of course, the identity maps give an identity transformation from any functor to itself. Clearly, two
natural transformations can be composed. Thus, we get

. . F
14.3.1.CLAIM. For any two categories €, 2 all covariant functors € —— & form a category
Fun(€,2) whose morphisms are natural transformations of functors. 0

it may be geometric, like a topology, a differentiable manifold structure e. t. c. , or algebraic, like a structure of group,
ring, e. t. c¢. ; the morphisms in such a category are the set theoretical maps preserving this extra structure

2also called a natural transformation of functors

3a diagram of morphisms in a category is called commutative, if the compositions of arrows taken along different passes
joining the same pair of vertexes always coincide

“sending a vector v € V' to the corresponding evaluation functional V* 2k
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. . F . . . .
14.4. Equivalence of categories. A functor ¥ —— & is called an equivalence of categories, if there

is a functor 2 G, € (called quasi-inverse to F') such that the composition GF is isomorphic to Idg
in category Fun(%,%) and the composition F'G is isomorphic to Idy in category Fun(Z2, 7).

Note that our requirement «be isomorphic» to the identical functor is much weaker than another
possible request «coincide with» the identical functor.

For example, consider the category k", which has only one object — n-dimensional coordinate vector
space over k. The arrows in this category are linear maps k™ —— k™. There is a natural functor

k™ —— Yéct, (k), which embeds k" to the category of all n-dimensional vector space over k. This is
. . .. G
an equivalence of categories. To construct (some) quasi-inverse to F' functor Yct, (k) —— k", we fix

for each V some isomorphism fy : V —— k", and send an arrow V —-—~ W from Homy,, 10y (V, W)
to the arrow fyropofi, L. k" —— k™. In other words, we fix some basis in each vector space and present
each linear map by its matrix in these bases. Then GF coincides with the identity functor on k™. The
opposite composition FG : ¥#ct, (k) — Yéct, (k) is not the identity functor, because the image of FG
contains just one object k™ € Ob ¥ct, (k). But FG is isomorphic to the identity functor via the natural
v k™.

This example has a straightforward generalization. Let 4 _r 2 be a (covariant) functor. Tt is
called full, if all maps

transformation provided by isomorphisms V'

Homg (X,Y) —2= ), Homg(F(X), F(Y)) (14-2)
are surjective. If all maps (14-2) are injective, F' is called faithful.
14.4.1.CLAIM. A functor € LN 2 is an equivalence of categories iff it is full faithful and each
Y € Ob Z is isomorphic to F(X) for some X € Ob 2 (depending on'Y ).
Proof. For any Y € Ob 2 fix some isomorphism iy : ¥ —— F(X), which exists by our assertion, and put

G(Y) = X. For any arrow Y; —— Y, define G(¢) : G(Y;) — G(Y3) as an arrow that corresponds to the arrow
iy,opoly, @ F(G(Y1)) — F(G(Y2))

under the isomorphisms (14-2): Home (G(Y),G(Yz)) — Homg(FG(Y:), FG(Y3)) provided by F. Remaining
verifications are collected in the exercise below. O

Exercise 14.2. Check that 7 — v ¢ a) is a functor; b) is quasi-inverse to F.

14.5. Representable functors. A contravariant functor ¢°PP , Set is called representable, if there
exist an object X € Ob ¥ such that in the category .Fun(¢°PP,.Zet) the functor

hx : Y —— Hom(Y, X)

(from n°14.2.1) is isomorphic to F. In this case X is called the representing object for F. Dually, a

covariant functor ¥ —— Let is called corepresentable, if in the category Fun(€, Yet) it is isomorphic
to the functor
h* .Y — Hom(X,Y)
for some X € Ob ¥, which is called the corepresenting object of F.
It is easy to see that the mapping g : A — h 4 gives a covariant functor ¢ : € — Fun(€°PP, Yet) ,

which sends an arrow A —— B in € to the natural transformation

o(a)
(hA - hB) € Homﬂ\un(‘f‘)??,&/’et)(Q(A)7 Q(B))
whose action over X € Ob% is o(p)x : ha(X) = Hom(X, A) vy Hom(X,B) = hp(X).
Exercise 14.3. Check that o(p) is a natural transformation (i.e. verify that the corresponding diagrams (14-1)
are commutative), and show that g(¢10p2) = 0(p1)00(p2)-
Thus, there is a bifunctor €°PP x Fun(€°PP, Set) — Set that takes a pair (A, F') to the set

Hom zyp gorv, set) (ha, F)
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of all natural transformations from hy to F. At the same time, there is the tautological evaluation
bifunctor ev : €°PP x Fun(€°PP, Set) — et , which takes (A4, F) to F(A). These two bifunctors are
isomorphic.

14.5.1. CLAIM (YONEDA LEMMA). For any category € there is an isomorphism

HOm gy gorp, ver) (ha, F) —— F(A) (14-3)

functorial in A € €, F € Fun(¢°PP, Yet). It takes a natural transformation f : ha F to an
element fa(Ids) € F(A), where Idy € Homy (A, A) = ha(A) is the identity and ha(A) A, F(A) is an
action of the natural transformation f over the object A. The inverse map takes an element a € F'(A)
to a natural transformation

{Hom(X, A) Ix, (X)}XEOW

F(p)

that sends an arrow X —— A to a value of the map F(A) F(X) at the element a.
Proof. It is a kind of tautology. For any X € Ob % and any arrow X —2+ A we have commutative diagram (14-1)

ha(A) = Hom(A, 4) — "2

fa lfx (14—4)

F(p)

Hom(X, A) = h(X)

F(X) .

The upper map sends Idg to ¢. So, fx(¢) = F(¢)(fa(Ida)). This means that each natural transformation

ha L Fis completely recovered as soon the element a = f4(Idy) € F(A) is given, and any element a € F(A)
leads to the natural transformation f defined by prescription that the diagrams (14-4) are commutative for all
X € Ob%. Bifunctoriality of the diagram (14-4) in A, F is evident. i

14.5.2. COROLLARY. Functor ¢ —2~ Fun(€°PP, Set) : A — h is full and faithful'.

Proof. Required bifunctorial identification Hom gzyp(4orr, set)(ha, hp) = Home (A, B) follows from the Yoneda
lemma applied to the functor F' = hp. O

Thus, representable functors form a full subcategory of Fun(€°PP, Yet). and this subcategory is
equivalent to the initial subcategory ¢. In particular, a representing object (if exists) is unique up to
canonical isomorphism. More precisely, given two isomorphisms

hy, <L F Ly,

in the category Fun(€°PP, Zet), then there exists a unique isomorphism X3 — 7+ X, in the original
category ¢ such that for any ¥ € Ob % the action of natural transformation faf; Uover v

(f2ff1)Y : th (Y) - th(Y)
Yooy

Hom(Y, X3).

Exercise 14.4. State and prove the dual version of the Yoneda lemma, which serves covariant functors h*
i Fun(¥,7), which sends an object A €
Ob¢ to the covariant functor °(4) = h* and sends an arrow A —2~ B to the natural transformation

pB @) h4, whose action over X € Ob¥ is

coincides with the composition map Hom(Y, X;)

and construct full faithful contravariant embedding %°PP

0°(¢)x : hB(X) = Hom(B,Y) ——¥% ,

Hom(X,,Y) = r%1(Y).

HinT. Just reverse all the arrows in the previous constructions.

14.6. Defining objects by «universal properties». The functoriality of the representing objects
allows to transfer many set-theoretical constructions? to an arbitrary category %. Namely, one can

lrecall that this means coincidence Hom gy, (worp  7et)(ha, hp) = Home (A, B)
Zsuch as a direct product of sets e. t. c.
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define a result of some set theoretical operation with objects X; in % as an object X such that for
any Y a set Hom(Y, X) coincides with the result of the original set theoretical operation applied to sets
Hom(Y, X;). In other words, X should represent a functor that takes Y to the result of the set-theoretical
operation with Hom(Y, X;)’s. Of course, this definition is implicit and does not guarantee the existence
of X, because the functor in question could be not representable. But if a representing object exists, then
it automatically carries some «universal properties» and is unique up to unique isomorphism preserving
these properties.

14.6.1. Example: a product A x B, of A, B € Ob ¥, is an object representing a functor
Y — Hom(Y, A) x Hom(Y, B)

from €°PP to Yet (as soon it is representable). In more details, for any Y we should have an isomorphism

By : Hom(Y, A x B) — Hom(Y, A) x Hom(Y, B) functorial w.r.t. arrows Y; — Y. Following the proof from
n®14.5.2, we can put here Y = A x B and write

Baxp(Idaxp) € Hom(A x B, A) x Hom(A x B, B)

as (ma,mp) for appropriate arrows A JL AxB -2 B.

Exercise 14.5. Show that the triple A <~ A x B —2» B satisfies the following universal property: for any two
v #*Y . Ax B such that ¢ = m40(p X ¥)

morphisms A <2 Y —+ B there exists a unique morphism Y
and ¢ = 7TBo((p X ’(Z))

Exercise 14.6. Show that for any other triple A S0 5 B satisfying the above universal property there
exists a unique isomorphism v : C' —— A x B such that 740y = m'y and mpoy = 7.
14.6.2. Example: a coproduct A ® B in an arbitrary category % is an object corepresenting a functor

Y — Hom(A4,Y) x Hom(B,Y)

from & to Set. Reversing arrows in the previous example, we can characterize it by the following universal
property: there are two morphisms A 4, A® B <%~ B such that for any two arrows A .y Bin €

there exists a unique morphism A ® B #2% V such that p=(p@)ois and Y = (p @ Y)oip.

Exercise 14.7. Show that such a triple A ) ® B S5 B (if exists) is unique up unique isomorphism
commuting with ¢-arrows.

Exercise 14.8. Show that if one of two coproducts A ® (B ® C), (A ® B) ® C exists, then the other one exists
as well and is isomorphic to the first. Prove a similar statement for the products.
14.7. Limits. Two examples above are just very particular cases of much more general construction. Fix
. X . . . .
some category .4 (called a category of indexes. A functor .#° —— % is nothing but a family of objects

X, € Ob¥ indexed by v € Ob.# and morphisms X, — X,, indexed by the arrows i — j of
N

For example, if .4 is a partially ordered set satisfying the extra condition Vi, 5 Ik : k > i, k > j,

X . . . .
then a functor 4 —— € is called a direct spectrum or a direct system of morphisms in €. Dually, a
X . . . .
functor A opp —— ¥ is called in an inverse spectrum or a inverse system of morphisms in €.
X—X
Fun(N,€), which attaches to each object X € Ob% a

constant family X (whose X, = X, ¢,, = Idy) and takes each arrow X YL ¥V to the corresponding

Further, there is a functor €

morphism of constant families X Ly
Given an arbitrary family {X,,¢,,} : &/ —— €, then an object lim X, € ¢ representing a con-

travariant functor ¥ —— Hom zy,(.s «) (V,X) from € to .Zet is called a projective limit of the given
family. By the definition, there is a functorial in ¥ isomorphism

Homg (Y, lim X)) = Hom gy, (s ) Y,X).
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Applying it to Y = lim X, we get a natural transformation lim X, S x corresponding to

Idym X, € Home (lim X, lim X,/) .

This transformation is a family of morphisms lim X, LN X, such that 7, = ¢,,m, for all arrows ¢,
in the family {X, }. Tt satisfies the following uni;ersal property: for any object Y € Ob % equipped with
a family of arrows! YV SN X, such that v, = ¢,,1, there exists a unique morphism Y s limX,
such that 1, = mea V. B
Exercise 14.9. Show that projective limit is uniquely characterized by this universal property (up to unique
isomorphism commuting with 7,’s).

Dually, an inductive limit lim X,, corepresents a covariant functor ¥ +—— Hom gy, s 4)(X,Y) .

Exercise 14.10. Show that inductive limit lim X, is equipped with canonical maps X, "+ lim X, and satisfies

the following universal property: given an object Y € Ob % with a family of arrows X, %, ¥V such that
Yy = Y. (which give a natural transformation X s ¥ in Fun(N,€)), then there exists a unique

morphism lim X, — %+ Y such that 1, = aom, VY.

Exercise 14.11. Let .4 be an arbitrary partially ordered set (considered as a category). Show that any family
of ¥ -indexed sets A4 —~ Fet has lim X.

HINT. A right queue of X is a sequence of elements z, € X, indexed by some S C Ob .4 such that all u > v
belong to S as soon as v € S and ¢u(ru) = , Vu,v € S. Two right queues {z.}, {ys} are called
equivalent, if V 2o, yg 37 > a, 8 1 @ary(Ta) = ps+(ys). Check that a set of all equivalence classes of right
queues satisfies the universal properties defining liLn X.

Exercise 14.12. Let .# = N be the set of all positive integers with the standard order. Find lim A,, and lim A,,

of abelian groups A,, = Z/p"Z w.r.t. an inverse system of canonical factorizations n,, : Z/p"Z — Z[p™Z

(Vm < n) and w.r.t. a direct system of standard inclusions @, : Z/p™Z S LA R Z/p"Z (again

V'm < n).
HINT. lim A, = Z, is the set of all p-adic integers and lim A,, C Q/Z consists of (mod Z)-classes of fractions

z/pz whose denominator is a power of p (so called p-rational numbers).

Exercise 14.13. Let .# = N as above but with the partial ordering prescribed by the divisibility. Find lim A4,

and lim A,, of A, = Z/nZ w.r.t. an inverse system of factorizations ¢y, : Z/nZ — Z/mZ (¥ m|n) and

w.T.t. a direct system of inclusions @, : Z/mZ c tln/ml | Z/nZ (again ¥V'm|n).

HiNT. lim A, = Q/Z and lim A,, = [[Z, is the product of all rings of p-adic integer numbers.
= — .

14.7.1. Example: fibered products (also called Cartesian squares, or coamalgams) are defined in an arbitrary
category € as projective limits w.r.t. the category of indexes 4" = {¢ —— o« ~—— o} (3 objects and 2 non-

identical arrows). Any functor ./ —— ¥ is a diagram X B Yin®. Its projective limit is denoted

by X xY and called a fibered product of X, Y over B. It comes with the following commutative square (called a
B

Cartesian square)

XxY
B

X
X (14-5)
<
B

\Y
e

lthat is for any natural transformation ¥’ % X in Fun(N,E)
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which is universal in the following sense: for any other commutative square
/ K

B

X Y

there exists a unique morphism Z S X XY @ = o x '), P = 1ho(¢’ x ¢'). Upper part of diagram
B
(14-5) is uniquely (up to unique isomorphism commuting with ¢, ¥) defined by this universality.

14.7.2. Example: amalgams (also called co-Cartesian squares, or coproducts) are inductive limits w.r.t. the index
category A opp = {e «~— ¢ —— o}. Their expanded definition is obtained from the previous one by reversing

: 3 n . . . .
the arrows: an amalgam of a diagram X <—— B —— Y is an universal (co-Cartesian) commutative square

XY
B

VA
s
B

X \Y
A
N
S A

there exists a unique morphism X ® Y’ L8 7 satisfying ¢’ = (¢’ @ ¥ )op, ¥ = (¢’ @ P')ot).
B

such that for any other commutative square

14.8. Additive categories. Categories appearing in commutative algebra and geometry typically have
extra structures on their morphisms Hom(X,Y): usually we can add morphisms, form their kernels,
images e. t. c. A category % is called additive, if it satisfies the following properties:

e bifunctor X,Y —— Hom(X,Y) takes its values in the category of abelian groups /b instead of
Fet, i.e. Hom(X,Y') is an abelian group V X, Y € Ob % and the composition

_ (o¥)mpoy |

Hom(Y, Z) x Hom(X,Y) Hom(X, Z) ,

is bilinear (or distributive): (@1 + p2)o(th1 + 12) = frothr + froths + foothy + footha;
e there is a zero object 0 € Ob % such that Hom(0,0) = 0 is the zero group;
Exercise 14.14. Deduce from the previous property that Hom(X,0) = Hom(0,X) =0V X € Ob% and 0

is defined by this property up to unique isomorphism (namely, the zero morphism 0 . 0").

e for any pair of objects A, B there exist a diagram!:

A+ A B~ B (14-6)
TA T™B

lits middle term A @ B is called a direct sum of A, B and all the diagram is called a splitted ezact triple
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such that mpoig =0, wa0ip =0, mga0i 4 = Id4, wpoip = Idp and i goms + igomrp = Id agB.

Exercise 14.15. Show that A @ B is defined by this property up to unique isomorphism commuting with
©’s and 7’s.

One can emulate all natural constructions known for abelian groups in a context of an arbitrary additive

category ©. For example, define a kernel of an arrow A —?. Bin¥% as an object representing a functor

C +— ker (Hom(C, A) — ., Hom(C, B))

from € to o/b. If exists, the representing object ker(yp) comes with canonical map' ker(p) —— A
satisfying @os = 0 and the following universality: for any arrow C —7 + A such that oy = 0 there
exists a unique morphism C' v, ker(y) such that s0t) = «. This property fixes the kernel up to unique
isomorphism commuting with s. Reversing arrows, we define a cokernel of A —%+ B as a universal
morphism B —+ coker () such that yop = 0 and for any arrow B —— C such that yop = 0 there

exists a unique morphism coker () N C such that oy = 7. Again, coker (¢) is uniquely defined by
this property (up to unique isomorphism commuting with ).

Exercise 14.16. Show that in the direct sum diagram (14-6) the arrow A 4, A®B gives the kernel of the

arrow A® B —2» B and the arrow B —2» A® B gives the kernel of the arrow A & B —» A.
From the main theorem about homomorphisms of groups we expect two ways in which an image of arrow

A —%+ B could be defined. Namely, im ¢ should be isomorphic to both: the kernel of B —*+ coker (i)
and the cokernel of ker(y) —— A.

Exercise 14.17. Let € be an arbitrary additive category and A —%+ Bbe any arrow in % such that both ker ¢
and coker ¢ exist. Show that there is a canonical arrow coker (ker(go) = A) — ker (B X4 coker (90)) .

14.9. Abelian categories. An additive category % is called abelian, if it satisfies

e cach arrow A —~~ B has kernel ker(¢), cokernel coker () and is decomposed as

im ()
7N

where im ¢ ~ coker (ker(gp) SN A) ~ ker (B —X+ coker (gp))

A B

A morphism ¢ in abelian category is called surjective (or an epimorphism), if coker p = 0. If ker p = 0,
then ¢ is called injective (or an monomorphism).
Exercise 14.18. Show that in abelian category:

a) ker(p) —— A is injective and B —— coker (¢) is surjective for any arrow A —— B;
b) ¢ is an isomorphism iff it is simultaneously surjective and injective.

Exercise 14.19. Check that in any additive category all squares

A@B%B

B

Lthat is the image of Idier, under the canonical identification

Hom/(ker p, ker ) ~ ker (Hom(ker @, A) —2 , Hom(ker ¢, B))
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(coming from (14-6)) are simultaneously Cartesian and co-Cartesian.

14.9.1. CLAIM. In any abelian category there exist all fibered products and amalgams.

Proof. To complete an arbitrary triple X LN B < Y to Cartesian square, write K —~+ X @Y for the kernel
of morphism § = €orx — oy : X @Y —— B. Then a square

SN,
N

where ¢ = 71')(0% Q,Z) = myox is commutative (because £p — ) = d» = 0) and universal (because for any other
triple X <2— Z Y+ ¥V such that &p' = my’ only the canonical map' ¢ = ¢ @' : Z —— X @Y satisfies
mx( =, my( = ¢’ and can be lifted to an arrow Z <, K, since of 6¢ = &p' — ' = 0). O

Exercise 14.20. Show that a diagram X <L By is completed to co-Cartesian square by a cokernel
Xay - Q of a morphism § =ixo —iyon : B— X ®Y.
Exercise 14.21. Show that for any fibered product (14-5) in abelian category:
a) & is surjective = 1 is surjective;

b) K —Z+ X xY is the kernel of p = K Y is the kernel of 7.
B

Lpredicted by ex. 14.19
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§15. Vector bundles.

15.1. Fibered products. Given two families Y} Lx , Yo ~ZL X of algebraic manifolds over X
(comp. with n°12.6.3), then their fibered product over X is

def
Yy §Y2 = {(y1,42) €Y1 x Yo | p1(y1) = p2(y2)} .

In fact, this product comes with a natural structure of a geometric scheme. Namely, if X = Spec,, K Y, =

Spec,, 4;, where K, Ay, A, are (finitely generated reduced) k-algebras, then the pull-backs K —— A;
equip A; with K-algebra structure and Y7 x Y5 = Spec,,, 41 ®A2, where A ®A2 is the tensor product
X

of K-algebras A; over K, that is the quotient algebra of 41 ® A2 by an ideal spanned by all differences
(xa1) ® ag — a1 ® (sag), where » € K, a; € A;.
Exercise 15.1. Write A; ey Ay ® As for two K-algebra homomorphisms sending a; € A; and as € A3 toa; ®1
K

and 1®ay respectively. Show that for any K-algebra B and any two homomorphisms of K-algebras A; 2, B
there exists a unique homomorphism of K-algebras 4; ® A, 999 B such that 97 = (97 ® g3)oa for both
K
i = 1,2. Show also that this universality determinate the triple (af, a3, A1 ® As) uniquely up to unique
K

isomorphism commuting with a’s
HiNT. This is completely similar to ex. 11.3.

So, Y7 x Yy C Y7 xY5 is a closed submanifold equipped with two projections Y7 x Yo %, Y; and satisfying
X X

the following universal property': for any family Z BN X and any two morphisms of X-families Z g,

there exists a unique morphism of X-families Z 91792

Y1 x Y such that g; = ajo(g1 X g2), i = 1,2.
X
It is very important that k-algebra A; ® Ay can be non reduced even if all three algebras in ques-
K
tion are reduced (see n°15.1.2 below). In this case Y7 x Y5 is always considered as geometric scheme
X

canonically equipped with the structure algebra k[Y;] ® k[Ys].
k[X]

15.1.1. Example: base change. Any family Y —"+ X can be lifted along any morphism? X’ 1+ X to the

family ¥ x X’ I x fitting into commutative diagram
X

YxX —Y
X

f*(?f)l
X’ 416, X

™

This procedure is called a basis change. Algebraically, it is known as extension of scalars. For example, given
R-algebra (or just a vector space) V, then its complexification is nothing but C® V.
R

15.1.2. Example: scheme restrictions and scheme preimages. Given a closed embedding Z <%, X and an
arbitrary family (i.e. a regular map) Y N X, then the basis change Y x Z e, 7, of f along ¢, is called
X

a scheme restriction of the family Y onto the closed submanifold Z and the basis change Z x Y SN Y, of
X

f along ¢, is called a scheme preimage of the closed submanifold Z C X under the morphism Y Jox wx

is affine and Z is given by an ideal I C k[X], then geometrically Z X Yy <7 | v s a closed embedding of

Inote that it is stronger than the set theoretical definition of Y7 x Y3 given before and obtained by the specialization of
X

the universality in question to Z = 77 *(z) x my *(x) for z € X
?mathematically, «family» and «norphism» mean the same; we use different words just to outline the different roles of
these maps but it is extremely important that these roles are completely symmetric
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Spec, (k[X]/I) ({59] k[Y]) into Y, which identifies f~*(Z) with the zero set of ideal (f*)" (I). But in general
kX red
the structure algebra k[X]/T) ({59] k[Y] is non reduced.
K[ X
For example, consider a scheme preimage of cuspidal cubic Z C A, given by equation y?> = 2°® along the map

s 2
Aq i A, whose image is the parabola y = 22. It consists of two points t = 0 and ¢ = 1 but is equipped

with non reduced structure algebra® k[t] [® ](Jk[x, y]/(y? —2®)) = Kk[t]/(t* —*) , which keeps the local intersection
k

)

multiplicities.

15.2. Algebraic vector bundle over an algebraic manifold X is an algebraic family of vector spaces

over X, i.e. a regular map of algebraic manifolds E —— X whose fiber 7~ 1(2) over any z € X has a

structure of a vector space over k and this structure algebraically depends on z in a sense that fiberwise
operations®:

2—[0]z

E

e pick up the zero: X

e add vectors: Ex E ([Wla:le)—utole | E

X

(Nes[vle)=[wle E

e multiply vectors by constants (X x Al) x E
X

are the regular morphisms of algebraic manifolds and commute with the projections onto X.

Two vector bundles B} —— X , oy ~. X are called isomorphic, if there is an isomorphism of

—1
algebraic varieties By —— F» such that myop = m and Yz €X the restriction ' (x) M ()
is linear isomorphism of vector spaces.
A vector bundle is called trivial of rank d, if it is isomorphic to the direct product X x Ay with the
standard vector space structure on Ay = k%4, which does not depend on z € X.

A regular map X —— E is called a section, if mos = Idx, i.e. s(z) € 7(z) Vz. Each vector bundle
has canonical zero section, which takes the zero at each fiber. A vector bundle FE —"+ X is trivial of

rank d iff there are d regular sections X —» E such that {s1(z), ..., sq(2)} form a basis of 7~ *(x)
Va € X . Indeed, the fiberwise coordinate functions on F w.r.t. these basic vectors give the required

isomorphism E —— X x Ay.

15.3. Locally trivial vector bundle of rank d is a vector bundle F —"+ X such that any z € X hasan
open neighborhood U such that the restricted bundle 771 (U) —— U is trivial of rank d, i. e. has d basic

sections (s{”),s5"”,...,5)) 1 U —— a~Y(U). If there are two such trivializations (s{"’,s5"”,...,s}")
and (s(lv), sév), ceey sfiv)) defined, respectively, over some open U, V', then over each x € U NV these two
basises are expressed through each other as?
U U U \4 \4 14
(5(1 ),5(2 ),...,sfi )) = (s(1 ),5(2 )""75((1 ))'QOVU ,

where ¢y = @y (x) is a non degenerate d x d - matrix whose entries are regular functions on UNV. So,

we get the regular maps UNV SALA GL4(k) called transition functions between two given trivializations.

They clearly satisfy the conditions

Puv = (P;le y  PvuPuw = Pvw (15'1)

(the latter hold over any triple intersection U NV N W). If we change local basis over each open set U
by some other
7,857,850 = (1,887, s by

Inote that both z and y act on k[t] as ¢t and t* respectively
*we write [v], for elements in the fiber 77" (x) over x € X
%i.e. i-th column of ¢y, contains the coordinates of s{”’(z) w.r.t. the basis {s{"’(z), ..., s} (z)}

i
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where ¢, = ¢, (z) is any non degenerate d x d matrix whose entries are regular functions on the whole
of U, then the transition functions also will be changed by &yvy = ¥y pyuthy.

15.4. GL4(k)-valued Chech’s 1-cocycle on X associated with an open covering X = UU,, is a series

of regular maps U, N Ug BALR GL4(k) defined for any ordered pair of indexes (a, ) and such that

Paf = gogal over Uy, NUpg for all o, B and @aspsy = @ay over U, NUg NU, for all a, §, v. Any
such cocycle produces a cocycle associated with any finer! covering inscribed in the initial one (just
restrict ¢, onto the smaller open sets). Two Chech 1-cocycles are called equivalent or (co)homologous,
if there exist some common refinement X = UU,, of their initial open coverings and some regular maps

U, N GL4(k) such that the functions .8, $ags, induced by these cocycles on the refinement, satisfy
the equation @5 = 9, 130a5¢,3 over each U, NUg. An equivalence class of Chech 1-cocycles is called a
first Cech cohomology. The set of these cohomologies is denoted by H' (X, GLg(k)).

15.4.1. CLAIM. Isomorphism classes of locally trivial vector bundles of rank d are in 1-1 correspon-
dence with the first Cech cohomologies {pas} € H'(X,GLg(k)).

Proof. Given a Cech cocycle ¢ap, construct E as a manifold whose atlas consists of affine charts are U, x A4 glued
along (U, NUg) x Ag by the rule

Ua X Ag 3 (2,v) «— (2, 0a5(x) -v) € Ug x Ayg,

where v € Ay is a column vector. The cocycle conditions imply that these chard form an atlas and linearity of
p(aB)(x) for each z implies that the vector space structures of fibers are correctly glued together. Conversely, we
have seen in the previous section that for a given vector bundle the transition functions between its trivializations
form a Cech cocycle, which is changed by a homologous one under a changing of the trivialization or (what is the
same) under a a fiberwise linear isomorphism of the bundle. g

15.4.2. Example: a tautological vector bundle S — P(V') is rank 1 vector subbundle of the trivial bundle
P(V) x V such that a fiber of S over v € P(V) is 1-dimensional subspace of V' spanned by v. Over any affine chart
Uy = {v € P(V)| a(v) # 0}, where a € V*, it can be trivialized by the section s(*)(v) = (v,v/a(v)) € P(V) x V,
which is a well defined regular function U, L S C P(V) x V. Since 5(*) (v) = s (v) - (B(v)/a(v)) over each
v € Uy, NUg, the transition functions between these trivializations are ¢gq(v) = B(v)/a(v), which are well defined
regular maps U, NUg — GL1(k) = k*.

15.4.3. Example: a tautological vector bundle S —» Gr(m, V) over the Grassmannian, whose points are m-
dimensional subspaces W C V| is a rank m vector subbundle S C Gr(m,V) x V whose fiber over W € Gr(m, V)
is the m-dimensional subspace W C V itself. If we fix a basis {e1,e2,...,e,} in V and for each

I'=(i1 <is < -+ <im)C(L,2,...,n)

consider the standard affine chard U; C Gr(m, V'), which consists of all W projected isomorphically onto the linear
span of {e;1,€ia,...,€im}, then S is trivialized over U, by m sections s\ (W) C W that form a unique basis
of W such that the coordinates of the basic vectors form m x n matrix M,;(W) containing the identity m x m
- submatrix in the rows I. Since for any W € U, N U, we have M;(W) = M;(W) - p,(W), where ¢, (W) is
the inverse matrix for the m x m submatrix of M, situated in the rows I, the transition functions between two
trivializations s (W) and s{” (W) are given by the maps W —— ¢,,(W) € GL,, (k). Clearly, these are regular
maps well defined everywhere in U; N U, .

15.5. Linear constructions with vector bundles. Given two locally trivial vector bundles E, F' of
ranks r, s presented by Cech cocycles PaB, Yap over the same open covering X = UU,, one can form
their fiberwise direct sum E @ F, which has rank r 4+ s and Cech cocycle Yap @ Yap (direct sum of linear
operators), and fiberwise tensor product E ® F, which has rank rs and Cech cocycle Vo @ Pap (tensor
product of linear operators). Similarly one can make other tensor constructions, say fiberwise exterior
or symmetric powers A™E, S™E of a given locally trivial vector bundle F e. t. c.

15.6. Pull back. Given a regular map X N Y, then any vector bundle £ — Y induces a vector

bundle f*(F) © X« E —r X over X called a pull back of E along f. For locally trivial E presented
Y

la covering X = UW,, is called finer than a covering X = UU,, if Vv 3u : W, C U,)
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by Cech cocycle Pap OVer some open covering Y = UU,, the pull back f*E is also locally trivial bundle
presented by f*(¢0ag) = @apof over the induced open covering X = Uf~1(U,).

Exercise 15.2. Let Gr(m,V) <2~ P(A™V) be the Pliicker embedding. Check that the pull back p*S, of the
tautological line bundle on P(A™V) is the maximal exterior power A™Sg, of the tautological line bundle on
Gr(m,V).

15.7.Picard group. Isomorphism classes of locally trivial algebraic vector bundles of rank one on
X carry a natural structure of abelian group w.r.t. the tensor multiplication. This group is called the
Picard group and is denoted Pic (X). Given two line bundles L, K with Cech cocycles ©YaBs Yap, Which
are k* - valued functions on U, N Up in this case, then their sum in Pic (X)) equals to the line bundle
E® K with the Cech cocycle Yo Yap. The zero element of Pic (X) is the trivial line bundle I = X x A;.
The opposite element for a line bundle L with Cech cocycle ¢;; is the dual bundle L* = Hom(L, I) wjth
Cech cocycle equals w0l = 1/pij-

15.7.1. THEOREM. If X is affine and k[X] is factorial, then Pic (X) = 0.

Proof. Given line bundle L, we can always chose a trivializing covering X = UU, such that U, = Z(f,) for some
finite collection fi, fa,..., fn € K[X]. Let us fix a trivializing section s, over each U, and consider corresponding
transition functions @z, = $3/Sa, which are nowhere vanishing elements of Ox (U, N Up) = k[X][1/(faf3)],
i.e. have a form f} f3 for some r,s € Z. Consider some irreducible element ¢ € k[X] and mg, € Z for a power
of ¢ in the prime decomposition of ¢g,. If at least one of these powers is not zero, we can split all f,’s into two
nonempty subsets: ¢g’s, which are divisible by ¢, and ¢,’s, which are not. Then, for each 3 the power m.,z does
not depend on 7, because ¢ must disappear in ¢.,~, = ¢,3/¢+,3- Let us write mg for this power and change all
sections sg by 323 = ¢™# - 55 (this leads to a new basic section, because Z, C Zy,). After that g, clearly, disappears
in all p,5 as well as in all 3,8, = @8,/¥5,- Since the set of all ¢’s having some non zero my,g is exhausted
by a finite number of irreducible divisors of f,’s, after a number of such the replacements we come to transition
functions that have no irreducible factors, i.e. are non zero constants. Rescaling all but one basic sections, we
come to a global trivialization for L. O

15.7.2. COROLLARY. Pic (A,) = 0. O

15.7.3. PROPOSITION. Pic(P,) = Z is spanned by the tautological vector bundle S.

Proof. By n® 15.7.2, any line bundle L can be trivialized over the standard affine chart U,, by some local nowhere

vanishing section s;. Let us write t,(,i), v # i, for the restrictions of linear forms z, onto affine hyperplane z; = 0

in A,41 and use them as affine coordinates on U,,. The transition function y;; = s;/s; € k(U,,) is a rational

function of t,,i) such that its numerator and denominator do not vanish anywhere in U,, except for Z 4. Hence,
J

Yij = (t;i))dif. Since tgcj) = zp/z; = (o/x;) @ (zj/x;) = t;ci)/tg-i), the cocycle conditions ¢;; = 1/¢j;; and
ik = pir/pi; force d;j = —dj; = d with the same d for all i, j. On the other side, for any d € Z the functions
Gij = (t;l))d = (z;/z;)¢ form Cech 1-cocycle, i.e. define a line bundle, which we will denote by &(—d).

Exercise 15.3. Check that &(—d) = S®9.
So, it remains to show that all &'(d) are pairwise non isomorphic. To this aim let us describe spaces T'(X, €(d)),

of their regular global sections. A local section defined everywhere on U,, has a form s = f (tgo), téo), e ,t%o)) - S0,

where f is an arbitrary polynomial of n variables. Rewriting s in terms of chart U,, we get
N N N d
s=f ((tg’)/tf]’)) e (tﬁl’)/tfj))) - (tf)’)) si .
So, s is extended onto U,, iff deg f < d. Hence, dimT'(X, 0(d)) = 0 for d < 0 and

n+d

dmnxmm:(d

) ford>0.

In particular, all positive &(d) are mutually different and non isomorphic to negative. Since &(—d) = €(d)*, the
bundles &(d) with negative d are pairwise different as well. O

15.8. Sheaves of sections. Let E —» X be a locally trivial vector bundle. Then for any open U C X

all regular local sections U SN 7~ Y(U) C E form a module over an algebra of local regular functions
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Ox(U). This module is denoted by I'(U, E) or E(U). The correspondence U —— I['(U, E) is called a
sheaf of local sections of the vector bundle E. Regardless of an evident ambiguity, it is usually denoted
by the same letter E. Since the bundle £ is locally trivial, the sheaf E is locally free, i.e. each point
x € X has an open neighborhood U > z such that T'(U, E) is finitely generated free &x(U) - module of
rank rk E. Indeed, any collection of trivializing sections for E over U gives a free basis for ['(U, E) over
Ox(U).

15.8.1.LEMMA. Let E be a vector bundle over an affine irreducible variety X and P, =T'(E, X) be

k[X]-module of its global sections. Then Py is finitely generated and torsion free'. For any g € k[X]

modaule of local sections I'(Z(g), E) coincides with k[X][g~!] ® Py, which is the module of fractions®
k[X]

s/g™, where s € Py, m € Z.

Proof. Let E be trivialized over some principal open covering X = UZ(f,) by local sections

85-1/) ’ Sg’/)

..., eT(2(,),E) .

Then the restriction of any section s € I'(2(g), E) onto 2(g) N 2(f,) = Z(gf,) can be written as

,
hi (v)
8lown) = Z v g PYOT
= (gf)™

So, § = gMma*™» . g is extended onto each Z(f,), that is to a global section of E, and s = 5/¢™ as required in

the last assertion. To prove the first assertion, write sﬁ”) as sgu) = 's‘g”)/f;”“f, where §§") € P, are global sections.

v . 1 v v
Then fsf ) generate P, over k[X]. Indeed, for any s € P, and any v we can write: s|g;, = T Zgz( ) E{Z ) for
v i
some gl(u) € k[X] and m € N. Hence, fJ"-s = Zggu) ~§§V) is a k[X]-linear combination of fsvg") ’s. On the other
i

hand, we can write 1 = > h, f, because f,’s have no common zeros. So, s = > h,fl'-s =3 . thZ(”) -E{i”)

v
Absence of torsion is evident. O

15.8.2. COROLLARY. Under the previous claim conditions, F is trivial iff Py is free.

Proof. If s1, 82, ..., s, form the basis of Py, then, by the claim, their restrictions onto each Z(f) form the basis of
LD(2(f), E) over Ox(2(f)). In particular, r coincides with the number of local trivializing sections, i. e. with the
rank of E. Moreover, s1, $2, ..., s, form a basis in each fiber. Indeed, if some fiber contains a vector lying outside
a linear span of s;’s, then a local section drawn through this vector can not be expressed as O-linear combination
of s;’s. ]

15.8.3. COROLLARY. Fach algebraic locally trivial vector bundle over A1 is trivial.

Proof. Py is free, because any finitely generated torsion free k[t]-module is free. O

Exercise 15.4. Show that any nowhere vanishing regular section of an algebraic vector bundle over A; can be
included in some system of global regular sections forming a basis in each fiber.

15.8.4. THEOREM (BIRKHOFF-GROTHENDIECK). FEach locally trivial algebraic vector bundle of
rank r over Py is a direct sum of line bundles Oy, (d;) for appropriate di,dy, ... ,d, € Z.
Proof. Write ¢ for affine coordinate on A; = P; \ {oo} and consider two trivializations for a given vector bundle E

(e?,eg,...,eg) , (ef%,e°,...,e)

! A-module M is called torsion free,ifam =0 =a=0orm=0fora € A, me M

2also called a localization of Pz w.r.t. multiplicative set {f*}

3The same is true for any principal ideal domain. For proof, present the module M in question as F/K, where F = Kk[t]®"
and K C F is the kernel of surjection FF —= M sending basic vectors of F' to generators of M. The result follows at
once from the elementary divisors theorem: each submodule K C F is free and there exist some bases {e1,€e2,...,e,} C F,
{ut,u2,...,um} C K and fi, f2,..., fm € Kk[t] such that u; = f; - e; for 1 < i < m (moreover, f; divides f; for i < j and
the set of those elementary divisors does not depend on a choice of bases). Indeed, theorem forces F/K = k[t]*"~™) & T,
where T = & (k[t]/(f:)) is torsion submodule. The elementary divisors theorem also holds over any principal ideal domain

(see Artin’s or Van der Warden’s » Algebra« textbook; special proof for either Z or k[t] is extremely fruitful exercise on the
Gauss diagonalization and Euclid’s division algorithms).
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which are defined over A; and over Uy, = {oo} U (A \ {0}). These trivialization are expressed through each other

over A; \ {0} as
(€%, e, ..., e®) =(ef, €9, ..., e o, (15-2)

where ¢ is the transition matrix whose entries are rational functions of ¢ without zeros and poles in A; \ {0},

i.e. some polynomials in ¢, t~!. Replacing E by E(m) “Ee O (m), we multiply all entries of ¢ by t™. We can

chose m such that the first column of ¢ has no negative powers of ¢ but does not vanish at ¢ = 0. This means that
€?° becomes nowhere vanishing global section of E over P;.
Exercise 15.5. Show that I'(P;, E(m)) = 0 for m < 0.
Let us fix the minimal m such that E(m) admits some nowhere vanishing global section e and replace E by E(m)
for this m. Thus, we will assume that I'(P;, E(d)) = 0 for all d < 0.
Using induction over r, we can suppose that the factor bundle @ = E/e - & splits as

Q=0(d)®0(d3)® --- ©0(dy), wheredy <ds< -+ <d,

By ex. 15.4, we can chose trivializations (15-2) such that e = e{® = e. Then the transition rule takes a form

v fo fs fo -0 fr

0 t2 0 0 .. 0

o o - o o o 0 0 t= 0 ... 0
(61 y €275 )y € ): (817627 7er) 0 0 0 s .. 0
0 O 0 0 ... ti

where f, = f,(t,t~!) are some polynomials in ¢, t~1. Moreover, by appropriate change of e>° with v > 2 we can
put all f,, into ideal (¢) C k[t]. Indeed, it is enough to add the first column multiplied by appropriate polynomials
in 7! to the other columns.

As soon all f, € (t) C k[t], we should have all d, < 0. Indeed, if d, > 0 for some v, then e is extended to
nowhere vanishing section of E(—d) with d = ged(t?, f,) > 0. But this contradicts to the assumption made before.
Now we can annihilate all f, by adding to the first row with other rows multiplied by appropriate polynomials in
t (this corresponds to an invertible change of €). The resulting transition matrix becomes diagonal as required.

0
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Task 1. Projective spaces.

Problem 1.1. Let S%V* be the space of all homogeneous degree d polynomials on n-dimensional vector
space V. Find dim S4V*.

Problem 1.2 (Veronese map). Under the previous problem conditions, let V* ", S9V* take a linear

form 1 € V* to its d-th power 9% € S¥V*. Does the image of vy lie in a hyperplane or its linear
span is the whole of S4V*?

Problem 1.3. Consider the projective closures of affine curves
a)y =z’ b) y = z° Ay’ +(x-1)?=1 d) y* =2*(z +1)
Write down their homogeneous equations and their affine equations in two other standard affine
charts on Py. Try to draw all these affine curves.

Problem 1.4. Let the real Euclidian plane R? be included in CIP; as the real part of the standard affine chart
Up. Find two points of CPs such that any Euclidean circle will contain them after comlexification
and projective closuring.

Problem 1.5 (Pythagorean triples). Consider Py with homogeneous coordinates (¢ : t1 : t2). Let £ C Py be
the line to = 0, Q C Py be the conic t2+12 =3, and O = (1:0:1) € Q. Foreach P=(p:¢q:0) € £
find coordinates of the intersection point @ N (OP) different from O and show that the projection
from O maps @ bijectively onto ¢. Find some polynomials a(p, q), b(p,q), ¢(p,q) whose values on
7 x 7, give, up to a common factor, all integer Pythagorian triples a® + b> = ¢? (and only such the
triples).

Problem 1.6 (projecting twisted cubic). Let Py = P(U*) be the space of linear forms (up to proportionality)
in two variables (tg,t;) and P3 = P(S3V*) be the space of cubic forms (up to proportionality) in

(to,t1). An image of the Veronese map Py %, P3 is called a twisted cubic and is denoted by
C3 C P3 (comp. with Problem 1.5). Describe a projection of C:

a) from the point ¢} to the plane spanned by 3t3t1, 3t¢t?, and t;

b) from the point 3 t%tl to the plane spanned by t%, 3t0t%, and t“z’

c) from the point ¢} + #3 to the plane spanned by #3, 3t3t;, and 3tt?
More precisely, write an explicit parametric representation for the projection in appropriate coor-
dinates, then find its affine and homogeneous equation. Do that for several affine charts on the
projection target plane. In each case, find degree of the the curve and try to draw it. Has it
selfintersections and/or cusps?

Problem 1.7. Let V' be an n-dimensional vector space over a finite field F, of ¢ elements. How many
a) basises b) k-dimensional subspaces are there in V7 ¢) How many points are there in P(V)?
Problem 1.8*. Let G%(g) be a number of k-dimensional vector subspaces in n-dimensional vector space
over a finite field of ¢ elements. Compute lirr% Gk (q).
q—)

Problem 1.9. Let f : P(V) —— (V) be a projective linear isomorphism induced by some linear isomor-
phism f:V —— V, dimV = n + 1. Assume that all fixed points of f are isolated. Estimate a
number of them.
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Task 2. Quadrics and conics.

Problem 2.1. Consider the quadratic form ¢(A4) = det A on the space of square 2 x 2-matrices Mats (k).
Describe its polarization, i.e. what is the bilinear form of two 2 x 2-matrices! (A, B) such that
q(A, A) = det(A)?

Problem 2.2 (continuation of Problem 1.5).  Under the conditions of Problem 1.5, show that any conic on
CPs, which pass through two points you have found in Problem 1.5 and has at least 3 points inside
the initial real Euclidian plane, looks there as a circle.

Problem 2.3 (Euclidean polarities). Consider a circle in the real Euclidean affine plane. How to draw?:
a) the polar of a given point (especially, when the point is inside the circle)
b) the pole of a given line (especially, when the line does not intersect the circle)
Describe geometrically a polarity w.r.t. an ‘imaginary circle’ 2% + 4% = —1.

Problem 2.4. Show that all conics passing through the points a = (1:0:0),6=(0:1:0),c=(0:0:1),
d=(1:1:1) form a line in the space of all conics. Write an explicit equation® for these conic
family and find all singular conics inside it.

Problem 2.5 (1-1 correspondence on a conic). Let () C Py be a smooth conic considered together with some
fixed rational parameterization P; =~ (. Show that for any bijection @ —— @ induced by a
linear automorphism of Py there exist two points p1,p2 € @ and a line £ C P, such that x NN y
iff 77" @ = 7)” y. Were are the fixed points of this map? Is it possible, using only the ruler, to find
(some) p1,po, £ for v given by its action on 3 points a,b, ¢, € Q7

Problem 2.6*. Using only the ruler, draw a triangle inscribed in a given non singular conic ) and such
that his sides a, b, ¢ pass through 3 given points A, B, C. How many solutions may have this

problem?
HiNT. Start ‘naive’ drawing from any p € @ and denote by «(p) your return point after passing trough A, B, C.
Is p — v(p) a projective isomorphism of kind described in Problem 2.57

Problem 2.7*. Formulate and solve projectively dual problem to the previous one.

Problem 2.8*. Describe a general algorithm for reducing a trigonometric equation f(sin(x),cos(x)) = 0,
where f is an arbitrary quadratic polynomial in two variables, to a simple equation cos(z) = «,

where o contains at most cubic irrationalities.

HiNT. The problem is how to compute explicitly 4 intersection points of 2 quadrics f(z,y) = 0 and #®+y* = 1;
but the same intersection points can be produced by any two quadrics from the same pencil. A good
idea is to intersect two singular conics of this pencil.

Problem 2.9. Consider two lines ¢1,fs C P3 and denote by ¢;,¢5 C P two pencils of planes passing
through these lines. Take any 3 non collinear points a, b, ¢ such that no two of them are coplanar
with either ¢, or f5. Write ¢; 2= (X for a linear projective isomorphism that sends 3 planes

passing through a, b, ¢ in ¢{° to the similar planes in £5. Describe the incidence graph
def
Lobe = U (ﬂﬂ’yabc(ﬂ-))
ﬂelf

ruled by the intersection lines of ygpc-incident planes, if: a) {1 Nl =@ b) 1Nl # 2

Problem 2.10. How many lines cross each of 4 given pairwise skew lines in: a) CP3 b) RP3 ¢*) C® d*) R3?
Find all possible answers and indicate those are stable under small perturbations of 4 given lines.

Lfor example, the standard Euclidean norm || (a;;) || ' 3 a3, is polarized to (4, B) = tr (A - ‘B); one could expect that
polarization of det(A) should look quite similarly with something else instead of ‘B ...

2using ruler and compasses

3it should be a quadratic form whose coefficients depend linearly on two homogeneous parameters
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Task 3. Some multilinear algebra.

Problem 3.1. Is it true that any rank 1 matrix of size m X n can be written as a product of some m x 1
and 1 X n matrices?

Problem 3.2. Let {e1,e9,...,eq4} C V and {z1,x2,...,24} C V* be dual bases. Does the tensor »_ z,®e, €
14

V*® V depend on a choice of the dual bases?

Problem 3.3. Let A € Hom(U,V) ~U*®V, B € Hom(V,W) ~ V* @ W be two linear maps decomposed
asA=>a,®a,B=) p,9b, witha, € U*, a, €V, , € V*, b, € W. Decompose similarly
their product BoA € Hom(U, W) ~U* @ W.

Problem 3.4. Check for any vector space V a series of canonical isomorphisms:
Hom(V,V) =~ V*®@V —— (V @ V*)* ~ Hom(V,V)*

where 7 takes £ ®v to a linear form that sends v’ ® &’ to the full contraction £(v')¢'(v). The resulting

correlation Hom(V, V) —— Hom(V,V)* corresponds to some bilinear form ¢(A, B) o TA(B) on

Hom(V, V). Is this form symmetric? How it looks in terms of matrices? What is the corresponding
quadratic form?

Problem 3.5. Let A = (ai;) be n x n - matrix whose entries are considered as independent variables. Fix

. . m
a collection of m matrix elements a;,j,, where 1 < a < m. Compute 35— 3‘9_ det Aa — for:
Qiyjy1 Oingy ~* OQimjm

aym=1; b)m=2; c¢)anym. d)Isthe Taylor expansion (15-1), written below, correct?

detO\A+pB)= Y Mpt- Y (—D)IHla, bes (15-1)
p+qg=n 1J:
#I1=#J=p

Here I = (il,ig,...,ip), J = (jl,jQ,...,jp), I = {1, ,n}\[, J = {1, ey n}\J, (a[J) is
p X p-minor of A situated in I-rows and J-columns, and (bff) is the complementary ¢ x g-minor
of B = (bU)

HINT. Use the Sylvester relations relations: let A, be (;‘L) X (Z) matrix whose entries are m x m-minors of A and
write A,, for a matrix of algebraic complements to the entries of A,; then det A = (™) “er (Am . tﬁm>
and the rightmost sum in (15-1) equals tr (Ap . t§q>.

Problem 3.6. Is there a 2 x 4 - matrix whose 2 x 2 - minors are: a) {2,3,4,5,6,7} b) {3,4,5,6,7,8}
(If no, explain why, if yes, give an explicit example.)

Problem 3.7. Are the following decompositions valid for any vector space V over a field of zero charac-
teristic: a) V¥2 ~ S2V @ A%V b) VO3 ~ S3V @ A3V ? If yes, give a proof, if no, give an
explicit example of a tensor that can not be decomposed in this way.

Problem 3.8 (spinor decomposition). Let V' = Hom(U_, U, ), where dim Uy = 2. Show that

V= ((S°U" @ S°Uy) @ (AU @ AUL) ) €D ((S*U” @ A%UL) @ (AUF @ S°U4) ) .

S22V A2V

HINT. Write V = UX ® Uy and use the decomposition UfQ = S%Us & A%Uy.
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Task 4. More quadrics and other hypersurfaces.

Problem 4.1. Let G C P3 = P(V') be a non singular quadric given by a quadratic form g whose polarization
is g. Show that bilinear form A%g on A2V, which acts on decomposable bivectors as

A%G(v1 Ao, wy Aws) def Jet <g(vl7w1) g(vl,w2)> 7
g{ve,w1)  g(ve,ws)

is symmetric and non degenerate, and write its explicit Gram matrix in a convenient base (say,
coming from an orthonormal base for g in V). Show that the intersection of the corresponding
quadric A2G C Py = P(A%V) with the Pliicker quadric consists of all tangent lines to G C P3.

Problem 4.2. Under the previous problem notations, let Gr(2,V’) be the Grassmannian variety, of lines in
P3 = P(V). Show that the Pliicker embedding Gr(2,V) = P(A%V) sends two line families living
on the Segre quadric G C P(V) = P(Hom(U_,Uy)) to a pair of non singular plane conics that are
cut out the Pliicker quadric P C P(A?V) by two complementary planes A_ = P (S?U* ® A?U. ) and
Ay =P (A?U* @ S?U,) laying in P(A*’Hom(U—, Uy)) via Problem 3.5. Moreover, the both conics
are embedded into these planes via Veronese, that is, we have the following commutative diagram
(Pliicker is dotted, because it maps lines into points):

Veronese

P(U,) © » P(S?U,) ~ AL
A
7T+T 21 * 2
Pf x P —2%° . G c PHom(U_,U,) - =% o P IP’(A o U+)
~ S*U* @ A*U4
Wl ‘Ll
]P)(Ui) h Veronese ” ]P)(SQUi) ~ A

Problem 4.3. Let us fix a 2-dimensional plane © C P, and a pair of codimension 2 subspaces L1, Lo C P,
such that p; = L1 Nw and ps = Ly Nw are two distinct points on nw. Write 1 = le c Py,
ty = Ly C P for two pencils of hyperplanes passing through L;, Ly respectively and take any
a, b, c € w such that any 3 of 5 points p1, ps, a, b, ¢ are non-collinear. Then we get a projective linear

isomorphism ygpe. 41 —~+ 0y defined by a, b, ¢ like in Problem 2.5. Show that its incidence graph

U (H 0 yane (7)) C By
Hely

is a quadric, find its rank, and describe its singular points in both possible cases:
a) dim(L; N L) = (n — 3) b) dim(Ly N Lg) = (n — 4).

Problem 4.4. Let S C P5 = P(S?V*) be the space of singular conics on Py = P(V). Show that singular
points of S correspond to double lines in P(V') and Sing (.S) coincides with an image of the Veronese
embedding P(V*) 2, P5. For non singular ¢ € S, which corresponds to splitted conic £; U fs C
P(V'), prove that the tangent space 1,5, for S at ¢, consits of all conics passing through £; N £5.

Problem 4.5. Let S C IP3 be a surface ruled by all lines tangent to the twisted cubic C5 C P3. Write down
an explicit equation for S, find its degree and all singular points.

Problem 4.6. Find all lines on a singular projective cubic surface with affine equation zyz = 1.
HINT. Show that there are no lines in the initial affine chart



90 Algebraic Geometry Start Up. Home tasks.

Task 5. Plane curves.

Problem 5.1 (plane cubics).
a) How many singular points may have a plane cubic curve and what could be their multiplicities?
b) Classify all reducible cubics up to a projective linear isomorphism.
c) Show that irreducible singular cubics are rational and (up to a projective linear isomorphism)

are exhausted by y2 = 2® (nodal cubic) and y? = 2%(z + 1) (cuspidal cubic).
HiNT. Rationality may be proved via projection from a singular point.

d) How many tangent lines come to a smooth cubic curve from a generic point on Py?
e) How many inflection points are there on a smooth cubic?
f*) Show that any non singular cubic may be presented in appropriate affine coordinates by equa-
tion y? = 23 + px +¢.
HinT. See: C. H. Clemens. A scrapbook of complex curve theory. Plenum Press. But try to simplify (or to
modify) the arguments by your own geometric and/or multilinear arguments

g") Show that 3 non-inflection tangents which are drown from an inflection point on a smooth

cubic meet this cubic in 3 collinear points.
HINT. Look at the Clemens book (loc. cit.) but make his arguments more solid by adding your own details
Problem 5.2. Let a curve C' C Ay be given by by equation 2%y + zy? = z* + y*.

a) What kind of singularity has C' at the origin?

b) Has the projective closure of C' any other singularities (say, at the infinity) ?

c) Find a local intersection multiplicity at the origin between C' and a curve with a simple cusp
whose cuspidal tangent is z = y.

Problem 5.3. For plane curves a) (wo + o1 + 72)3 = 27 zp172 b) (22 —y+1)2 =y2(z2 + 1)
find all' singular points, compute their multiplicities, look how many branches come to each singu-
larity and what are their geometric tangents.

HINT. To analyze local geometry, blow up the singularity, i.e. take affine coordinates (x,y) centered at the
singularity and substitute + = at, y = [t in the equation of curve; then the geometric tangent lines
have slopes (a : 8) for which a multiplicity of the zero root ¢ = 0 jumps.

Problem 5.4. Using the Pliicker relations, list all complex plane quartics with the simplest singularities
(i.e. ordinary double nodes and cusps only) w.r.t. how many cusps, nodes, double tangents and
inflexion points may they have. Which of them have to be reducible?

Problem 5.5. Describe all complex plane projective quintics that have singularities of multiplicity 4 at two
given distinct points a,b € Ps.
HINT. They have to contain a (multiple) line (a,b) and form 3-dimensional projective space.

Problem 5.6. For a curve C' C Py of degree d curve let us fix some point ¢ ¢ C that does not lie either

on an inflection tangent or on a geometric tangent through a singular point of C. Write C(gd_l) for

(d — 1)-th degree polar of ¢ w.r.t. C. Compute a local intersection index (C, C(gd*l))p at a point
p € C when
a) p is smooth; b) p is an ordinary cusp; ¢) p is an ordinary m-typle node m(m — 1).
HiNT. In (a), (b) p is smooth on 0(5‘1*” as well and Tqu(d’l) # T,C in (a) but TpCédfl) coincides with the
cuspidal tangent in (b). In (c) p is an (m — 1)-typle point on CS*™") but each geometrical tangency of
C at p is transversal to Céd_l) and hence intersects it with multiplicity (m — 1).
Problem 5.7. Show that smooth plane quartic curve either has a tangent line intersecting the curve just

ones with multiplicity 4 or has 28 bitangent lines (touching the curve in two distinct points).

lincluding possible singularities at the infinity in (b)
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Task 6. Polynomial ideals.

Problem 6.1. Give an example of proper non-principal ideal in a) Clzx, y] b) Z[z].

Problem 6.2. Let a polynomial f vanish along a hypersurface given in C™ by a polynomial equation g = 0.
Prove that each irreducible factor of g divides f.

Problem 6.3. Prove that any algebraic set in C? is a finite union of points and curves (recall that a curve
is a zero set of one polynomial).

Problem 6.4. Let J = (zy,yz, 2x) C C[z,y, 2]. Describe V(J) C A% and I(V(J)) C C[z,y, 2]. Is it possible
to define the same variety by 2 polynomial equations?

Problem 6.5. Find f € I(V(J))\ J for J = (z> + 4% — 1,y — 1) C C[z, y].
Problem 6.6. Describe V (J) C A3 and I(V(J)) C Clz,y, 2] for:
a) J = (zy, (z —y)z) b) J = (zy + yz + 2z, 2% + y? + 2?)

Problem 6.7. Which of the following three facts about ideals in k[x,z2,...,%,] (where k is an arbitrary
field) are true? (Prove the true ones and give counter-examples for the other.)
A)VIJI=VINJ
b) VIJ = VIVJ

NI =VI&JTJ=VJ) = 1J=VIJ
Problem 6.8. Let B O A be an extension of commutative rings such that B is finitely generated as
A-module. Prove that mB # B for any maximal ideal m C A.

Problem 6.9. Which of the following three rings are Noetherian?
0 {16 =25 €€ ata) £t lsl <1

q(2)
b) power series f(z) € C[[z]] converging everywhere on C;
i+7
c) {f(x,y) € Clz,y] Ba:ﬂ(‘igjc] =0 VO0<i+j< n}, where n € N is fixed.

Problem 6.10*. Show that any finitely generated! field is finite as a set.

Problem 6.11%. Show that an ideal I(C3), which is generated by all homogeneous f € C|zg,z1, 2, x3]
vanishing along the twisted cubic C3 C P3
a) is generated by 3 quadratic polynomials b) can’t be generated by 2 polynomials

lin absolute sense, i.e. as Z-algebra w.r.t. the action m - a otat - +a
—_————

m times
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Task 7. Algebraic manifolds.

Problem 7.1 (Zariski topology). Let X = Spec,, A be affine algebraic set. Check that the sets
V) ={xzeX| f(x)=0 Vfel}

produced by all ideals I C A satisfy the closed sets axioms of the topology.
Problem 7.2. Prove that any open covering of affine algebraic variety contains a finite sub-covering.

Problem 7.3. Give an example if affine algebraic set X and open U C X such that 0x(U) is not finitely
generated as k-algebra.

Problem 7.4. Let X C A", Y C A™ be affine algebraic sets.
a) Show that X x Y is affine algebraic subset in A"+,
b) Give X x Y C A" by explicit equations (assuming that the equations for X, ¥ are known).
c¢) Show that X x Y is irreducible as soon both X, Y are.

Problem 7.5. Prove that the maximal spectrum of a finite dimensional® k-algebra is a finite set and deduce
from this that any finite morphism has only finite (or empty) fibers.

Problem 7.6. Give an example of regular morphism of affine algebraic sets X —% . Y such that all fibers
of ¢ are finite (or empty) but ¢ is not a finite morphism.

Problem 7.7. Prove that a projection of affine hypersurface V(f) C A" from any point p € V (f) onto any
hyperplane H # p is dominant.

Problem 7.8 (Noether's normalization). ~ Show that any affine hypersurface V(f) C A" admits a finite
surjection onto some hyperplane A”~! C A™.

Problem 7.9. Prove that dim(X x V) =dim X + dimY

Problem 7.10. Let X —2» Y be a regular morphism of algebraic manifolds. Show that isolated? points of
fibers ¢! (y) draw an open subset of X when y runs through Y.
HINT. Use Chevalley’s theorem on semi-continuity (lecture 13).

Problem 7.11. Show that an image of a regular dominant morphism contains an open dense subset.

Problem 7.12* (Chevalley's constructivity theorem). Prove that an image of any regular morphism of algebraic
varieties is constructive, i.e. can be constructed from a finite number of open and closed subsets by
a finite number of unions, intersections, and taking complements.

Problem 7.13 (quadratic transformation). Show that the prescription (to : t1 : ta) —— (tg " = t; " @ty 1) is

extended to a rational map Py - L Py defined everywhere except for 3 points; find these points;
clarify how does g act on a triangle (triple of lines) with the vertexes at these 3 points; find im q.

Problem 7.14 (graph of rational map). Let X - v, Y be a rational map defined on open dense U C X. By
the definition, its graph Ty, C X x Y is the Zariski closure of {(z,¢(x)) € X xY |z € U}.
a) Show that a graph of the natural rational map A"*' - - -~ P, which sends P € A" to
(OP) € P, is isomorphic to the blow up of the origin.
b*) Try to describe a graph of the quadratic transformation from Problem 7.5, in particular,
describe the fibers of its projections onto the both, source and target, Py’s.

'as a vector space over k
2a point p € M is called isolated point of a subset M C X in a topological space X, if it has an open neighborhood
U > p such that UN M = {p}
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Task 8. 27 lines.

Problem 8.1 (Schlaflische Doppelsechs). The ‘double six line configuration’ is constructed as follows. Let

[0]7 [1]7 R [5] CPs

be six lines such that [1], ... , [5] are mutually skew, [0] intersects all of them, and each of [1], ... , [5]
does not either touch or lay on the quadric drown through any 3 other. Show that: a)vVi=
1, ..., 5 3 unique line ['] # [0] such that [{']N[j] # & V j # i

b)[{']N[i]=[]N[j]=2 foralli=1,...,5 and for all j # i;

c) each of [1], ..., [5] does not either touch or lay on the quadric drown through any 3 other;

d) there exists a unique line [0] that intersects each of [1'], ... , [5']

HiNT. Let [07] # [1] and [05] # [2] be the lines, which intersect all [1'], ..., [5'] except for [1'] and [2/]

respectively; show that they have the same intersection points ps, ps, ps with [3'], [4'], [5’], which may
be recovered geometrically using only the lines [3], [4], [5], [3], [4], [5'], and [0].
Problem 8.2. Show that each double six line configuration lies on a smooth cubic surface and explain how
to find the other 15 lines laying on it.

Problem 8.3. Can a smooth cubic surface S C P3 have a plane section that splits into a smooth conic and
its tangent line?

Problem 8.4 (projecting a smooth cubic). Let S C P3 be a smooth cubic surface, p € S be outside the lines
laying on S, © Z p be any plane, and Q) = {q € 7| (pq) touches S outside p} be the apparent contour
of S visible from p and projected from p onto 7. Show that:

a) each plane section passing through p and any line ¢ C S contains precisely 2 distinct tangent

lines coming from p onto S;
HINT. Look at the (smooth!) residue conic (SN (pf)) \ £

b) @ C 7 is a smooth quartic;
HINT. Look at the discriminant of S|, \ {p}-

c¢) @ has precisely 28 distinct double tangents, which are exhausted by 7,5 N 7 and projections

(from p onto ) of lines laying on S;
HiNnT. Use the Pliicker relation to compute the number of bitangents.

d) deduce from the previous assertions a new proof of the existence of precisely 27 lines on a
smooth cubic surface are projections of 27 lines laying on S.

Problem 8.5*. Show that any smooth cubic S C P3 can be given in appropriate coordinate system by

equation 1203 + P1102103 = 0, where all ¢;, 9; are linear homogeneous forms.
HiNT. Use aline £ C S and 5 planes passing through it and intersecting S in a triple of distinct lines

Problem 8.6. Let f1,f5 C S be two skew lines on a smooth cubic surface S C P3. Show that the
prescription:
pr— (LN, 0N L)

where p € S\ (1 U¥fy) and ¢ is a unique line through p meeting the both lines ¢;, can be extended

to a regular morphism S LI Py x Py = #; x 5. Show also that:
a) o contracts 5 lines on S to some points on Py x Py;
—1
b) o is rational isomorphism', i.e. there is a rational map U 2+ S defined on some open dense
U C P; x P; such that gop~! = Idy and p~'op = Idyy for some open dense W C S.

Problem 8.7. Let p € S be a singular point of a (singular) cubic surface in P3. Show that there is at least
one (but in general 6) lines laying on S and passing through p.

lthis means, in particular, that S is rational, i. e. admits a rational parameterization
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Test 1 (elementary geometry).

Problem 1.1. Find a condition on 5 lines in P, necessary and sufficient for the existence of a unique
non-singular conic touching all these lines.

Problem 1.2. Consider the complex plane quartic'

(22 + 23)* + 3adrizy + 232, =0 (%)

a) Find all its singular points over C.

b) Describe a local structure of each singularity (i.e. geometrical tangents and their intersection
multiplicities with the curve).

c) Find a rational parameterization for C.

HinT. Use a projection from a singular point onto a line.
Problem 1.3. Show that any irreducible plain quartic with a singularity of multiplicity 3 is rational.

Problem 1.4. Consider projective plane Py with homogeneous coordinates (tg : ¢1 : t2).

a) Show that all plane quintics? that have an ordinary cusp (of multiplicity 2) at (0: 0 : 1) with
the cuspidal tangent ¢; = 0 form a projective subspace in the space of all plane quintics.

b) Find the dimension of this subspace.

c¢) Compute local intersection multiplicity between such a quintic and quartic (%) at (0:0: 1).

Problem 1.5. Prove that a space of homogeneous degree d polynomials (in several variables) over a field

of zero characteristic is linearly generated by pure d-th powers of linear forms>.

Problem 1.6. Let A be a finitely generated k-algebra. Show that if A is finite dimensional as a vector
space over k, then Spec,, A is a finite set.

!i.e. a plain curve of degree 4
2.
i. e. plane curves of degree 5
3this implies that any linear assertion about polynomials, e. g. the Taylor formula, is true as soon it holds for d-th
powers of all linear forms
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Test 2 (advanced geometry).

Problem 2.1. Prove that any hypersurface in A, admits a finite surjective morphism onto A, 1.
HinT. Use appropriate projection.

Problem 2.2. Write Py = P(S*V*) for the space of quartic hypersurfaces in P3 = P(V) (where dim V' = 4).
Show that all quartics containing a line form a hypersurface' in Py.

Problem 2.3. Show that any nowhere vanishing regular section of the trivial rank r vector bundle over Ay
can included in some system of r regular sections that form a base in each fiber?.

Problem 2.4. Consider the standard covering of the Grassmannian Gr(m, n), of m-dimensional subspaces in
k™, by affine charts U; consisting of W C k™ which are isomorphically projected onto m-dimensional
subspace spanned by ii-th, io-th, ..., ip,-th basic vectors of k" along all the other (n — m) basic
vectors®. Let us present a point W € U; by n x m - matrix M;(W), whose columns are the
coordinates of vectors forming a unique base of W such that k x k - submatrix situated in ¢;-th,
ig-th, ..., i;,-th rows is the identity matrix. We consider other (n —m)-m matrix elements (staying
outside I-rows) as affine coordinates of W in the chart U;. Let S —» Gr(m,n) be the tautological
vector subbundle of k™ x Gr(m,n) whose fiber over a point W € Gr(m,n) is the subspace W C k™.

a) Construct some trivializing basic sections sf), sé”, ..., s\%) for S over each U, and describe

corresponding transition matrices @;; = @;;(W), which satisfy
I I J J
(517, s, sy @y, = (s, 85, L, slD)

everywhere in U; N U, C Uj.
HIiNT. Write M, for the m x m - submatrix of M, situated in J-rows; then M, is easily expressed through
M[ and MIJ.
b) Do the same for the line bundle D = A™S and for each its tensor power D®9.
c) Prove that any line bundle L over Gr(m,n) is isomorphic to some D®.
HINT. Write D;; for determinant det M;; of the matrix introduced in the previous hint. The transition
function ¢, ,, of L, is a rational function in matrix elements of M, regular and non-vanishing everywhere
on Ur except for the zero set of Dy;.

Problem 2.5*. How many triple intersection points* have 27 lines on a smooth cubic surface?

Lin other words, there is a polynomial @ in the coefficients of variable quartic form F(zo : z1 : 2 : x3) such that
@(F) = 0 iff the quartic F' = 0 contains a line

2more honorary (and not obligatory, certainly!) problem is to do the same over A,

3as usually, I = (i1,42,...,%m) runs through all increasing collections of m elements of {1, 2, ..., n}

“that is, the points where some 3 out of 27 lines are intersecting simultaneously
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Actual middle term test, April 04, 2006.

Problem 1. Let U, V' be 2-dimensional vector spaces and
Q~PU")xP(V)CcPU* ®V)

be the Segre quadric formed by rank 1 linear operators U Lo, V' considered up to proportionality.
Show that the tangent plane T¢g,() to () at a point { ® v € () is formed by all linear operators
U —— V that send 1-dimensional subspace Ann(§) = {u € U| &(u) = 0} into 1-dimensional
subspace spanned by v.

Problem 2. Let S C P5 = P(S2V*) be the space of all singular conics on Py = P(V).
a) Show that the set of its singular points Sing (S) C S coincides with the image of Veronese
ah2
embedding P(V*) i A P(S?V*) (i.e. with the set of all double lines in Py).

b) For any non-singular point ¢ = {{; U/} € S show that the tangent space 73S to S at ¢ in P
is formed by all conics passing through £1 N £s in Ps.

Problem 3. Let two plane curves of the same degree d have d? distinct intersection points. Show that if
some dm of these intersection points lay on a curve of degree m < d, then the rest d (d — m) points
have to lay on a curve of degree (d —m).

HinT. This generalizes Pascal’s theorem obtained as d = 3, m = 2. Use a pencil of curves spanned by two
given curves and the properties of pencils of plane curves.

Problem 4. Find the center! of the grassmannian algebra in m variables over a field of char # 2.

Problem 5. Ts there a 2 x 4 matrix whose (non ordered) set of 2 x 2 - minors is
a){2,3,4,5,6,7}
b) {3,4,5,6,7,8}
If such a matrix exists, write down some explicit example; if not, explain why.

HiNT. Use the Plicker quadratic equation for Gr(2,4) C P5 and some congruence reasons (instead of direct
fingering 720 possible permutations).

Problem 6. Show that any finite dimensional (as a vector space) algebra over an arbitrary field has only

a finite set of prime? ideals and all these ideals are maximal.
HiNT. Use properties of integer ring extensions when one of two rings is a field.

!i.e. all elements that commute with each element of the algebra

Zrecall that an ideal p C A is called prime if A/p has no zero divisors
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Actual final written exam, May 22, 2006.

Notes on marks. Some problems are subdivided into several questions. Complete answer on each question
gives you 5 points. Problems and questions can be solved in any order. Total sum > 35 points is sufficient
for getting the maximal examination mark «A».

Problem 1 (10 points). Let A and B be two matrices with m rows and n > m columns. Prove that det(A -
BY) = 3", det Ay det By, where the sum is running over all increasing sequences I = (i1, 2, ... ,%m) C
{1, 2, ..., n} and A;, B; mean m X m-submatrices formed by I-columns.

Problem 2. Let Py = P(S?V*) be the space of quadrics on P, = P(V) and X C Py be the set of all
singular quadrics. Show that

a) (5 points) X is an algebraic variety and g € X is smooth iff the corresponding singular quadric
) C P, has just one singular point;

b) (5 points) for any smooth ¢ € X the tangent space T, X C Py consists of all quadrics passing
through the singularity of  C P,,.

Problem 3. Show that there exists a unique homogeneous polynomial P on the space of homogeneous
forms of degree 4 in 4 variables such that P vanishes at f iff the surface f = 0 in P53 contains a line.
To this aim:

a) (5 points) Show that all pairs ¢ C S, where ¢ C P53 is a line, S C P3 is a quartic surface, form a
projective variety I' € P(A2C?*) x P(S*(C*)*).

b) (5 points) Show that I is irreducible and find its dimension.

c) (5 points) Show that an image of projection of I' on P(S*(C*)*) is an irreducible hypersurface.

Problem 4. Fix 6 points {p1,p2,...,ps} C Po = P(V) such that any 3 are not collinear and all 6 do not
lay on the same conic. Let W = {F € S3V*| F(p;) = 0 for eachi = 1,2, ... ,6} be the space of
cubic forms on V' that vanish at these 6 points. A map

¥ %
I[))2 \ {pl:p27' .. apﬁ} - ]P)(W )

takes p & {p1,p2,...,p6} to a linear form ev, : F' — F(p) on W (when p is multiplied by A this
form is multiplied by A3, so the map between the projectivizations is well defined). Geometrically,
P(WW) is the space of cubic curves passing through {pi,p2,...,ps} and ¢ sends p to a hyperplane
H,, C P(W) formed by all such cubics passing also through p. Show that:

a) (5 points) dim W = 4;
b) (5 points) S =1 (P2 \ {p1,p2,-..,p6}) C Pg =P(W*) is a cubic surface;

c) (5 points) find 27 lines in P(W) (i. e. 27 pencils of cubics passing through {p1,p2,...,ps}) whose
dual lines in P(W*) lay on S.

Problem 5 (5 points). Let a Noetherian ring A have a unique proper maximal ideal 0 # m C A. Show
that mM # M for any non zero finitely generated A-module M.
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Actual final written exam, May 20, 2008.

Notes on marks. The problems are subdivided into several questions. Complete answer on each question
gives you 5 points. Problems and questions can be solved in any order. Total sum > 35 points is sufficient
for getting the maximal examination mark «A».

Problem 1. Let us fix (n + 1) degrees dy,dy,...,d, and write Py, = PS%V* for the space of degree d;
hypersurfaces in P,, = P(V).
a) (5 points) Show that I' = {(Sp, S1,...,5n, p) € Py, x---Pn, xXPp | p € FT%O Sy} is an irreducible
v=
projective variety.
b) (5 points) Find dimT.
c) (5 points) Show that there exists a polynomial R in the coefficients of homogeneous forms
Fy, Fy, ..., F, of degrees dgy,dy,...,d, in variables (zg,z1, ..., %) such that R = 0 iff the

system of equations F,(xg,x1, ..., z,) = 0 (0 < v < n) has a non zero solution. How does R
look like for a system of linear forms?

Problem 2. Write M for the projective space of m X n matrices considered up to proportionality. Use
appropriate incidence variety {(L, F') | L C ker F'} (where L is a subspace and F' is a matrix)

a) (5 points) to show that the matrices of rank < k form an irreducible projective subvariety
M, C M,

b) (5 points) to find dim M.

Problem 3. Use the claim that an algebra A equipped with an action of a finite group G is integer over
the subalgebra of G-invariants A% C A to solve the following problems:

a) (5 points) Let a finite group G act on an affine algebraic variety X by regular automorphisms.
Construct an affine algebraic variety X/G and a finite regular surjection X — X/G whose
fibers are exactly G-orbits.

b) (5 points) Show that X /G is universal in the following sense: for any regular morphism of affine
algebraic varieties X —%. ¥V such that p(gx) = @(x) for all g € G and all x € X there exists a
unique regular morphism G/ X %+ ¥ such that YT = .

c) (5 points) Let the symmetric group &,, act on the affine space A, by the permutations of
coordinates. Describe A, /S,,.

Problem 4. Let P = Gr(2,4) C P5 = P(A%2V) be the grassmannian of lines in P3 = P(V'). Show that
a) (5 points) P does not contain 3-dimensional projective subspaces;

b) (5 points) 2-dimensional planes on P are exhausted by two families parameterized by P(V') and
P(V*) respectively: a plane of the first family II, C P, p € P(V), consists of all lines passing
through the point p; a plane of the second family Il C P, 7 € P(V*), consists of all lines lying
inside the plane w C P(V'); moreover, any two planes of the same family are intersecting in one
point and any two planes from divers families either have empty intersection or are intersected
along some line lying on P;

c) (5 points) for any line L C P there exist a unique pair (p,7) € P(V) x P(V*) such that
L =1I,N1L,.



