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§1.Projetive Spaes.1.1.Polynomials. Let V be n-dimensional vetor spae over an arbitrary �eld k. Its dual spae V ∗ isthe spae of all k-linear maps V - k. Given a basis e1; e2; : : : ; en for V , its dual basis for V ∗ onsistsof the oordinate forms x1; x2; : : : ; xn de�ned by presriptionsxi(ej) = { 1 , if i = j0 , otherwise .One an treat eah polynomial f ∈ k[x1; x2; : : : ; xn℄ as a funtion on V whose value at a vetor v ∈ Vwith oordinates (v1; v2; : : : ; vn) w. r. t. the basis (e1; e2; : : : ; en) is equal to f(v1; v2; : : : ; vn), i. e. to theresult of substitution of values vi ∈ k instead of the variables xi. This gives k-algebra homomorphism' : k[x1; x2; : : : ; xn℄ - {k-valued funtions on V } : (1-1)1.1.1.LEMMA. The homomorphism (1-1) is injetive1 i� k is in�nite.Proof. If k is �nite and onsists of q elements, then the spae of k-valued funtions on V onsists of qqn elements andis �nite as well. Sine the polynomial algebra is in�nite, ker' 6= 0. The inverse argumentation uses the indutionon n = dimV . When n = 1, any non zero polynomial f(x) has no more than deg f roots. Thus, f(x) ≡ 0 assoon f(v) = 0 for in�nitely many v∈V ≃ k. For n > 1 we an write a polynomial f as a polynomial in xn withthe oeÆients in k[x1; x2; : : : ; xn−1℄ : f(x1; x2; : : : ; xn) = ∑� f�(x1; x2; : : : ; xn−1) · x�n . Evaluating all f� at anarbitrary point (v1; v2; : : : ; vn−1) ∈ kn−1, we get a polynomial in xn with onstant oeÆients and identially zerovalues. It should be the zero polynomial by the above reason. Hene, eah f� gives the zero funtion on kn−1. Bythe indutive assumption, all f� = 0 as the polynomials. �1.2.AÆne spae An = A(V ), of dimension n, is assoiated with n-dimensional vetor spae V . Thepoints of A(V ) are the vetors of V . The point orresponding to the zero vetor is alled the origin andis denoted it by O. All other points an be imagined as �the ends� of non zero vetors �drawn� from theorigin. The homomorphism (1-1) allows to treat the polynomials as the funtions on A(V ). Althoughthis onstrution does depend on the hoie of a basis in V , the resulting spae of funtions on A(V ),i. e. the image of homomorphism (1-1), does not. It is alled an algebra of polynomial (or algebrai)funtions on A(V ). A subset X ⊂ A(V ) is alled an aÆne algebrai variety , if it an be de�ned by some(maybe in�nite) system of polynomial equations.1.3.Projetive spae Pn = P(V ), of dimension n, is assoiated with a vetor spae V of dimension
Othe in�nity U∞

an aÆne hart U
•

•

•

•

Fig 1⋄1. The projetive world.

(n+ 1). By the de�nition, the points of P(V ) are 1-dimensional vetor subspaes in V or, equivalently,the lines in An+1 = A(V ) passing through the origin. To seethem as �the usual points� one should use a sreen, i. e. someaÆne hyperplane of odimension one U ⊂ A(V ), whih does notontain the origin like on �g 1⋄1. Suh a sreen is alled an aÆnehart on P(V ). Of ourse, no aÆne hart does over the whole of
P(V ). The di�erene U∞ def= Pn \ U onsists of all lines lying ina parallel opy of U drawn through O. It is naturally identi�edwith Pn−1 = P(U). Thus, Pn = U ⊔ U∞ = An ⊔ Pn−1. Iteratingthis deomposition, one an split Pn into disjoint union of aÆnespaes: Pn = An ⊔ An−1 ⊔ Pn−2 = · · · = An ⊔ An−1 ⊔ : : : ⊔ A0.1.4.Global homogeneous oordinates. Let us �x a basisfor V and use it to write vetors x ∈ V as the oordinate rowsx = (x0; x1; : : : ; xn). Two vetors x; y ∈ V represent the samepoint p ∈ P(V ) i� they are proportional, i. e. x� = � y� for all � = 0; 1; : : : ; n and some non zero �∈k.1i. e. di�erent polynomials always give the di�erent polynomial funtions on V



4 Algebrai Geometry. Start Up Course.Thus, the point p ∈ P(V ) an be oordinated by the olletion of ratios (x0 : x1 : : : : : xn). This ratiosare alled homogeneous oordinates on P(V ) w. r. t. the hosen basis of V .Sine we have usually f(x) 6= f(�x) for a non zero polynomial f ∈ k[x0; x1; : : : ; xn℄, the polynomialsdo not produe the funtions on P(V ) any more. But if f is a homogeneous polynomial, say of degreed > 0, then its zero set (f)0 def= { v ∈ V | f(v) = 0 } is well de�ned in P(V ), beause f(x) = 0 ⇐⇒f(�x) = �d f(x) = 0. This zero set is alled a projetive hypersurfae of degree d. The intersetions ofsuh hypersurfaes1 are alled projetive algebrai varieties.For example, the equation x20 + x21 = x22 de�nes a urve C ⊂ P2. When har (k) 6= 2, this urve isalled non degenerate plane oni.We write Sd(V ∗) ⊂ k[x0; x1; : : : ; xn℄ for the subspae of all homogeneous polynomials of degree d.Note that as a vetor spae over k the polynomial algebra splits into the diret sum
k[x0; x1; : : : ; xn℄ = ⊕d>0Sd(V ∗) ; and Sk(V ∗) · S`(V ∗) ⊂ Sk+`(V ∗) ;i. e. k[x0; x1; : : : ; xn℄ is a graded algebra with graded omponents Sd(V ∗). Sine proportional equationsde�ne the same hypersurfaes, the hypersurfaes S ⊂ P(V ) of degree d orrespond to the points of theprojetive spae P(Sd(V ∗)).1.5.Loal aÆne oordinates. Any aÆne hart U ⊂ A(V ) an by uniquely given by the equationx2

x0 x1
•

Fig 1⋄2. The one.

�(x) = 1, where �∈V ∗. We will write U� for this hart. One dimensional subspae spanned by v ∈ V isvisible in hart U� i� �(v) 6= 0. A point that represents this subspaein U� is v=�(v) ∈ U . If �x some n linear forms �1; �2; : : : ; �n ∈ V ∗suh that n + 1 forms �;�1; �2; : : : ; �n form a basis of V ∗, we an usetheir restritions onto U as loal aÆne oordinates inside U� ⊂ Pn. Interms of these oordinates, a point p ∈ Pn orresponding to v ∈ V isoordinated by n numbers �i(v=�(v)), 1 6 i 6 n. These oordinatesdepend on � and the hoie of �i's. Note that they are rational linearfrational funtions of the homogeneous oordinates and a sentene �pis running away from U� to in�nity� means nothing but ��(p) → 0�,whih leads to unbounded inreasing of the loal aÆne oordinates.1.5.1.Example: aÆne onis. Let us onsider loal equations for the planeoni x20 + x21 = x22 (1-2)in some aÆne harts. In the hart Ux0 , given by the equation {x0 = 1}, we an hose loal aÆne oordinatest1 = x1|U0 = x1=x0 and t2 = x2|Ux0 = x2=x0. Dividing the both sides of (1-2) by x22, we get for C ∩ U0 theequation t22− t21 = 1, i. e. C ∩Ux0 is a hyperbola. Similarly, in a hart Ux2 = {x0 = 1} with loal aÆne oordinatest0 = x0=x2, t1 = x1=x2 we get the equation t20 + t21 = 1, i. e. C ∩ Ux2 is a irle. Finally, onsider a hart Ux2−x1given by x2 − x1 = 1 with loal aÆne oordinates t0 = x0|Ux2−x1 = x0x2 − x1 , t1 = (x2 + x1)|Ux2−x1 = x2 + x1x2 − x1 .After dividing by (x2 − x1)2 and some eliminations, we see that C ∩ Ux2−x1 is the parabola t1 = t20.Exerise 1.1. The aÆne one x20 + x21 = x22 in A3 is drawn on �g 1⋄2. Piture there eah of 3 previous aÆneharts and outline their intersetions with the one.1.6.Projetive losure. Any aÆne algebrai variety X ⊂ An is always an aÆne piee of projetivealgebrai variety X̃ ⊂ Pn alled a projetive losure of X. Indeed, if X is given by polynomial equations
{ f�(t1; t2; : : : ; tn) = 0 }, we substitute ti = xi=x0 and multiply the �-th equation by xdeg f�0 . Then theresulting equations f̃�(x0; x1; : : : ; xn) = 0 beome homogeneous and de�ne a projetive algebrai varietyX̃ ⊂ Pn suh that X̃ ∩ Ux0 = X, where Ux0 is the aÆne hart x0 = 1. Geometrially, X̃ is the union ofX with all its asymptoti diretions. Thus, the projetive langauge allows to treat the aÆne asymptotidiretions as ordinary points lying at in�nity.1.7. Standard aÆne overing and gluing rules. Clearly, the whole of Pn is overed by (n+1) aÆneharts U� def= Ux� given in An+1 by equations x� = 1. This overing is alled the standard aÆne overing .1maybe in�nite families of hypersurfaes of di�erent degrees



§ 1. Projetive Spaes. 5For eah � = 0; 1; : : : ; n we take n formst(�)i = xi|U� = xix� ; where 0 6 i 6 n ; i 6= �as the standard loal aÆne oordinates on U� . Topologially, this means that Pn is onstruted from (n+1) distint opies of An denoted as U0; U1; : : : ; Un by gluing them together along the atual intersetionsU�∩U� ⊂ Pn (i. e. a point of U� is identi�ed with a point of U� under this gluing rules i� they orrespondto the same point of Pn). In term of the homogeneous oordinates, the intersetion U� ∩ U� onsists ofall x suh that both x� and x� are non zero. This lous is presented inside U� and U� by inequalitiest(�)� 6= 0 and t(�)� 6= 0 respetively. Thus a point t(�) ∈ U� is glued with a point t(�) ∈ U� i�t(�)� = 1=t(�)� and t(�)i = t(�)i =t(�)� for i 6= �; � :The right hand sides of these equations are alled the transition funtions from t(�) to t(�) over U� ∩U� .For example, P1 an be produed from two opies of A1 by identifying the point t in one of themwith the point 1=t in the other for all t 6= 0.Exerise 1.2∗. If you have some experiene in smooth topology, prove that real and omplex projetive linesare analyti manifolds isomorphi to the irle S1 (in real ase) and to the Riemann sphere S2 (in omplexase).1.8.Projetive subspaes. A losed projetive algebrai subset is alled a projetive subspae if itan be given by a system of linear homogeneous equations. Any projetive subspae L ⊂ P(V ) has aform L = P(W ), where W ⊂ V is a vetor subspae. Note that 0-dimensional projetive subspaes1oinide with the points. Sine odimP(V )P(W ) = odimVW , we have L1∩L2 6= ∅ for any two projetivesubspaes L1 and L2 suh that odimL1 + odimL2 6 n. For example, any two lines on P2 have nonempty intersetion2.Two projetive subspaes L1 and L2 in Pn are alled omplementary to eah other, if
• p = (1: 0 : 1)(0 : 0 : 1)Q

q(t′) x0t′
x1 q(t)t

` • •

•

•

•

Fig 1⋄3. Projeting a oni.

L1 ∩ L2 = ∅ and dimL1 + dimL2 = n− 1 :For example, any two skew lines in 3-dimensional spae areomplementary.Exerise 1.3. Show that P(U) and P(W ) are omplementary in
P(V ) i� V = U ⊕W .1.8.1.LEMMA. If L1; L2 ⊂ P(V ) are two omplementarylinear subspaes, then any point p ∈ P(V ) \ (L1 ∪ L2) lies ona unique line rossing the both subspaes.Proof. We have V = U1⊕U2, where P(Ui) = Li. So, any v∈V has aunique deomposition v = u1+u2 with ui∈Ui. If v 6∈ U1 ∪U2, thenboth ui, u2 are non zero and span a unique 2-dimensional subspaethat ontains v and has non zero intersetions with both Ui. �1.9.Projetions. For any two omplementary projetivesubspaes L1; L2 ⊂ Pn, a projetion from L1 onto L2 is a map �L1L2 : (Pn \ L1) - L2 that sendsany point q ∈ L2 to itself and any point p ∈ Pn \ (L1 ⊔ L2) to ` ∩ L2, where ` is the unique linepassing through p and rossing both L1 and L2 in aordane with n◦ 1.8.1. In homogeneous oordi-nates (x0 : x1 : : : : : xn) suh that L1 is oordinated by (x0 : x1 : : : : : xm) and L2 is oordinated by(xm+1 : xm+2 : : : : : xn), the projetion �L1L2 is nothing but taking x� = 0 for 0 6 � 6 (m+ 1).1.9.1.Example: projeting a oni onto a line. Consider the projetion �p̀ : Q - ` of the plane oni (1-2)onto the line ` = {x0 = 0} from the point p = (1 : 0 : 1) ∈ Q. Inside the standard aÆne hart U2, where x2 = 1,it looks like on �g 1⋄3. It is bijetive, beause the penil of all lines passing through p is bijetively parameterized1that is, P0 = P(k1)2in terms of A3 this means that any two planes ontaining the origin are interseted along a line



6 Algebrai Geometry. Start Up Course.by the points t ∈ ` and any suh a line (pt) intersets Q exatly in one more point q = q(t) in addition to pexept for the the tangent line at p, whih is given by x0 = x2 and rosses ` at the point1 t = (0 : 1 : 0)orresponding to q(t) = p itself. Moreover, this bijetion is birational , i. e. the orresponding (q0 : q1 : q2) ∈ Qand (0 : t1 : t2) ∈ L are rational algebrai funtions of eah other. Namely, (t1 : t2) = ( q1 : (q2 − q0) ) and(q0 : q1 : q2) = ( (t21 − t22) : 2 t1t2 : (t21 + t22) ).Exerise 1.4. Chek these formulas and note that while (t1; t2) runs through Z × Z the seond formula givesthe full list of the pythagorian triples (q0 : q1 : q2) (i. e. all the right triangles with integer side lengths).1.10.Matrix notations for linear maps. Let Hom(U;W ) be the spae of all k-linear maps fromn-dimensional vetor spae U to m-dimensional vetor spae W . Denote by Matm×n(k) the spae ofmatries with m rows, n olumns, and entries in the �eld k. Any pair of basises {u1; u2; : : : ; un} ⊂ U and
{w1; w2; : : : ; wm} ⊂ W presents an isomorphism Hom(U;W ) ∼- Matm×n(k) that sends an operatorU �- W to a matrix A = (aij) whose j-th olumn onsists of m oordinates of the vetor �(uj) ∈ Ww. r. t. the basis {w1; w2; : : : ; wm}, i. e. �(uj) = m∑�=1 a�j w� or, using the matrix multipliation,(�(u1); �(u2); : : : ; �(un)) = (w1; w2; : : : ; wm) ·A :Let us write tx and ty for the olumns obtained by transposing oordinate rows of x = (x1; x2; : : : ; xm) ∈ Uand y = (y1; y2; : : : ; yn) = �(x) ∈W . Then(w1; w2; : : : ; wm) · ty = �(x) = �((u1; u2; : : : ; un) · tx) == (�(u1); �(u2); : : : ; �(un)) · tx = (w1; w2; : : : ; wm) ·A · tximplies that ty = A · tx.1.11.Linear projetive transformations. If dimU = dimW = (n+1), then any linear isomorphismU �- W indues the bijetion P(U) �- P(W ), whih is alled the projetive linear transformationor the linear isomorphism. A point set {p1; p2; : : : ; pm} ⊂ Pn is alled linearly general , if any (n+ 1) ofpi don't lay together in any hyperplane Pn−1 ⊂ Pn. Equivalently, the points {pi} are linearly general in
Pn = P(V ) i� (n+ 1) vetors representing any (n+ 1) of them always form a basis of V .1.11.1.LEMMA. For any two linearly general olletions of (n+2) points {p0; p1; : : : ; pn+1} ∈ P(U) and
{q0; q1; : : : ; qn+1} ∈ P(V ), where dimU = dimV = (n + 1), there exists a unique up to proportionalitylinear isomorphism V �- W suh that �(pi) = qi ∀i. In partiular, two matries give the sameprojetive linear transformation i� they are proportional.Proof. Fix some vetors ui and wi representing the points pi and qi. By the linear generality, we an take
{u1; u2; : : : ; un+1} and {w1; w2; : : : ; wn+1} as the basises in U and W and identify a map � ∈ Hom(U;W ) bythe square matrix in these basises. Then, �(pi) = qi for 1 6 i 6 (n + 1) i� the matrix A of � is diagonal, saywith (d1; d2; : : : ; dn+1) on the main diagonal. Now onsider the �rst vetors u0 and w0. Again by the lineargenerality, all the oordinates of u0 = (x1; x2; : : : ; xn+1) w. r. t. the basis {ui}16i6(n+1) and all the oordinates ofw0 = (y1; y2; : : : ; yn+1) w. r. t. the basis {wi}16i6(n+1) are non zero. Sine the oordinates of �(u0) are proportionalto the ones of w0, we have yi : yj = (dixi) : (djxj) ∀ i; j. Hene, all di are uniquely reovered from just one ofthem, say d1, as di = d1 · (yix1) : (xiy1). �Exerise 1.5. Let `1 and `2 be two lines on P2. Fix any point p outside `1 ∪ `2 and onsider projetivelinear isomorphism `1 p- `2 that sends t∈ `1 to the intersetion point (tp) ∩ `2. Chek that p is a linearisomorphism.1.12.Linear projetive group. All linear isomorphisms V - V form a group denoted by GL(V ).It ats on P(V ). By n◦ 1.11.1, the kernel of this ation oinides with the subgroup of all salar di-latations H ⊂ GL(V ). Hene, the group of all projetive linear automorphisms of P(V ) is equal to thefator group GL(V )=H, whih is denoted by PGL(V ) and alled the projetive linear group. Fixing abasis {e0; e1; : : : ; en} ⊂ V , we an identify GL(V ) with the group GLn+1(k) ⊂ Matn+1(k) of all non1this intersetion point lies at the in�nity on �g 1⋄3



§ 1. Projetive Spaes. 7degenerated square matries. Under this identi�ation the dilatations go to the salar diagonal matriesand PGL(V ) turns into the group PGLn+1(k) def= GLn+1(k)={salar diagonal matries �E} , of all nondegenerate square matries onsidered up to proportionality.1.12.1.Example: linear frational group and ross-ratio. PGL2(k) onsists of all 2× 2 - matries (a b d) withad − b 6= 0 onsidered up to proportionality. It ats on P1 via (x0 : x1) 7−→ ( (ax0 + bx1) : (x0 + dx1) ) . Inthe standard aÆne hart U0 ≃ A1 with aÆne oordinate t = x1=x0 this ation looks like the linear frationaltransformation t 7−→ (t+ d)=(at+ b) .Exerise 1.6. Verify by the straightforward omputation that (AB)(t) = A(B(t)).Theorem n◦ 1.11.1 says that for any 3 di�erent points p, q, r there exists a unique linear frational transformation �suh that �(p) = 0, �(q) = 1, and �(r) =∞. This is lear, beause p 7→ 0 and r 7→ ∞ fore suh a transformationto take t �7−→ # · (t − p)=(t − r), where # ∈ k. Substituting t = q, we get # = (q − r)=(q − p), i. e. the requiredtransformation is t 7−→ q − rq − p · t− pt− r :The right hand site is alled the ross-ratio of 4 points t, p, q, r on P1.Exerise 1.7. Show that the ross-ratio does not depend on hoie of oordinates and is invariant under theation of PGL2 on the quadruples of points.1.12.2.PROPOSITION. If a bijetive mapping
P1 \ {�nite olletion of points} '- P1 \ {�nite olletion of points}an be given by a formula '(x0 : x1) = (f0(x0; x1) : f1(x0; x1)), where fi are rational algebrai funtions,then ' has to be a linear frational transformation.Proof. Multiplying (f0 : f1) by the ommon denominator and eliminating ommon fators we an assume thatfi are oprime polynomials. To produe a well de�ned map, they have to be homogeneous of the same positivedegree d. Sine ' is bijetive, eah # = (#0 : #1) ∈ P1 \ {�nite olletion of points} has preisely one preimage. Thismeans that for in�nitely many values of # the homogeneous equation#1 · f0(x0; x1)− #0 · f1(x0; x1) = 0 (1-3)has just one root up to proportionality, i. e. its left hand side is a pure d-th power of some linear form in (x0 : x1).All homogeneous polynomials of degree d in (x0 : x1) onsidered up to a salar fator form the projetive spae

Pd = P(SdU∗), where U is the 2-dimensional vetor subspae underlying P1 in question. When # varies through
P1, the equations (1-3) draw a straight line (f0f1) inside this Pd whereas pure d-th powers of linear forms formthere some twisted urve, whih is alled the Veronese urve of degree d. Lemma n◦ 1.12.3 below implies that ford > 2 any 3 points on the Veronese urve are non ollinear. Sine in our ase an in�nite set of points on the line(1-3) lies on the Veronese urve, we onlude that d = 1, i. e. ' is a projetive linear isomorphism. �1.12.3.LEMMA. Let us de�ne the Veronese urve of degree d as an image of the Veronese map

P1 = P (U∗) vd- Pd = P(Sd(U∗)) (1-4)that takes a linear form  ∈ U∗ to its d-th power  d ∈ Sd(U∗). If the ground �eld k ontains morethan d elements, then for eah k = 2; 3; : : : ; d any (k+1) distint points of the Veronese urve an notbelong to the same (k − 1)-dimensional projetive subspae.Proof. Let us write  ∈ U∗ and f ∈ Sd(U∗) as  = �0x0 + �1x1 , f = d∑�=0 a� · (d�)xd−�0 x�1 and use (�0 : �1),(a0 : a1 : : : : : ad) as homogeneous oordinates on P1 and Pd respetively. It is enough to verify the ase k = d,whih implies all the other ases. Consider the intersetion of the Veronese urve with (d−1)-dimensional projetivehyperplane given by a linear equation ∑A�a� = 0. Its preimage under the Veronese map (1-4) onsists of all(�0 : �1) ∈ P1 satisfying non trivial homogeneous equation∑A� ·�d−�0 ��1 = 0 of degree d. Up to proportionality,it has at most d+ 1 distint roots. �



8 Algebrai Geometry. Start Up Course.
§2.Projetive quadris.In §2 we will assume that hark 6= 2 .2.1.Quadrati and bilinear forms. A zero set Q ⊂ P(V ) of non zero quadrati form q ∈ S2V ∗ isalled a projetive quadri. If 2 6= 0 in k, then the expliit expression for q in homogeneous oordinatesan be written as q(x) =∑i;j aij xixj = x ·A · tx ;where x = (x0; x1; : : : ; xn) is the oordinate row, tx is its transposed olumn version, and A = (aij) is asymmetri matrix over k, whose non-diagonal element aij = aji equals one half of the oeÆient at xixjin q. This matrix is alled the Gram matrix of q. In other words, there exists a unique bilinear formq̃(u;w) on V × V suh that q(x) = q̃(x; x). This form is alled the polarization of q. It an be expressedthrough q in the following pairwise equivalent ways:q̃(x; y) =∑ij aij xiyj = x ·A · ty = 12 ∑i yi �q(x)�xi = q(x+ y)− q(x) − q(y)2 = q(x+ y)− q(x− y)4Note that q̃ an be treated as a kind of salar produt on V . Then the elements of the Gram matrixbeome the salar produts of basi vetors: aij = q̃(ei; ej). Thus, taking another basis(e′0; e′1; : : : ; e′n) = (e0; e1; : : : ; en) · C ;we hange the Gram matrix by the rule A 7−→ A′ = tC ·A · C .Note that under hanges of basis the determinant of the Gram matrix the Gram determinant det q def=detA is multiplied by non zero square from k∗. Thus, its lass modulo multipliation by non zero squares[det q℄ ∈ k=k2 does not depend on a hoie of basis. Two quadris are alled isomorphi or projetivelyequivalent , if their equations an be transformed to eah other by a linear hange of basis. A quadri isalled smooth, if det q 6= 0. Otherwise, it is alled singular . We see that projetive equivalene preservessmoothness and the lass of det q in k∗=k∗2, where k∗ is the multipliative group of k.2.1.1.PROPOSITION (LAGRANGE THEOREM). The Gram matrix of any quadrati form q on V anbe diagonalized by appropriate hange of basis in V .Proof. If q ≡ 0, its Gram matrix is already diagonal. If not, then q(v) = q̃(v; v) 6= 0 for some v∈V . Take this v asthe �rst vetor of the basis being onstruted. Note that any u∈V is uniquely deomposed as u = �v+w with � ∈ kand w ∈ v⊥ = {w ∈ V | q̃(v; w) = 0 }. Indeed, the only possibility is � = q̃(v; u)=q̃(v; v) , w = u−(q̃(v; u)=q̃(v; v))·vand it works. Thus, V = k · v ⊕ v⊥ and we an repeat the arguments to v⊥ * V instead of V e. t. . �2.1.2.COROLLARY. If k is algebraially losed, then any quadri an be de�ned in appropriateoordinates by an equation of the form∑x2i = 0. In partiular, all non singular quadris are projetivelyequivalent.Proof. Diagonal elements of the Gram matrix beome units after the hange ei 7−→ ei=√q(ei). �2.1.3.Example: quadris on P1 in appropriate oordinates are given either by an equation a x20+ b x21 = 0 or byan equation a x20 = 0. The seond quadri is alled a double point , beause it onsists of just one point (0 : 1), whihhas �multipliity 2� in any reasonable sense. Clearly, it is singular (i. e. det q = 0). The �rst quadri is smooth(i. e. det q ∈ k∗) and either onsists of two distint points or is empty. More preisely, if −det q = −ab = Æ2 isa square in k∗, then Q = { (−Æ : a) ; (Æ : a) }. But if −b=a ≡ −det q (mod k∗2) is not a square, then evidentlyQ = ∅. Note that the latter ase is impossible when k is algebraially losed.2.2.Quadri and line. It follows from the above example that there are preisely four positionalrelationships of a quadri Q with a line ` : either ` ⊂ Q, or ` ∩Q onsists of 2 distint points, or ` ∩Qis a double point, or ` ∩Q = ∅. Moreover, the latter ase is impossible when k is algebraially losed.A line ` is alled a tangent line to a quadri Q, if ` either lies on Q or rosses Q via a double point.



§ 2. Projetive quadris. 92.3.Correlations. Any quadrati form q on V indues the linear map V bq- V ∗ that sends a vetorv∈V to the linear form q̂(v) : w 7−→ q̃(w; v)The map q̂ is alled the orrelation (or the polarity) of the quadrati form q. The matrix of q̂ written indual bases {ei} ⊂ V , {xi} ⊂ V ∗ oinides with the Gram matrix A. In partiular, q is smooth i� q̂ is anisomorphism. The spae ker(q) def= ker q̂ = { v∈V | q̃(w; v) = 0 ∀w∈V }is alled the kernel of q. Its projetivization SingQ def= P(ker q) ⊂ P(V ) is alled a vertex spae of Q andodimP(V )SingQ is alled a orank of Q.2.3.1.THEOREM. The intersetion Q′ = L∩Q is non singular for any projetive subspae L ⊂ P(V )omplementary to SingQ; moreover, Q is the one over Q′ with the vertex spae SingQ, i. e. Q is theunion of all lines rossing both Q′ and SingQ.Proof. Take any diret deomposition V = ker q⊕U and let L = P(U). If u∈U satisfy q̃(u; u′) = 0 ∀u′∈U , thenautomatially q̃(u; v) = 0 ∀ v∈V and u = 0, beause of ker q∩U = 0. Sine Q′ = Q∩L is given by the restritionq|U , it is non singular. Further, for any line ` = P(W ) suh that dim W ∩ kerQ = 1 we have dim W ∩ U = 1 andork q|U > 1. So, if `∩ SingQ = {p} is just one point, then `∩L 6= ∅ and either ` ⊂ Q or `∩Q{p}. That's all weneed. �2.3.2.COROLLARY. A quadri Q ⊂ Pn over an algebraially losed �eld is uniquely up to anisomorphism de�ned by its orank, whih an be equal to 0; 1; : : : ; n.Proof. Corank is the number of diagonal zeros in the diagonal Gram matrix. �2.4.Tangent spae TpQ to a quadri Q at a point p ∈Q is de�ned as the union of all tangent linespassing through p.2.4.1.LEMMA. Let p and p′ be distint points and p∈Q = (q)0. The line ` = (p p′) is tangent to Qi� q̃(p; p′) = 0, i. e. i� p and p′ are orthogonal with respet to polarization of q.Proof. Take some vetors u; u′ representing p and p′. Then ` = P(U). The restrition q|U has the Gram matrix
( q̃(u; u) q̃(u; u′)q̃(u′; u) q̃(u′; u′)) :It is singular i� q̃(u; u′) = 0, beause of q̃(u; u) = 0 by the lemma assumption. �2.4.2.COROLLARY. p ∈ SingQ ⇐⇒ TpQ is the whole spae ⇐⇒ �q�xi (p) = 0 ∀i. �2.4.3.COROLLARY. If p ∈ (Q \ SingQ), then TpQ = {x ∈ Pn | q̃(p; x) = 0} is a hyperplane ofodimension one. �2.4.4.COROLLARY. Let p 6∈ Q and a hyperplane C ⊂ Pn be given by the equation q̃(p; x) = 0 in x.Then Q ∩ L onsists of all points where Q is touhed by the tangent lines oming from p. �2.5.Polar mappings. The spaes P(V ) and P(V ∗) are alled dual and denoted by Pn and P×n when anature of V is not essential. Sine any odimension 1 subspae U ⊂ V is de�ned by linear form �∈V ∗,whih is unique up to proportionality, P×n is nothing but the spae of hyperplanes in Pn and vie versa.If Q = (q)0 ⊂ P(V ) is non singular, then the linear isomorphism P(V ) ∼- P(V ∗) indued by theorrelation q̂ is alled a polarity of Q. It sends a point p∈ Pn to the hyperplane L ⊂ Pn given by theequation q̃(p; x) = 0 like in the previous Corollary. L is alled a polar of p and p is alled a pole of L withrespet to q. So, Q is just the set of all points lying on their own polars. Note that some non singularquadrati forms q an produe empty quadris Q over non losed �elds but their polar mappings q̂ arealways visible.



10 Algebrai Geometry. Start Up Course.Exerise 2.1. Show that p lies on the polar of q i� q lies on the polar of p (for any pair of distint points andany polarity).Exerise 2.2. Consider a irle in the real Eulidean aÆne plane R2. How to draw the polar of a point thatlies: a) outside b) inside this irle? Desribe geometrially the polarity de�ned by the �imaginary� irle�given� in R2 by the equation x2 + y2 = −1.2.5.1.PROPOSITION. Two polarities oinide i� the orresponding quadrati forms are proportional.Proof. This follows from n◦ 1.11.1 �2.5.2.COROLLARY. Over an algebraially losed �eld two quadris oinide i� their quadrati equa-tions are proportional.Proof. Let Q = Q′. We an suppose that the quadris are non singular, beause their equations are not hangedunder diret summation with the kernel ker q = ker q′. Non singular ase is overed by the above proposition. �2.6.The spae of quadris. All the polarities on Pn = P(V ) are one-to-one parameterized by thepoints of the projetive spae
Pn(n+3)2 = P(S2V ∗) ;whih will be referred as a spae of quadris. Given a point p ∈ P(V ), the ondition q(p) = 0 is a linearondition on q ∈ P(S2V ∗), i. e. all quadris passing through a given point p form a projetive hyperplanein the spae of quadris. Sine any n(n+3)=2 hyperplanes in Pn(n+3)=2 have non empty intersetion, weome to the following quite helpful onlusion2.6.1.CLAIM. Any olletion of n(n+ 3)=2 points in Pn lies on some quadri. �2.7.Complex projetive onis. A quadri on the projetive plane is alled a projetive oni. Aprojetive oni over C, up to an isomorphism, oinides either with a double line x0 = 0, whih hasorank 2, or with a reduible oni1 x20 + x21 = 0, whih has orank 1, or with the non singular onix20 + x21 + x22 = 0. The spae of all onis in P2 = P(V ) is P5 = P(S2V ∗).2.7.1.Example: standard model for non singular oni. Let U be 2-dimensional vetor spae. Reall that thequadrati Veronese map

P(U∗) = P1 ⊂
v- P2 = P(S2U∗) (2-1)sends a linear form � to its square �2 (omp. with (n◦ 5.4.1)). If we think of P(S2U∗) as the spae of quadris on

P(U), then the Veronese embedding is a bijetion between the points of P1 and the singular quadris on P1, whihare the double points. Thus, the image of (2-1) is the projetive oniQV = { q ∈ S2U∗ | det q = 0 } ; (2-2)onsisting of singular quadris on P1. It is alled the Veronese oni.Let us �x a basis (x0; x1) for U∗ , indued basis {x20; 2x0x1; x21} for S2U∗ , and write � ∈ U∗ , q ∈ S2U∗ as�(x) = t0x0 + t1x1 , q(x) = q0 x20 + 2 q1 x0x1 + q2 x21. Using (t0 : t1) and (q0 : q1 : q2) as homogeneous oordinateson P(U∗) and P(S2(U∗)), we an desribe the oni (2-3) by equationq0q2 − q21 = 0 (2-3)and write the Veronese embedding (2-1) as(t0 : t1) 7−→ (q0 : q1 : q2) = (t20 : t0t1 : t21) : (2-4)This gives preise homogeneous quadrati parameterization for non singular oni (2-3). If k is algebraially losed,then any non singular oni Q ⊂ P2 an be identi�ed with QV by an appropriate basis hoie. This gives anotherway to produe a quadrati parameterization for a smooth plane oni besides one desribed in n◦ 1.9.1, where weused a projetion of the oni onto a line from a point lying on the oni.2.7.2.PROPOSITION. Two distint non singular onis have at most 4 intersetion points.Proof. Taking appropriate oordinates, we an identify the �rst oni with the Veronese oni, whih has quadratiparameterization x = v(t0; t1). If the seond oni is given by an equation q(x) = 0, then the t-parameters of theintersetion points satisfy the 4-th degree equation q(v(t)) = 0. �1i. e. a pair of rossing lines



§ 2. Projetive quadris. 112.7.3.COROLLARY. Any 5 points in P2 lay on some oni. It is unique i� no 4 of the points areollinear. If no 3 of the points are ollinear, then this oni is non singular.Proof. The existene of a oni follows from n◦ 2.6.1. Sine a singular oni is either a pair of rossing lines or adouble line, any quintuple of its points ontains a triple of ollinear points. Thus, if no 3 of 5 points are ollinear,a oni is smooth and unique by the previous proposition. If the quintuple ontains a triple of ollinear points,then the line passing through this triple has to be a omponent of any oni ontaining the quintuple. This foresthe oni to split into the union of this line and the line joining two remaining points. �2.8.Complex projetive quadris on P3, up to isomorphism, are: a double plane x20 = 0; a reduiblequadri x20+x21 = 0, whih is a pair of rossing planes (or a one with a line vertex over a pair of distintpoints on an omplementary line); a simple one x20+x21+x22 = 0, whih is a one with one point vertexover a non singular plane oni; and a non singular quadri x20 + x21 + x22 + x23 = 0. The non singularquadri also has muh more onvenient determinantal model alled the Segre quadri and desribed asfollows.Let us �x a pair of 2-dimensional vetor spaes U−, U+ and write W = Hom(U−; U+) for the spaeof all linear maps U− - U+. Then P3 = P(W ) onsists of non zero linear maps onsidered up toproportionality and an be identi�ed with the spae of non zero 2 × 2 - matries (�00 �01�10 �11) up to asalar fator. By the de�nition, the Segre quadriQS = {U− F- U+ ∣∣∣ rkF = 1} = {A = (�00 �01�10 �11) ∣∣∣∣ det(A) = �00�11 − �01�10 = 0} (2-5)onsists of all non zero but degenerate linear maps. It oinides with the image of the Segre embedding
P1 × P1 = P(U∗−)× P(U+) ⊂ s- P(Hom(U−; U+)) = P3that sends (�; v) ∈ U∗− × U+ to the rank 1 operator � ⊗ v : U− u 7→�(u)·v - U+ , whose image isspanned by v and the kernel is given by the linear equation � = 0.Indeed, any rank one operator U− F- U+ has 1-dimensional kernel, say, spanned by some v ∈ U+.Then F has to take any u ∈ U− to F (u) = �(u) ·v, where the oeÆient �(u) is k-linear in u, i. e. � ∈ U∗−.Thus, F = � ⊗ v and both �, v are unique up to proportionality.Exerise 2.3. Show that any m × n matrix A of rank one an be obtained as a matrix produt of m-olumnand n-row: A = t� · v for appropriate � = (�1; �2; : : : ; �m) ∈ km , v = (x1; x2; : : : ; xn) ∈ kn, whih are uniqueup to proportionality.Fixing some oordinates (�0 : �1) in U∗− and (t0 : t1) in U+, we an write the operator �⊗v by the matrix� ⊗ v = (�0t0 �1t0�0t1 �1t1) :So, the Segre embedding gives a rational parametrization�00 = �0t0 ; �01 = �1t0 ; �10 = �0t1 ; �11 = �1t1 : (2-6)for the quadri (2-5), where the parameter ( (�0 : �1) ; (t0 : t1) ) ∈ P1×P1. Note that P1×P1 is ruled bytwo families of �oordinate� lines � × P1 and P1 × t. Let us all them the �rst and the seond ruling linefamilies. Sine the parameterization (2-6) takes lines to lines, we get2.8.1.LEMMA. The Segre embedding sends eah oordinate line family to the ruling of QS by afamily of pairwise skew lines. These two line families exhaust all the lines on QS. Any two lines fromdi�erent families are interseting and eah point of QS is the intersetion point of two lines from di�erentfamilies.Proof. A line � × P1, where � = (�0 : �1) ∈ P(U∗−), goes to the set of all rank 1 matries with the ratio(1-st olumn) : (2-nd olumn) = �0 : �1 :



12 Algebrai Geometry. Start Up Course.They form a line in P3 given by two linear equations a00 : a01 = a10 : a11 = �0 : �1. Analogously, s(P1 × t), wheret = (t0 : t1) ∈ P(U+), goes to the line given in P3 by a00 : a10 = a01 : a11 = t0 : t1 and formed by all rank 1matries with the ratio (1-st row) : (2-nd row) = t0 : t1 :Sine the Segre embedding is bijetive, eah line family onsists of pairwise skew lines, any two lines from thedi�erent families are interseting, and for any x ∈ QS there is a pair of from the di�erent families that areinterseting at x. This fores QS ∩ TxQS to be a split oni and implies that there are no other lines on QS. �2.8.2.COROLLARY. Any 3 lines on P3 lie on some quadri. If the lines are mutually skew, then thisquadri is unique, non singular, and is ruled by all lines in P3 interseting all 3 given lines.Proof. The spae of quadris in P3 has dimension 3 · 6 : 2 = 9. Thus, any 9 points in P3 lay on some quadri. If wepik up a triple of distint points on eah line and draw a quadri through these 9 points, then this quadri willontain all 3 lines (omp. with n◦ 2.2). Sine a singular quadri does not ontain a triple of mutually skew lines,any quadri passing through 3 pairwise skew lines is non singular and is ruled by two families of lines. Clearly,the triple of given lines lies in the same family. Then the seond family an be desribed geometrially as the setof lines in P3 interseting all 3 given lines. Thus the quadri is unique. �Exerise 2.4. How many lines interset 4 given pairwise skew lines in P3?Exerise 2.5∗. How will the answer be hanged, if we replae a) P3 by A3 b) C by R ? Find all possiblesolutions and indiate those that are stable under small perturbations of the initial on�guration of 4 lines.2.9.Linear subspaes lying on a non singular quadri. The line rulings from n◦ 2.8.1 have higherdimensional versions as well. Let Qn ⊂ Pn = P(V ) be non singular quadri and L = P(W ) be a projetivesubspae lying on Qn.2.9.1.THEOREM. dimL 6

[n− 12 ], where [ ∗ ℄ means the integer part.Proof. Let Qn be given by a quadrati form q with the polarization q̃. ThenL ⊂ Qn ⇐⇒ q̃(w1; w2) = 0 ∀w1; w2 ∈W ⇐⇒ q̂(W ) ⊂ Ann (W ) = { �∈V ∗ | �(w) = 0 ∀w∈W } ;where q̂ : v 7−→ q̃(v; ∗) is the orrelation assoiated with Qn. Sine Qn smooth, this orrelation is injetive. Thus,dimW 6 dimAnnW = dimV − dimW and dimL = dimW − 1 6 (dim V )=2− 1 = [(n− 1)=2℄. �2.9.2.LEMMA. ork (H ∩Qn) 6 1 for any odimension 1 hyperplane H ⊂ Pn.Proof. If H = P(W ), then dimker (q|W ) 6 dim(W ∩ q̂−1(AnnW ) ) 6 dim q̂−1(AnnW ) = dimAnnW = 1. �2.9.3.LEMMA. For any x∈Qn the intersetion Qn ∩ TxQn is a simple one with the vertex x over anon singular quadri Qn−2 in an (n− 2)-dimensional projetive subspae in TxQn \ {x}.Proof. Sine TxQ = P(ker q̃(x; ∗)) and q̃(x; x) = q(x) = 0, the restrition of q onto TxQ has at least 1-dimensionalkernel presented by x itself. By the previous lemma this kernel is spaned by x. �2.9.4.THEOREM. Let dn = [(n−1)=2℄ be the upper bound from n◦ 2.9.1 and x ∈ Qn be an arbitrarypoint. Then dn-dimensional subspaes L ⊂ Qn passing through x stay in 1{1 orrespondene with(dn − 1)-dimensional subspaes lying on Qn−2.Proof. Fix some (n− 1)-dimensional projetive subspae H ⊂ TxQ \ {x} and present Qn ∩ TxQn as a simple oneruled by lines passing through x and some Qn−2 ⊂ H. Sine any L ⊂ Qn whih pass through x is ontained insideQn ∩ TxQn, it has to be the linear span of x and some (dn − 1)-dimensional subspae L′ ⊂ Qn−2. �For example, there are only 0-dimensional subspaes on Q1 and Q2. Next two quadris, Q3 and Q4,do not ontain planes. But any point x ∈ Q3 lies on two lines passing through x and 2 points ofQ1 ⊂ TxQ3 \ {x} and any point of Q4 belongs to 1-dimensional family of lines parameterized by thepoints of a non singular oni Q2 ⊂ TxQ4 \ {x}. Further, non singular quadri Q5 ⊂ P5 does not ontain3-dimensional subspaes but for any point x∈Q5 there are two 1-dimensional families of planes passingthrough x. Eah family is parameterized by the orresponding family of lines on Q3 ⊂ TxQ5\{x}, i. e. by
P1 atually.



§ 3. Working examples: onis, penils of lines, and plane drawings. 13
§3.Working examples: onis, penils of lines, and plane drawings.During this setion we ontinue to assume that hark 6= 2.3.1.Projetive duality. For any 0 6 m 6 (n − 1) there is a anonial bijetion between the m-dimensional projetive subspaes in Pn = P(V ) and the (n − 1−m)-dimensional ones in P×n def= P(V ∗).It sends a subspae L = P(U) to the subspae L× def= P(Ann (U)), whereAnn (U) def= { �∈V ∗ | �(u) = 0 ∀u∈U }is an annihilator of U . Note that L×× = L, sine AnnAnnU = { v ∈V | �(v) = 0 ∀ � ∈AnnU } = Uunder the natural identi�ation V ∗∗ ≃ V . The orrespondene L↔ L× is alled a projetive duality . Itinverts inlusions1 and linear inidenes2. The projetive duality translates the geometry on Pn to theone on P×n and bak. For example, in P2-ase we have the following ditionary:a line ` ⊂ P2 ←→ a point `×∈P×2the points p of the above line ` ←→ the lines p× passing through the above point `×the line passing through two points p1; p2 ∈ P2 ←→ the intersetion point for two lines p×1 ; p×2 ⊂ P×2the points p of some oni Q ←→ the tangent lines p× of some oni Q×the tangent lines ` to Q ←→ the points `× of Q×Exerise 3.1. Explain the last two items by proving that the tangent spaes of a non singular quadri Q ⊂ Pnorrespond to the points of some non singular quadri Q× ⊂ P×n . Show also that Q and Q× have inverseGram matries in dual bases of V and V ∗.Hint. If � = (�0; �1; : : : ; �n) ∈ V ∗ and x = (x0; x1; : : : ; xn) ∈ V in dual oordinate systems, then �(x) = � · tx.Let Q ⊂ P(V ), Q× ⊂ P(V ∗) have inverse Gram matries A, A−1. Sine TxQ = P(Ann �) ⇐⇒ � = x·A⇐⇒x = � ·A−1, we have x∈Q⇐⇒ x ·A · tx = 0 ⇐⇒

`� ·A−1´

·A · t`� ·A−1´ = 0 ⇐⇒ � ·A−1t� = 0 ⇐⇒ �∈Q×.3.1.1.COROLLARY. Any 5 lines on P2 without triple intersetions are tangent to unique smoothoni.Proof. This assertion is projetively dual to n◦ 2.7.3. Namely, let `i ∈ P2 be 5 given lines. There exists a uniqueoni Q× passing through 5 points `×i ∈P×2 . Then `i = `××i are tangent to the dual oni Q×× = Q ⊂ P2. �3.2. Projetive linear isomorphisms P1 - P1 via onis. Consider a non singular oni Q anda line ` and write Q �p̀- ` for the bijetive map given by projetion from a point p∈Q extended into pby sending p 7−→ ` ∩ TpQ.Exerise 3.2. Show that this bijetion is given by some rational algebrai funtions, whih express oordinatesof the orresponding points through eah other.Hint. To express the oordinates of t = �p̀(x) through x, you take speial oordinates where ` is given byx0 = 0 and p = (1 : 0 : 0); then t = (0 : x1 : x2). In order to get the inverse expression, only two skills arequite enough: linear equations solving and �nding the seond root for a quadrati equation with the �rstroot known. The both proedures have a rational output.So, if `1; `2 are two lines and p1; p2 are two distint points on some non singular oni Q, then theomposition p2p1Q def= �p2`2 ◦(�p1`1 )−1 gives a projetive linear isomorphism `1 ∼- `2 (see �g. �g 3⋄1). Infat, any projetive linear isomorphism `1 - `2 an be presented3 as p2p1Q for some Q and p1; p2 ∈ Q.Indeed, if  sends, say a1; b1; 1 ∈ `1 to a2; b2; 2 ∈ `2, we pik any p1, p2 suh that no 3 out of 5 pointsp1, p2, (a1 p1) ∩ (a2 p2), (b1 p1) ∩ (b2 p2), (1 p1) ∩ (2 p2) are ollinear (see �g 3⋄2) and draw Q throughthese 5 points. Then  = p2p1Q , beause both have the same ation on 3 points a1; b1; 1.1i. e. L1 ⊂ L2 ⇐⇒ L×1 ⊃ L×22i. e. L1; L2; : : : ; Lr are ontained in some m-dimensional subspae L i� L×1 ; L×2 ; : : : ; L×r ontain some (n − m − 1)-dimensional subspae L×; for example: 3 points are ollinear i� their dual 3 hyperplanes have ommon subspae ofodimension 23in in�nitely many di�erent ways
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Fig. 3⋄1. Composing projetions. Fig. 3⋄2. How to �nd p1, p2.3.3.Drawing a oni by the ruler. Let 5 distint points p1, p2, a, b,  lay on a non singular oniQ. Denote the line (a ) by `1, the line (b ) by `2, and the intersetion point (a p2) ∩ (b p1) by O(see �g 3⋄3). Then the projetive linear isomorphism `1 p2p1Q - `2 oinides with the simple projetivelinear isomorphism `1 O- `2, whih takes x∈ `1 to O(x) = (xO) ∩ `2 (indeed, the both send  7−→ ,a 7−→ d, e 7−→ b, where d = (a p2) ∩ `2 and e = (b p1) ∩ `1 | see �g 3⋄3).
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Fig. 3⋄3. Remarkable oinidene. Fig. 3⋄4. Traing a oni.This simple remark allows us to trae, using only the ruler, a dense point set on the oni passingthrough 5 given points p1; p2; : : : ; p5 (see �g 3⋄4). Namely, let `1 = (p3p4), `2 = (p4p5), O = (p1p6) ∩(p2p3). Then any line L ∋ O gives two intersetion points `1 ∩ L and `2 ∩ L. These points are sent toeah other by the projetive linear isomorphism O = p2p1Q . So, if we draw lines through p1 and `1 ∩L,and trough p2 and `2∩L, then the intersetion point x of these two lines has to lay on Q. On the �g 3⋄4the points x1, x2, x3 are onstruted by this way starting from the lines L1, L2, L3 passing through O.
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Fig. 3⋄5. Insribed hexagon. Fig. 3⋄6. Cirumsribed hexagon.



§ 3. Working examples: onis, penils of lines, and plane drawings. 153.3.1.PROPOSITION (PASCAL'S THEOREM). A hexagon p1; p2; : : : ; p6 is insribed into a non singularoni i� the points1 (p1p2) ∩ (p4p5), (p2p3) ∩ (p5p6), (p3p4) ∩ (p6p1) are ollinear (see �g 3⋄5).Proof. Draw the oni Q through 5 of pi exept for p4 and put `1 = (p1p6), `2 = (p1p2), y = (p5p6) ∩ (p2p3),x = (p3p4) ∩ `1, z = (xy) ∩ `2. Then z ∈ `2 is the image of x ∈ `1 under the projetive linear isomorphismy =p5p3 : `1 ∼- `2 like before. In partiular, the intersetion point (p3p4) ∩ (p5z) lays on Q. Hene, p4 ∈Q i�p4 = (p3p4) ∩ (p5z). �3.3.2.COROLLARY (BRIANCHON'S THEOREM). A hexagon p1; p2; : : : ; p6 is irumsribed arounda non singular oni i� its main diagonals (p1p4), (p2p5), (p3p6) are interseting at one point (see �g.�g 3⋄6).Proof. This is just the projetively dual version of the Pasal theorem. �3.4.Linear isomorphisms of penils. A family of geometrial �gures is referred as a penil , if it isnaturally parameterized by the projetive line. For example, all lines passing through a given point p∈P2form a penil, beause their equations run trough the line p×∈P×2 by projetive duality. More generally,there is a penil of hyperplanes H ⊂ Pn passing through a given subspae L ⊂ Pn of odimension 2.Suh a penil is denoted by |h − L| (read: �all hyperplanes ontaining L�) or by L× ∈ P×n . Given twosuh penils, say L×1 , L×2 and 3 points a; b;  ∈ Pn \ (L1 ∪ L2) suh that 3 hyperplanes from L×i passingthrough them are distint in the both penils, then these 3 points de�ne a projetive linear isomorphismL×1 ab- L×2 that sends 3 hyperplanes of the �rst penil passing through a; b;  to the orresponding onesfrom the seond penil.3.4.1.Example: linear identi�ation of two penils p×1 and p×2 on P2 is given by any 3 points a; b;  suh that any2 of them are not ollinear with p1 or p2. It sends (p1a) 7−→ (p2a), (p1b) 7−→ (p2b), (p1) 7−→ (p2). Let Q be the(unique!) oni passing trough 5 points p1, p2, a, b, . There are two di�erent ases (see �g 3⋄7{�g 3⋄8).x ∈ Q
ab(`x) `xO
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bxa
ab(`x) `xp2  p1

`•
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•

•••Fig. 3⋄7. Ellipti isomorphism of penils. Fig. 3⋄8. Paraboli isomorphism of penils.(A) Ellipti ase: Q is non singular, i. e. all 5 points are linearly general. In this ase the inidene graph2 ofab oinides with Q, beause the points of Q give the projetive linear isomorphism p×1 - p×2 that has thesame ation on a, b, . Moreover, the above disussions let us draw the line ab(`x) for a given (`x∈p×1 ) by theruler as follows (see �g 3⋄7). First mark the point O = (p1b) ∩ (p2); then �nd the intersetion point `x ∩ (a ),join it with O by a line, and mark the point where this line rosses (b ); then the line ab(`x) goes through thismarked point.(B) Paraboli ase: Q is reduible, i. e. splits in two lines: (p1p2) and, say, ` = (a b). This happens when ∈ (p1p2) (reall that no 2 points from a; b;  are ollinear with any of pi). In this ase the inidene graph forab oinides with the line ` (see �g 3⋄8).Dualizing these examples, we get geometrial lassi�ation of projetive linear isomorphisms `1 ∼- `2between two given lines on P2.3.4.2.COROLLARY. There are exatly two types of projetive linear isomorphisms `1 ∼- `2. Elliptiisomorphisms Q orrespond bijetively to the non singular onis Q touhing both `1 and `2. Suh Qsends x 7−→ y i� the line (x y) is tangent to Q (see �g 3⋄9). Paraboli isomorphisms L are parameterizedby the points L ∈ P2 \ (`1 ∪ `2). Suh L sends x 7−→ y i� the line (x y) pass through L (see �g 3⋄10). �1i. e. 3 intersetion points of the line pairs passing through the opposite sides of the hexagon2i. e. a urve traed by the intersetion points ` ∩ ab(`) while ` runs through p×1
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Fig. 3⋄9. Ellipti isomorphism of lines. Fig. 3⋄10. Paraboli isomorphism of lines.3.5.Towards Ponelet's porism. Given two non singular onis Q, Q′, we an try to draw an n-gonesimultaneously insribed in Q′ and irumsribed about Q: starting from some point p1 ∈ Q′ draw atangent line from p1 to Q until it meets Q′ in p2, then draw a tangeny from p2 e. t. . Ponelet's theoremsays that if this proedure omes bak to pn = p1 after n steps, then the same holds for any hoie ofthe starting point p1 maybe exept for some �nite set. The next two orollaries explain Ponelet porismfor triangles (i. e. for n = 3)3.5.1.COROLLARY. Two triangles ABC and A′B′C ′ are both insribed into the same oni Q i�they are both irumsribed around the same oni Q′.Proof. We hek only �⇒� impliation, then the opposite impliation omes by projetive duality. Consider twolines ` = (AB), `′ = (A′B′) and ellipti projetive linear isomorphism ` - `′ omposed as the projetion of `onto Q from B′ followed by the projetion of Q onto `′ from B (see �g 3⋄11). Sine it takes A 7→ L′, C 7→ K ′,K 7→ C ′, L 7→ A′, all the sides of the both triangles should touh the oni assoiated with  via n◦ 3.4.2. �`1
x 1(b)× b1 b× b2× 2(x)a×a1 a2`2 (a)×
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Fig. 3⋄11. Insribed-irumsribed triangles. Fig. 3⋄12. Finding Q(x).3.5.2.COROLLARY. Given two onis Q, Q′ suh that there exists a triangle ABC insribed into Qand irumsribed around Q′, then any point A′ ∈ Q is a vertex of a triangle A′B′C ′ insribed into Qand irumsribed around Q′.Proof. Take any A′ ∈ Q and pik B′; C ′ ∈ Q suh that the lines (A′B′), (A′C ′) are tangent to Q′ (see �g 3⋄11again). By the previous orollary, both ABC and A′B′C ′ are irumsribed around some oni, whih mustoinide with Q′, beause there exist a unique oni touhing 5 lines (AB), (BC), (CA), (A′B′), (A′C ′). �Exerise 3.3. Make n◦ 3.1.1 more preise by �nding neessary and suÆient ondition on 5 lines in P2 forexistene of a unique non singular oni touhing all of them.Hint. This is projetively dual to n◦ 2.7.33.6.Making a projetive isomorphism by the ruler. If an isomorphism `1 - `2 is given by itsation on some 3 points, say: a1 7−→ a2, b1 7−→ b2, 1 7−→ 2, then we an �nd the image (x) of any



§ 3. Working examples: onis, penils of lines, and plane drawings. 17x∈`1 by the ruler. In paraboli ase this is trivial (see �g 3⋄10). In ellipti ase the drawing algorithm isprojetively dual to the one disussed in n◦ 3.4.1 (A). Namely, draw the line O× = (b1a2); then pass theline through x and (a1a2)∩(12) and mark its intersetion point with O×; now (x) is the intersetion of`2 with the line passing through the last marked point and (b1b2)∩ (12) (ompare �g 3⋄7 and �g 3⋄12).Exerise 3.4. Let Q ⊂ P2 be non singular oni onsidered together with some rational parameterization
P1 ∼- Q. Show that for any two points p1; p2 ∈ Q and a line ` ⊂ P2 a map Q - Q given by presription:x 7−→ y ⇐⇒ �p1` x = �p2` y is indued by some linear automorphism of P1 (i. e. by some linear frationalreparameterization). Find the images of p1, p2 and the �xed points of the above map. Show that any bijetionQ ∼- Q indued by a linear automorphism of P1 an be (not uniquely) realized geometrially by two pointsp1; p2 ∈ Q and a line ` ⊂ P2 in the way desribed above. Is it possible, using only the ruler, to �nd (some)p1; p2; ` for a bijetion Q ∼- Q given by its ation on 3 points a; b; ;∈ Q?Hint. Try p2 = a.Exerise 3.5∗. Given a non singular oni Q and three points A, B, C, draw (using only the ruler) a triangleinsribed in Q with sides passing through A, B, C. How many solutions may have this problem?Hint. Start �naive� drawing from any p∈Q and denote by (p) your return point after passing trough A;B;C.Is p 7−→ (p) a projetive isomorphism of kind desribed in ex. 3.4?Exerise 3.6∗. Formulate and solve projetively dual problem to the previous one.
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§4.Tensor Guide.4.1.Multilinear maps. Let V1; V2; : : : ; Vn and W be vetor spaes of dimensions d1; d2; : : : ; dn and mover an arbitrary �eld k. A map V1 × V2 × · · · × Vn '- W is alled multilinear , if in eah argument'( : : : ; �v′ + �v′′ ; : : : ) = �'( : : : ; v′ ; : : : ) + �'( : : : ; v′′ ; : : : )when all the other remain to be �xed. The multilinear maps V1 × V2 × · · · × Vn - W form avetor spae of dimension m ·∏ d� . Namely, if we �x a basis {e(i)1 ; e(i)2 ; : : : ; e(i)di } for eah Vi and a basis

{e1; e2; : : : ; em} for W , then any multilinear map ' is uniquely de�ned by its values at all ombinationsof the basi vetors: '( e(1)�1 ; e(2)�2 ; : : : ; e(n)�n ) =∑� a(�1;�2;:::;�n)� · e� ∈ WAs soon as m ·∏ d� numbers a(�1;�2;:::;�n)� ∈ k are given, the map ' is well de�ned by the multilinearity.It sends a olletion of vetors (v1; v2; : : : ; vn), where vi = di∑�i=1x(i)�i e(i)�i ∈ Vi for 1 6 i 6 n, to'(v1; v2; : : : ; vn) = m∑j=1( ∑�1;�2;:::;�n a(�1;�2;:::;�n)� · x(1)�1 · x(2)�2 · · · · · x(n)�n ) · e� ∈ Wthe numbers a(�1;�2;:::;�n)� an be onsidered as elements of some �(n + 1)-dimensional format matrix ofsize m× d1 × d2 × · · · × dn�, if you an imagine suh a thing1.Exerise 4.1. Chek that a olletion (v1; v2; : : : ; vn) ∈ V1 × V2 × · · · × Vn doesn't ontain zero vetor i� thereexists a multilinear map ' (to somewhere) suh that '(v1; v2; : : : ; vn) 6= 0.Exerise 4.2. Chek that a multilinear map V1 × V2 × · · · × Vn '- U omposed with a linear operatorU F- W is a multilinear map V1 × V2 × · · · × Vn F◦'- W as well.4.2.Tensor produt of vetor spaes. Let V1 × V2 × · · · × Vn �- U be a �xed multilinear map.Then for any vetor spae W we have the omposition operator
( the spae Hom(U;W ) of alllinear operators U F- W ) F 7−→F◦� -

( the spae of all multilinear mapsV1 × V2 × · · · × Vn '- W ) (4-1)A multilinear map V1 × V2 × · · · × Vn �- U is alled universal if the omposition operator (4-1) is anisomorphism for any vetor spae W . In other words, the multilinear map � is universal, if for any Wand any multilinear map V1×V2× · · · ×Vn '- W there exist a unique linear operator U F- W suhthat ' = F ◦� , i. e. the ommutative diagram UV1 × V2 × · · · × Vn� -

WF?' -an be always losed by a unique linear dotted row.4.2.1.CLAIM. Let V1 × V2 × · · · × Vn �1- U1 É V1 × V2 × · · · × Vn �2- U2 be two universalmultilinear maps. Then there exists a unique linear isomorphism U1 �- U2 suh that �2 = ��1.1a usual d×m - matrix, whih presents a linear map V - W , has just 2-dimensional format



§ 4. Tensor Guide. 19Proof. Sine both U1; U2 are universal, there are unique linear operators U1 F21- U2 and U2 F12- U1 mounted inthe diagrams U1 IdU1 U1V1 × V2 × · · · × Vn�1 -
� �1

U2F12
6

IdU2�
�2 U2F21?�2 -

=⇒ U2V1 × V2 × · · · × Vn �1-�2 -U1�...................F12 U2IdU2...................F21
-�2

-So, the omposition F21F12 = IdU2 , beause of the uniqueness property in the universality of U2. Similarly,F12F21 = IdU1 . �4.2.2.CLAIM. Let {e(i)1 ; e(i)2 ; : : : ; e(i)di } ∈ Vi be a basis (for 1 6 i 6 n). Denote by V1 ⊗ V2 ⊗ · · · ⊗ Vna (∏ di) - dimensional vetor spae whose basi vetors are the symbolse(1)�1 ⊗ e(2)�2 ⊗ : : : ⊗ e(n)�n ; 1 6 �i 6 di (4-2)(all possible formal �tensor produts� of basi vetors e(�)� ). Then the multilinear mapV1 × V2 × · · · × Vn �- V1 ⊗ V2 ⊗ · · · ⊗ Vnwhih sends a basis vetor olletion (e�1 ; e�2 ; : : : ; e�n) ∈ V1 × V2 × · · · × Vn to the orresponding basisvetor (4-2) is universal.Proof. Let V1 × V2 × · · · × Vn '- W be a multilinear map and V1 ⊗ V2 ⊗ · · · ⊗ Vn F- W be a linear operator.Comparing the values at the basi vetors, we see that' = F ◦� ⇐⇒ F ( e(1)�1 ⊗ e(2)�2 ⊗ : : : ⊗ e(n)�n ) = '(e(1)�1 ; e(2)�2 ; : : : ; e(n)�n ) :
�4.3.The Segre embedding. The vetor spae V1 ⊗ V2 ⊗ · · · ⊗ Vn is alled a tensor produt ofV1; V2; : : : ; Vn. The universal multilinear map V1 × V2 × · · · × Vn �- V1 ⊗ V2 ⊗ · · · ⊗ Vn is alleda tensor multipliation. For a olletion of vetors (v1; v2; : : : ; vn) ∈ V1 × V2 × · · · × Vn the image�(v1; v2; : : : ; vn) is denoted by v1 ⊗ v2 ⊗ · · · ⊗ vn and alled a tensor produt of these vetors. All suhproduts are alled deomposable tensors. Of ourse, not all the vetors of V1 ⊗ V2 ⊗ · · · ⊗ Vn aredeomposable and im � is not a vetor subspae in V1 ⊗ V2 ⊗ · · · ⊗ Vn, beause � is multi linear but notlinear. However, the linear span of deomposable tensors exhausts the whole of V1 ⊗ V2 ⊗ · · · ⊗ Vn.Geometrially, the tensor multipliation gives a map

P(V1)× P(V2)× · · · × P(Vn) ⊂ s- P(V1 ⊗ V2 ⊗ · · · ⊗ Vn)alled a Segre embedding . If di = dimVi = mi + 1, then the Segre embedding is a bijetion between
Pm1 × Pm2 × · · · × Pmn and a Segre variety formed by all deomposable tensors onsidered up toproportionality. This variety lives in PN with N = −1+∏(1+mi) and has dimension (∑mi) but doesnot lie in a hyperplane. It is ruled by n families of linear subspaes.4.3.1.Example: the Segre embedding Pm1 × Pm2 ⊂ - Pm1+m2+m1m2 sends x = (x0 : x1 : : : : : xm1) ∈ Pm1and y = (y0 : y1 : : : : : ym2) ∈ Pm2 to the point s(x; y) ∈ Pm1+m2+m1m2 whose (1 +m1)(1 +m2) homogeneousoordinates are all possible produts xiyj with 0 6 i 6 m1 and 0 6 j 6 m2. To visualize this thing, take
Pm1 = P(V ∗), Pm2 = P(W ), and Pm1+m2+m1m2 = P(Hom(V;W )), where Hom(V;W ) is the spae of all linearmaps. Then the Segre map sends a pair (�; w) ∈ V ∗ × W to the linear map � ⊗ w, whih ats by the rulev 7−→ �(v) · w.Exerise 4.3. Chek that a map V ∗ ×W - Hom(V;W ) whih sends (�; w) to the operator v 7−→ �(v) · w isthe universal bilinear map (so, there is a anonial isomorphism V ∗ ⊗W ≃ Hom(V;W ))



20 Algebrai Geometry. Start Up Course.Exerise 4.4. Chek that for � = (x0; x1; : : : ; xm1) ∈ V ∗ and w = (y0; y1; : : : ; ym2) ∈W operator �⊗w has thematrix aij = xjyi.Sine any operator � ⊗ w has 1-dimensional image, the orresponding matrix has rank 1. On the other side, anyrank 1 matrix has proportional olumns. Hene, the orresponding operator has 1-dimensional image, say spanedby w∈W , and takes v 7−→ �(v)w, where the oeÆient �(v) ∈ k depends on v linearly. So, the image of the Segreembedding onsists of all rank 1 operators up to proportionality. In partiular, it an be de�ned by quadratiequations det(aij aika`j a`k) = aija`k − aika`j = 0 saying that all 2× 2 - minors for the matrix (a��) vanish.4.4.Tensor algebra of a vetor spae. If V1 = V2 = · · · = Vn = V , then V ⊗n def= V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸nis alled an n-th tensor power of V . All tensor powers are ombined in the in�nite dimensional nonommutative graded algebra T•V = ⊕n>0V ⊗n, where V ⊗0 def= k.Exerise 4.5. Using the universality, show that there are anonial isomorphisms
(V ⊗n1 ⊗ V ⊗n2)⊗ V ⊗n3 ≃ V ⊗n1 ⊗ (V ⊗n2 ⊗ V ⊗n3) ≃ V ⊗(n1+n2+n3)whih make the vetor's tensoring to be well de�ned assoiative multipliation on T•V .Algebraially, T•V is what is alled �a free assoiative k-algebra generated1 by V �. Pratially, thismeans that if we �x a basis {e1; e2; : : : ; ed} ⊂ V , then T•V turns into the spae of the formal �nite linearombinations of words onsisting of the letters ei separated by ⊗. These words are multiplied by writingafter one other onsequently and the multipliation is extended onto linear ombinations of words bythe usual distributivity rules.4.5.Duality. The spaes V ⊗n = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸n and V ∗⊗n = V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸n are anoniallydual to eah other. The pairing between v = v1⊗v2⊗ · · · ⊗vn ∈ V ⊗n and � = �1⊗ �2⊗ · · · ⊗ �n ∈ V ∗⊗nis given by a full ontration

〈 v ; � 〉 def= n∏i=1 �i(vi) : (4-3)Let {e1; e2; : : : ; en} ⊂ V and {�1; �2; : : : ; �n} ⊂ V ∗ be some dual bases. Then the basi words { ei1 ⊗ei2 ⊗ · · · ⊗ eir } and { �j1 ⊗ �j2 ⊗ · · · ⊗ �js } form dual bases for T•V and T•V ∗ with respet to the fullontration. So, V ⊗n∗ ≃ V ∗⊗n. On the other side, the spae (V ⊗n)∗ is naturally identi�ed with the spaeof all multilinear forms V × V × · · · × V︸ ︷︷ ︸n - k , beause V ⊗n is universal. So, there exists a anonialisomorphism between V ∗⊗n = V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸n and the spae of multilinear forms in n argumentsfrom V . It sends a tensor � = �1 ⊗ �2 ⊗ · · · ⊗ �n ∈ V ∗⊗n to the form (v1; v2; : : : ; vn) 7−→ n∏i=1 �i(vi).4.6.Partial ontrations. Let {1; 2; : : : ; p} �I
⊃ {1; 2; : : : ; m} ⊂ J- {1; 2; : : : ; q} be two injetive(not neessary monotonous) maps. We write i� and j� for I(�) and J(�) respetively and onsider I =(i1; i2; : : : ; im) and J = (j1; j2; : : : ; jm) as two ordered (but not neessary monotonous) index olletionsof the same ardinality. A linear operatorV ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸p ⊗V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸q IJ- V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸p−m ⊗V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸q−mwhih sends �1⊗ �2⊗ · · · ⊗ �p⊗ v1⊗ v2⊗ · · · ⊗ vq to m∏�=1 �i� (vj� ) · ⊗i6∈im (I) �i⊗ ⊗j 6∈im(J) vj is alled a partialontration in the indexes I and J .1If you like it, make the following formal exerise: dedue from the universality that for any assoiative k-algebra A andvetor spae map V f- A there exists a unique algebra homomorphism T•V �- A suh that �|V = f



§ 4. Tensor Guide. 214.6.1.Example: the ontration between a vetor and a multilinear form. Consider a multilinear form'(v1; v2; : : : ; vn)as a tensor from V ∗⊗n and ontat it in the �rst index with a vetor v∈V . The result belongs to V ∗⊗(n−1) andgives a multilinear form in (n− 1) arguments. This form is denoted by iv' and alled an inner produt of v and'.Exerise 4.6. Chek that iv'(w1; w2; : : : ; wn−1) = '(v;w1; w2; : : : ; wn−1), i. e. the inner multipliation by v isjust the �xation of v in the �rst argument.4.7.Linear span of a tensor. Let U;W ⊂ V be any two subspaes. Writing down the standardmonomial bases, we see immediately that (U ∩W )⊗n = U⊗n∩W⊗n in V ⊗n. So, for any t ∈ V ⊗n there isa minimal subspae span(t) ⊂ V whose n-th tensor power ontains t. It is alled a linear span of t andoinides with the intersetion of allW ⊂ V suh that t∈W⊗n. To desribe span(t) more onstrutively,for any injetive (not neessary monotonous) mapJ = (j1; j2; : : : ; jn−1) : {1; 2; : : : ; (n− 1)} ⊂ - {1; 2; : : : ; n}onsider a linear map V ∗⊗(n−1) Jt- V de�ned by omplete ontration with t: it sends a deomposabletensor ' = �1 ⊗ �2 ⊗ · · · ⊗ �n−1 to a vetor obtained by oupling �-th fator �� , of ', with j�-th fatorof t for all 1 6 � 6 (n− 1) , i. e. Jt (') = (1; 2; ::: ; (n−1))(j1;j2;:::;jn−1) ('⊗ t) :4.7.1.CLAIM. As a vetor spae, span(t) ⊂ V is linearly generated by the images Jt (V ∗⊗(n−1))taken for all possible J .Proof. Let span(t) = W ⊂ V . Then t∈W⊗n and im (Jt ) ⊂ W ∀J . It remains to prove that W is annihilated byany linear form � ∈ V ∗ whih annihilate all the subspaes im (Jt ). Suppose the ontrary: let � ∈ V ∗ have nonzero restrition on W but annihilate all Jt (V ∗⊗(n−1)). Then there exist a basis {w1; w2; : : : ; wk} for W and abasis {�1; �2; : : : ; �d} for V ∗ suh that: �1 = �, the restritions of �1; �2; : : : ; �k onto W form the basis of W ∗ dualto {w�}, and �k+1; : : : ; �d annihilate W . Now, for any J and �i1; �i2; : : : ; �in−1 we have0 = 〈 � ; Jt (�i1 ⊗ �i2 ⊗ · · · ⊗ �in−1) 〉 = 〈 �ij−11 ⊗ · · · ⊗ �ij−1s−1 ⊗ � ⊗ �ij−1s+1 ⊗ · · · ⊗ �ij−1n ; t 〉 (4-4)where s = {1; 2; : : : ; n}\im (J) and J−1 = (j−11 ; j−12 ; : : : ; j−1n ) is the inverse to J map from im (J) ⊂ {1; 2; : : : ; n}to {1; 2; : : : ; (n− 1)}. Note that eah basi monomial of V ∗(n−1) ontaining as a fator �1 = � an appear as the�rst operand in the right side of (4-4). But if we expand t trough the basi monomials wi1 ⊗ wi2 ⊗ · · · ⊗ win,then the oeÆients of this expansion an be omputed as full ontrations of t with the orresponding elements�i1 ⊗ �i2 ⊗ · · · ⊗ �in from the dual basis for W ∗⊗n. By (4-4), suh a ontration equals zero as soon one of �i�equals �1 = �, whih is dual to w1. So, span(t) is ontained in the linear span of w2; : : : ; wk but this ontraditsour assumption. �4.8. Symmetry properties. A multilinear map V × V × · · · × V︸ ︷︷ ︸n '- W is alled symmetri if itdoesn't hange its value under any permutations of the arguments. If the value of ' is stable underthe even permutations and hanges the sign under the odd ones, then ' is alled skew symmetri.Sine the omposition operator (4-1) preserves the symmetry properties, for the (skew)symmetri ' theomposition operator (4-1) turns into
( the spae Hom(U;W ) of alllinear operators U F- W ) F 7−→F◦'- 


the spae of all (skew)symmetrimultilinear maps V × V × · · · × V

| {z }n  - W 
 (4-5)A (skew)symmetri multilinear map V × V × · · · × V︸ ︷︷ ︸n '- U is alled universal if (4-5) is an isomor-phism for any W . In the symmetri ase the universal target spae is denoted by SnV and alled n-th



22 Algebrai Geometry. Start Up Course.symmetri power of V . In the skew symmetri ase it is alled n-th exterior power of V and denoted by�nV .Exerise 4.7. Show that, if exist, SnV and �nV are unique up to unique isomorphism ommuting with theuniversal maps.4.9. Symmetri algebra S•V of V is a fator algebra of the free assoiative algebra T•V by aommutation relations vw = wv. More preisely, denote by Isym ⊂ T•V a linear span of all tensors
· · · ⊗ v ⊗ w ⊗ · · · − · · · ⊗ w ⊗ v ⊗ · · · ;where the both terms are deomposable, have the same degree, and di�er only in order of v; w. Clearly,

Isym is a double-sided ideal in T•V generated by a linear span of all the di�erenes v⊗w−w⊗v ∈ V ⊗V .The fator algebra S•V def= T•V=Isym is alled a symmetri algebra of the vetor spae V . By theonstrution, it is ommutative1. Sine Isym = ⊕n>0 (Isym ∩ V ⊗n) is the diret sum of its homogeneousomponents, the symmetri algebra is graded: S•V = ⊕n>0SnV , where SnV def= V ⊗n=(Isym ∩ V ⊗n).4.9.1.CLAIM. The tensor multipliation followed by the fatorization map:V × V × · · · × V︸ ︷︷ ︸n � - V ⊗n �-- Sn(V ) (4-6)gives the universal symmetri multilinear map.Proof. Any multilinear map V × V × · · · × V '- W is uniquely deomposed as ' = F ◦� , where V ⊗n F- Wis linear. F is fatored through � i� F ( · · · ⊗ v ⊗ w ⊗ · · · ) = F ( · · · ⊗ w ⊗ v ⊗ · · · ), i. e. i� '( : : : ; v; w; : : : ) ='( : : : ; w; v; : : : ) �The graded omponents SnV are alled symmetri powers of V and the map (4-6) is alled a symmetrimultipliation. If a basis {e1; e2; : : : ; ed} ⊂ V is �xed, then SnV is naturally identi�ed with the spaeof all homogeneous polynomials of degree n in ei. Namely, onsider the polynomial ring k[e1; e2; : : : ; ed℄(whose �variables� are the basi vetors ei) and identify V with the spae of all linear homogeneouspolynomials in ei.Exerise 4.8. Chek that the multipliation mapV × V × · · · × V︸ ︷︷ ︸n (`1;`2;:::;`n) 7−→ n
Q�=1 `�- ( the homogeneous polynomialsof degree n in ei )is universal and show that dimSnV = (d+n−1n ).4.10.Exterior algebra �•V of V is a fator algebra of the free assoiative algebra T•V by a skewommutation relations vw = −wv. More preisely, onsider a double-sided ideal Iskew ⊂ T•V generatedby all sums v ⊗ w + w ⊗ v ∈ V ⊗ V and put �•V def= T•V=Iskew. Exatly as in the symmetri ase, theideal Iskew is homogeneous: Iskew = ⊕n>0 (Iskew ∩ V ⊗n), where (Iskew ∩ V ⊗n) is the linear span of allsums

· · · ⊗ v ⊗ w ⊗ · · · + · · · ⊗ w ⊗ v ⊗ · · ·(the both items have degree n and di�er only in the order of v; w). So, the fator algebra �•V is gradedby the subspaes �nV def= V ⊗n=(Iskew ∩ V ⊗n).Exerise 4.9. Prove that the tensor multipliation followed by the fatorizationV × V × · · · × V︸ ︷︷ ︸n ........�
- V ⊗n �-- �n(V ) (4-7)1Again, if you like it, prove that for any ommutative k-algebra A and a vetor spae map V f- A there exists aunique homomorphism of ommutative algebras S•V �- A suh that �|V = f



§ 4. Tensor Guide. 23gives the universal skew symmetri multilinear map.The map (4-7) is alled an exterior or skew multipliation. The skew produt of vetors (v1; v2; : : : ; vn)is denoted by v1 ∧ v2 ∧ · · · ∧ vn. By the onstrution, it hanges the sign under the transposition of anytwo onsequent terms. So, under any permutation of terms the skew produt is multiplied by the signof the permutation.Exerise 4.10. For any U;W ⊂ V hek that SnU ∩ SnW = Sn(U ∩ U) in SnV and �nU ∩ �nW = �n(U ∩ U)in �nV .4.11.Grassmannian polynomials. Let {e1; e2; : : : ; ed} ⊂ V be a basis . Then the exterior algebra�•V is identi�ed with a grassmannian polynomial ring k 〈e1; e2; : : : ; ed〉 whose �variables� are the basivetors ei whih skew ommute, that is, ei ∧ ej = −ej ∧ ei for all i; j. More preisely, it is linearlyspanned by the grassmannian monomials ei1 ∧ ei2 ∧ · · · ∧ ein . It follows from skew ommutativity thatei ∧ ei = 0 for all i, that is, a grassmannian monomial vanishes as soon as it beomes of degree morethen 1 in some ei. So, any grassmannian monomial has a unique representation ei1 ∧ ei2 ∧ · · · ∧ ein with1 6 i1 < i2 < · · · < in 6 d.4.11.1.CLAIM. The monomials eI def= ei1 ∧ ei2 ∧ · · · ∧ ein , where I = (i1; i2; : : : ; in) runs throughthe inreasing n-element subsets in {1; 2; : : : ; d}, form a basis for �nV . In partiular, �nV = 0 forn > dimV , dim�nV = (dn) , and dim k 〈e1; e2; : : : ; ed〉 = 2d.Proof. Consider (dn)-dimensional vetor spae U whose basis onsists of the symbols �I , where I = (i1; i2; : : : ; in)runs through the inreasing n-element subsets in {1; 2; : : : ; d}. De�ne a skew symmetri multilinear mapV1 × V2 × · · · × Vn �- U : (ej1 ; ej2 ; : : : ; ejn) 7−→ sgn(�) · �I ;where I = (j�(1); j�(2); : : : ; j�(n); ) is an inreasing olletion obtained from (j1; j2; : : : ; jn) by a (unique) permu-tation �. This map is universal. Indeed, for any skew symmetri multilinear map V × V × · · · × V︸ ︷︷ ︸n '- Wthere exists at most one linear operator U F- W suh that ' = F ◦�, beause it has to at on the basis asF (�I ) = '(ei1 ; ei2 ; : : : ; ein)) for all inreasing I = (i1; i2; : : : ; in). On the other side, suh F really deomposes', beause F (�(ej1 ; ej2 ; : : : ; ejn)) = '(ej1 ; ej2 ; : : : ; ejn)) for all not inreasing basis olletions (ej1 ; ej2 ; : : : ; ejn) ⊂V × V × · · · × V︸ ︷︷ ︸n as well. By the universality, there exists a anonial isomorphism between U and �nV whihsends �I to ei1 ∧ ei2 ∧ · · · ∧ ein = eI . �Exerise 4.11. Chek that f(e) ∧ g(e) = (−1)deg(f)·deg(g) g(e) ∧ f(e)for all homogeneous f(e); g(e) ∈ k 〈e1; e2; : : : ; ed〉. In partiular, eah even degree homogeneous polynomialommutes with any grassmannian polynomial.Exerise 4.12. Desribe the enter of k 〈e1; e2; : : : ; ed〉, i. e. all grassmannian polynomials whih ommute witheverything.4.11.2.Example: linear basis hange in grassmannian polynomial. Under the linear substitution ei = d∑j=1 aij �jthe basis monomials eI are hanged by the new basis monomials �I as follows:eI = ei1 ∧ ei2 ∧ · · · ∧ ein = (∑j1 ai1j1 �j) ∧ (∑j2 ai2j2 �j) ∧ · · · ∧(∑jn ainjn �j) == ∑16j1<j2<···<jn6n ∑�∈Sn sgn(�) ai1j�(1)ai2j�(2) · · · ainj�(n) �j1 ∧ �j2 ∧ · · · ∧ �jn =∑J aIJ �J ;where aIJ is (n× n)-minor of (aij) plaed at (i1; i2; : : : ; in) rows and (j1; j2; : : : ; jn) olumns, and J runs throughall inreasing index olletions of the length #J = n.Exerise 4.13. Let |I| = ∑� i� denote a weight of the inreasing index olletion I = (i1; i2; : : : ; in) of length#I = n. Chek that eI ∧ ebI = (−1)|I|+ 12#I(1+#I) · e1 ∧ e2 ∧ · · · ∧ ed (4-8)



24 Algebrai Geometry. Start Up Course.for any two omplementary index olletions I and Î def= {1; 2; : : : ; n} \ I.4.11.3.Example: the Sylvester relations via grassmannian polynomials. Let us take two omplementary indexolletions I and Î def= {1; 2; : : : ; n} \ I and do a basis hange ei = d∑j=1 aij �j in the identity (4-8). Its left sideeI ∧ ebI turns to
( ∑K:#K=#I aIK �K) ∧ ( ∑L:#L=(d−#I)aLbI �L) = (−1) 12#I(1+#I) ∑K:#K=#I(−1)|K|aIKabI bK �1 ∧ �2 ∧ · · · ∧ �d ;where K̂ = {1; 2; : : : ; d} \K. The right side of (4-8) gives (−1) 12#I(1+#I)(−1)|I| det(aij)�1 ∧ �2 ∧ · · · ∧ �d. So, forany any olletion I of rows in any square matrix (aij) the following relation holds:

∑K:#K=#I(−1)|K|+|I|aIK âIK = det(aij) ; (4-9)where âIK def= a
bI bK denotes the (d−n)× (d−n) - minor whih is omplementary1 to aIK and the summation runsover all (n× n) - minors aIK ontained in the rows (i1; i2; : : : ; in).If we take I∩J 6= ∅, then starting from eI ∧eJ = 0 instead of (4-8) we get by the same alulation the relation

∑K:#K=#I(−1)|K|+|I|aIK âJK = 0 ; (4-10)The identities (4-9) and (4-10) are known as Sylvester relations. Let us �x, say lexiographial, order on theset of indies I and arrange all (n × n)-minors aIJ as (dn) × (dn) - matrix A(n) def= (aIJ ). If we denote by Â(n) amatrix whose (IJ)-entry equals ((−1)|I|+|J|âJI), then all the Sylvester relations are expressed by the single matrixequality A(n) · Â(n) = det(aij) · E.4.11.4.Example: redution of grassmannian quadrati forms. Any homogeneous grassmannian polynomial ofdegree 2 an be written as �1 ∧ �2 + �3 ∧ �4 + · · · + �r−1 ∧ �r (4-11)in some basis (over any �eld k). Namely, we an suppose2 that our grassmannian quadrati form isq(e) = e1 ∧ (�2e2 + · · · + �nen) + (terms without e1)where �2 6= 0 and �2 def= �2e2 + · · · + �nen does not ontain e1, that is it an be inluded in the new basis
{�1; �2; : : : ; �n} with �i = ei for i 6= 2. After the substitution e2 = �−12 (�2 − �3�3 − · · · − �n�n), ei = �i for i 6= 2,we an write q as q(�) = �1 ∧ �2 + �2 ∧ (�3�3 + · · · + �n�n) + (terms without �1 and �2). So, in the next new base:
{�1; �2; : : : ; �n} with �1 = �1 − �3�3 − · · · − �n�n , �i = �i for i 6= 1 our q turns toq(�) = �1 ∧ �2 + (terms without �1 and �2)and this proedure an be repeated indutively for the remaining terms.Exerise 4.14. Let A = (aij) be a skew symmetri matrix (i. e. aij = −aji) and q(e) = ∑ij aij ei ∧ ej be agrassmannian quadrati form. Show that in the representation (4-11) the number r doesn't depend on thebasis hoie and equals rkA. (In partiular, rkA is always even.)

1i. e. sitting in the omplementary rows and olumns2may be after appropriate renumbering of the basi vetors



§ 5. Polarizations and ontrations. 25
§5.Polarizations and ontrations.In this setion we always assume that k is algebraially losed and hark 6= 2.5.1. (Skew) symmetri tensors. A symmetri group Sn ats on V ⊗n permuting fators in the de-omposable tensors: �(v1 ⊗ v2 ⊗ · · · ⊗ vn) def= v�(1) ⊗ v�(2) ⊗ · · · ⊗ v�(n) ∀�∈Sn . SubspaesATnV = { t ∈ V ⊗n | �(t) = sgn(�) · t ∀�∈Sn }STnV = { t ∈ V ⊗n | �(t) = t ∀�∈Sn }are alled the spaes of skew symmetri and symmetri tensors.5.1.1.CLAIM. Let har (k) = 0. Restriting the anonial fatorization mapsV ⊗n �skew - �nV ; V ⊗n �sym - SnV ;onto the spaes of (skew) symmetri tensors, we get the isomorphismsATnV �skew - �nV and STnV �sym - SnV : (5-1)Proof. In the skew symmetri ase, a basis of ATnV is formed by the tensorse〈i1;i2;:::;in〉 def= ∑�∈Sn sgn(�) · ei�(1) ⊗ ei�(2) ⊗ · · · ⊗ ei�(n)(sum of all the tensor monomials sent to the basi Grassmannian monomial eI = ei1 ∧ei2 ∧ · · · ∧ein by �skew). So,�skew (e〈i1;i2;:::;in〉) = n! eI . In the symmetri ase, let us write e[m1;m2;:::;md℄ for the sum of all tensor monomialsontainingm1 fators e1, m2 fators e2, : : : , md fators ed, where∑� m� = n. These monomials form one Sn-orbit,whih onsists of n!m1!m2! ···md! elements and ollets all the deomposable tensors sent to em11 em22 · · · emdd by �sym.As above, the tensors e[m1;m2;:::;md℄ form a basis for STnV and �sym (e[i1;i2;:::;in℄) = n!m1!m2! ···md! em11 em22 · · · emdd .

� Exerise 5.1. Verify that the above sums e〈i1;i2;:::;in〉 and e[m1;m2;:::;md℄ really give the bases for STnV (overany �eld of an arbitrary harateristi). Also note that if har (k) > 0 divides n, then all these basi(skew) symmetri tensors are annihilated by fatorization through (skew) symmetri relations.Exerise 5.2. Verify that if har (k) = 0, then V ⊗n = I
(n)skew ⊕ ATnV = STnV ⊕ I

(n)sym , where the projetionV ⊗n -- STnV along I
(n)sym is given by the symmetrization mapsymn : � 7−→ 1n! ∑�∈Sn �(�)and the projetion V ⊗n -- ATnV along I

(n)skew given by the alternation mapaltn : � 7−→ 1n! ∑�∈Sn sgn(�) · �(�) :5.2.Polarization of (skew) polynomials. The inverse maps to the isomorphisms (5-1) takeei1 ∧ ei2 ∧ · · · ∧ ein 7−→ 1n! · e〈i1;i2;:::;in〉em11 em22 · · · emdd 7−→ m1!m2! · · · md!n! · e[m1;m2;:::;md℄ : (5-2)The both maps are alled omplete polarizations of (skew) polynomials and are denoted by f 7−→ pl(f).5.2.1.Example: (skew) polynomials and (skew) symmetri multilinear forms. Full polarization pl(f) of a (skew)homogeneous degree n polynomial f of one argument on V an be onsidered as a multilinear form of n arguments



26 Algebrai Geometry. Start Up Course.on V . It sends (v1; v2; : : : ; vn) to the full ontration f̃(v1; v2; : : : ; vn) def= 〈 v1 ⊗ v2 ⊗ · · · ⊗ vn ; pl(f) 〉 and has thesame symmetry properties as f , beause for all �∈Sn, t∈V ⊗n, �∈V ∗⊗n we have 〈�(t) ; �(�) 〉 = 〈 t ; � 〉, whihimplies 〈�(t) ; � 〉 = 〈 t ; �−1(�) 〉.Exerise 5.3. Chek that for a symmetri quadrati form q(x) ∈ S2V ∗ we haveq̃(x; y) = q(x+ y)− q(x− y)4 = q(x+ y)− q(x) − q(y)2 = 12 dimV∑�=1 y� �q�x� :Sine any multilinear form ' may be presented via full ontration'(v1; v2; : : : ; vn) = 〈 v1 ⊗ v2 ⊗ · · · ⊗ vn ; � 〉with some � ∈ V ∗⊗n, the omplete polarization identi�es SnV ∗ and �nV ∗ with the spaes of all symmetri andskew symmetri multilinear forms V × V × · · · × V︸ ︷︷ ︸n - k, in n arguments on V .Exerise 5.4. In symmetri ase, show that a homogeneous degree n polynomial f(x) (in one argumentx ∈ V ) oinides with the restrition of the orresponding symmetri multilinear form f̃(x1; x2; : : : ; xn) (in narguments x� ∈ V ) onto the diagonal: f(x) = f̃(x; x; : : : ; x).5.2.2.Example: duality on polynomials. Using the omplete polarization and the full ontration between V ⊗nand V ∗⊗n we obtain (over a �eld of zero harateristi) a natural non degenerate pairing between �n(V ) and�n (V ∗) as well as between Sn(V ) and Sn (V ∗). Namely, for two (skew) polynomials f , in ei∈V , and �, in xi∈V ∗,we put 〈 f ; � 〉 def= 〈 pl(f) ; pl(�) 〉.Exerise 5.5. Let {e1; e2; : : : ; en} ⊂ V and {x1; x2; : : : ; xn} ⊂ V ∗ be dual bases. Chek that:
〈 eI ; xJ 〉 = {1=n! ; for I = J0 ; for I 6= J (5-3)

〈em11 em22 · · · emdd ; x`11 x`22 · · · x`dd 〉 = {m1!m2! ···md!n! ; if m� = `� ∀�0 ; otherwise (5-4)5.3.Partial derivatives (symmetri ase). For any vetor v ∈ V and any polynomial f ∈ SnV ∗ theontration i1(pl(f)⊗ v) ∈ V ∗n−1 does not depend on the hoie of ontrated index i in pl(f), beausepl(f) ∈ STnV ∗ is symmetri. Its projetion to Sn−1V ∗ is alled a polar of v w. r. t. f and is denoted byplvf .Exerise 5.6. Show that deg(f)·plvf = �vf , where �v is the derivative in v-diretion, whih takes f to dimV∑i=1 vi �f�xi(here v =∑ viei, {ei} is a basis for V and {xi} is a dual basis for V ∗).Exerise 5.7. Show that n! · f̃(v1; v2; : : : ; vn) = �v1�v2 · · · �vn f for any f ∈ SnV ∗, v1; v2; : : : ; vn ∈ V .It follows that �vf does not depend on a hoie of basis, is bilinear in v, f , and satis�esm2! �m1v1 f(v2) = (m1 +m2)! f̃(v1; v1; : : : ; v1︸ ︷︷ ︸m1 ; v2; v2; : : : ; v2︸ ︷︷ ︸m2 ) = m1! �m2v2 f(v1) ; (5-5)where (m1 + m2) = n = deg f . In partiular, the left and right sides are bihomogeneous of bidegree(m1;m2) in (v1; v2).Exerise 5.8. Show that multiple polars: plv1;v2;:::;vmf def= plv1plv2 · · · plv1f are symmetri and multilinear in viand linear in f , that is ome from a linear map SmV ⊗ SnV ∗ - Sn−mV ∗, whih sends v1v2 · · · vm ⊗ f toplv1;v2;:::;vmf(w) = f̃(v1; v2; : : : ; vm; w; w; : : : ; w).5.3.1.Example: the Taylor formula. For f ∈SnV ∗ the value f(v + w) an be omputed as the full ontrationof f with (v + w)m =∑m (nm) vmwn−m ∈ SnV . This an be arranged as the Taylor formula:f(v + w) = n∑�=0 1�! ��wf(v) : (5-6)



§ 5. Polarizations and ontrations. 275.3.2.Example: span(f) for f ∈ SnV ∗, that is a minimal subspae W ⊂ V ∗ suh that f ∈ SnW , oinideswith span(pl(f)) desribed in n◦ 4.7.1 as an image of the ontration map Sn−1V ⊗ SnV ∗ - V ∗. So, in termsof partial derivatives, span(f) is generated by the linear forms��xi1 ��xi2 · · · ��xin−1 f(x) (5-7)obtained from f by all possible (n− 1)-fold di�erentiations.5.4.Veronese variety in PN = P(SnV ∗), where dimV = d + 1, N = (nd) − 1, onsists of pure n-thpowers of linear forms � ∈ P(V ∗). It has a rational parameterization given by the Veronese map
P(V ∗) ⊂ � 7−→�n - P(SnV ∗) :The result of n◦ 5.3.2 allows to present the Veronese variety by a system of quadrati equations. Namely,f ∈ SnV ∗ equals �n(x) for some � ∈ V ∗ i� span(f̃) ⊂ V ∗ oinides with the 1-dimensional subspaegenerated by �. So, f is pure n-th power i� all the linear forms (5-7) are proportional to eah other. Ifwe arrange the oeÆients of these forms in the rows of some 2×(d+1)-matrix, then their proportionalitymeans that all 2× 2-minors of this matrix vanish.5.4.1.Example: Veronese's urve. Let dimU = 2, P1 = P(U∗), Pn = P(SnU∗), {t0; t1} be a basis of U∗, and(ni) ti0tn−i1 for 0 6 i 6 n be the orresponding basis of SnV ∗. Then the Veronese embedding P1 ⊂ - Pn sends alinear form (�0t0 + �1t1) to (�0t0 + �1t1)n =∑i �i0�n−i1 ·

(ni) ti0tn−i1Its image is a rational urve Cn ⊂ Pn alled Veronese urve or rational normal urve of degree n. If we use theoeÆients (a0 : a1 : : : : : an) and (�0 : �1) as homogeneous oordinates for a polynomial∑i ai ·(ni) ti0tn−i1 ∈ SnU∗and for a linear form �0t0 + �1t1 ∈ P(U∗), then Cn will be presented parametrially as ai = �i0�n−i1 .On the other hand, for f(t) =∑i ai · (ni) ti0tn−i1 the linear forms (5-7) are exhausted by�i�ti0 �n−1−i�ti−1−n1 f(t) = ait0 + ai+1t1 ; where 0 6 i 6 (n− 1) :So, f ∈ Cn ⇐⇒ rk (a0 a1 : : : an−1a1 a2 : : : an ) = 1 ⇐⇒ aiaj − ai+1aj−1 = 0 for all 0 6 i < j 6 n.In partiular, for n = 2 we get the Veronese quadri a0a2 = a21 in P2. For n = 3 we have a rational ubiurve, whih is alled a twisted ubi, given as an intersetion of 3 quadris a0a2 = a21, a1a3 = a22, a0a3 = a1a2.Exerise 5.9. Draw the piture and disover that the �rst two quadris are simple ones with verties at(0 : 0 : 0 : 1) and at (1 : 0 : 0 : 0); the third quadri is Segre's one and is ruled by two line families; two oneshave a ommon line element a1 = a2 = 0, whih joins the verties but does not lie on the Segre quadri; theline element a0 = a1 = 0 of the �rst one and the one a2 = a3 = 0 of the seond do lie on the Segre quadriin the same ruling family. So, any two of 3 quadris are interseted along the twisted ubi and one moreline, that is, the Veronese urve an not be given by use of 2 equations only!5.5.Partial derivatives (skew-symmetri ase). The ontration i1(pl(f) ⊗ v) ∈ V ∗n−1 betweena vetor v ∈ V and a skew polynomial f ∈ �nV ∗ slightly depends on a hoie of the ontrated indexi: it hanges the sign when i is inremented or deremented by one, beause pl(f) ∈ ATnV ∗ is skewsymmetri. Let us hoose i = 1 and write plvf for the projetion of 11(pl(f)⊗ v) into �n−1V ∗.Sine the onseutive polarizations de�ned by this rule do antiommute: plvplwf = −plwplvf , themultilinear map V × V × · · · × V︸ ︷︷ ︸m ×�nV ∗ (v1;v2;:::;vm; f)7→plv1plv2 :::plvmf - �n−mV ∗omes from the linear map �mV ⊗ �nV ∗ - �n−mV ∗.



28 Algebrai Geometry. Start Up Course.Exerise 5.10. Show that deg f · plvf = �vf , where �v = ∑ vi ��xi , as in ex. 5.6, and verify the followingproperties of skew partial derivatives: a) �v�w = −�w�v (in partiular, �2v = 0 ∀ v∈V );b) f̃(v1; v2; : : : ; vn) = 1n! �v1�v2 · · · �vn f for any f ∈ �nV ∗, v1; v2; : : : ; vn ∈ V .) �v(f1 ∧ f2) = (�vf1) ∧ f2 − (−1)deg f1f1 ∧ (�vf2), in partiular,�ei� xi1 ∧ xi2 ∧ · · · ∧ xin = (−1)�−1xi1 ∧ · · · ∧ xi�−1 ∧ xi�+1 ∧ · · · ∧ xin :5.5.1.Example: span(f) for grassmannian polynomial f ∈ �nV is linearly generated by partial derivatives�Jf = �xjn−1�xjn−2 : : : �xj1 f = n! 〈xj1 ⊗ xj2 ⊗ · · · ⊗ xjn−1 ; pl(f) 〉where J = (j1; j2; : : : ; jn−1) ⊂ {1; 2; : : : ; d} runs through all ( dn−1) inreasing ordered olletions of (n−1) indexesand {xi} ∈ V ∗ form a dual basis to some basis {ei} ∈ V . If f =∑I �I eI w. r. t. the last base, then�Jf = n! ·∑i 6∈J (−1)n−p(i;J) �J⊔{i} ei (5-8)where p(i; J) is the number of plae where i stays in the inreasing permutation I of J ⊔ {i} (beause xI is theonly monomial in �nV ∗ whose omplete ontration with eI is non zero, see (5-3)).5.5.2.Example: Pl�uker relations. A skew polynomial f ∈ �nV is alled ompletely deomposable, if f =v1 ∧ v2 ∧ · · · ∧ vn is a produt of n linear fators, or equivalently, if dim span(f) = n is minimal possible.Exerise 5.11. Show that f is ompletely deomposable i� f ∧ v = 0 ∀ v ∈ span(f).So, like in n◦ 5.3.2 | n◦ 5.4.1, the set of ompletely deomposable polynomials f ∈ �nV is desribed by a systemof quadrati equations (�Jf) ∧ f = 0. By (5-8), a basi monomial eK ∈ �n+1V appears in(�Jf) ∧ f = n! ·∑i 6∈J (−1)p(i;J) �J⊔{i} ei ∧(∑I aIeI)as n! · n+1∑�=1(−1)n−p(k�;J) · �J⊔{k�}�K\{k�} · ek� ∧ eK\{k�}, i. e. with the oeÆient, whih up to a onstant fatorequals PJK(f) def= ∑i∈K\(K∩J)(−1)p(i;J;K) �J⊔i �K\i ; (5-9)where p(i; J;K) is the sum of the plae numbers where i stays in the inreasing version of J ⊔ {i} and in K.Exerise 5.12. Show that this oeÆient vanishes, if J ⊂ KSystem of quadrati equations PJK(f) = 0, whih de�nes the variety of ompletely deomposable Grassmannianpolynomials, is known as the Pl�uker relations. Note that these quadrati equations are not �independent�, evennot pairwise di�erent (see n◦ 6.6.2 below).



§ 6. Working example: grassmannians. 29
§6.Working example: grassmannians.6.1.Pl�uker quadri in P5. Let V be a 4-dimensional vetor spae and P5 = P(�2V ). Then thePl�uker quadri QP def= {! ∈ �2V | ! ∧ ! = 0 }is a non singular quadri in P5. Fixing a base {e0; e1; e2; e3} for V and indued base eij = ei∧ej for �2Vand writing xij for the homogeneous oordinate along eij, we have (∑i<j xij ·ei∧ej) ∧ (∑i<j xij ·ei∧ej) =2 (x01x23 − x02x13 + x03x12) · e0 ∧ e1 ∧ e2 ∧ e3 , i. e. QP has the equationx02x13 = x01x23 + x03x12 :In oordinateless terms, QP is given by quadrati form q(!) = q̃(!; !) whose polarization q̃(!1; !2) is abilinear form on �2V de�ned up to a salar fator by the presription!1 ∧ !2 = q̃(!1; !2) · 
 ;where 
 ∈ �4V ≃ k is any �xed non-zero vetor. This form is symmetri, beause even degree Grass-mannian polynomials ommute: !1 ∧ !2 = !2 ∧ !1.6.2.Pl�uker embedding. By the de�nition, a grassmannian Gr(2; 4) is a set of all lines ` ⊂ P3 = P(V ),or equivalently, a set of all 2-dimensional vetor subspaes U ⊂ V . A Pl�uker mapGr(2; 4) ⊂ u- P(�2V )sends a 2-dimensional subspae U ⊂ V to the 1-dimensional subspae �2U ⊂ �2V . If U is spaned bya pair of vetors u1; u2 (i. e. ` = P(U) pass trough u1; u2 ∈ P(V )), then u(`) = u(U) = u1 ∧ u2 up toproportionality.6.2.1.LEMMA. Two lines `1; `2 ⊂ P3 are interseting i� q̃(u(`1); u(`2)) = u(`1) ∧ u(`2) = 0.Proof. Let `1 = P(U1), `2 = P(U2). If U1 ∩ U2 = 0, then V = U1 ⊕ U2 and there exist a base {ei} ⊂ V suhthat U1 is spaned by e0; e1 and U2 is spaned by e2; e3. So, u(U1) = e0 ∧ e1, u(U2) = e2 ∧ e3 and u(U1) ∧ u(U2) =e0 ∧ e1 ∧ e2 ∧ e3 6= 0. If U1 ∩ U2 6= 0, then taking u0 ⊂ U1 ∩ U2 we an write u(U1) = u0 ∧ u1, u(U2) = u0 ∧ u2 forsome u1; u2. So, u(U1) ∧ u(U2) = u0 ∧ u1 ∧ u0 ∧ u2 = 0. �6.2.2.LEMMA. If dimV = 4, then ! ∈ �2V is deomposable1 i� ! ∧ ! = 0.Proof. If ! is deomposable, say ! = u1 ∧ u2, then ! ∧ ! = u1 ∧ u2 ∧ u1 ∧ u2 = 0, beause of skew symmetry. Toget the inverse, take a base {�i} suh that ! turns into either ! = �0 ∧ �1 + �2 ∧ �3 or ! = �0 ∧ �1. In the �rst ase! ∧ ! = 2 �0 ∧ �1 ∧ �2 ∧ �3 6= 0, i. e. ! is indeomposable. �6.2.3.COROLLARY. The Pl�uker map is a bijetion between the grassmannian Gr(2; 4) and thePl�uker quadri QP ⊂ P5.Proof. For any two lines `1 6= `2 on P3 there exists a third line ` whih interset `1 and doesn't interset `2. Then

u(`1) ∧ u(`) = 0 and u(`2) ∧ u(`) 6= 0 imply u(`1) 6= u(`2), i. e. u is injetive. Surjetivity follows from n◦ 6.2.2. �6.2.4.COROLLARY. For any point p = u(`) ∈ QP the intersetion QP ∩ TpQP onsists of all u(`′)suh that ` ∩ `′ 6= ∅.Proof. TpQP is a zero set of the linear form q̃(u(`); ∗ ). By n◦ 6.2.1, q̃(u(`); u(`′)) = 0 ⇐⇒ ` ∩ `′ 6= ∅. �6.3.Line nets and line penils in P3. A set of lines on P3 is alled a net if it is represented by aplane � ⊂ QP ⊂ P5. If � ⊂ QP is spaned by 3 non ollinear points pi = u(`i), i = 1; 2; 3, then� = QP ∩ Tp1QP ∩ Tp2QP ∩ Tp3QP :1reall that homogeneous polynomial is alled deomposable if it is fatorized into a produt of linear forms



30 Algebrai Geometry. Start Up Course.So, by n◦ 6.2.1 and n◦ 6.2.4 the orresponding line net onsist of all lines whih interset 3 given pairwiseinterseting lines. Hene, there are exatly two geometrially di�erent line nets on P3:�-net is a set of all lines passing through a given point O ∈ P3; the orresponding plain ��(O) ⊂ QP isalled �-plane. It is spanned by the Pl�uker images of any 3 non oplanar lines passing through O.�-net is a set of all lines laying on a given plane � ∈ P3; the orresponding plain ��(�) ⊂ QP is alled�-plane. It is spanned by the Pl�uker images of any 3 lines whih lay on � and don't have a ommonintersetion.Note that any two planes of the same type have
����

p 6∈ H
H ≃ P3p′ G ⊂ H•

Fig 6⋄1. The one C = QP ∩ TpQP .

exatly 1-point intersetion, namely:��(�1) ∩ ��(�2) = u(�1 ∩�2 )��(O1) ∩ ��(O2) = u( (O1O2) )Two planes of di�erent types ��(�) , ��(O) do notinterset eah other, if O 6∈ �. If O∈�, then ��(�)∩��(O) is a penil of lines ` ⊂ P3 suh that O ∈ ` ⊂ �.Exerise 6.1. Show that there are no other line penilsin P3, i. e. eah line on QP ⊂ P5 has the form ��(�)∩��(O) for some O and �.Hint. Consider the one C = QP ∩TpQP . It has avertie at p and onsists of all lines whih passthrough p and lay on Qp. Fix a 3-dimensionalhyperplane H ⊂ TpQP whih doesn't ontainp. Then G = C ∩H is non singular quadrion H. So, any line passing through p has aform (pp′) = �� ∩ �� , where p′ ∈G and theplanes ��; �� are spaned by p and two linespassing through p′ on G (see �g 6⋄1).6.4.AÆne ell deomposition of Gr(2; 4). Let H ⊂ TpQP be a 3-dimensional projetive hyperplanesuh that p 6∈ H, as in above exerise, C = QP ∩ TpQP , and G = H ∩ QP . Then C is the simple onewith vertex p over G (see �g 6⋄1) and we have the following diagram of inlusions��p ⊂ - �� ∩ ��⊂ - C ⊂ -

⊂

- QP��⊂ -⊂

-

⇒ Gr(2; 4) = A0 ⊔ A1 ⊔ A2
⊔

A2  ⊔ A3 ⊔ A4
The right side deomposition is produed via replaing eah stratum in the left side by the omplementto all the smallest strata it ontain and identifying the resulting disjoint ells with aÆne spaes as follows:(�� ∩ ��)\p ≃ A1 (beause this is a projetive line without a point), ��\(�� ∩ ��) ≃ �� \(�� ∩ ��) ≃ A2(beause the both are projetive planes without a line), C \(�� ∪ ��) ≃ A1×(G \ (G ∩ Tp′G)) (beauseC is a one over G), and �nally, G \ (G ∩ Tp′G) ≃ A2 and Q \ C ≃ A4, beause of the lemma below.6.4.1.LEMMA. Let Q ⊂ Pn be a quadri, p∈Q be a non singular point, and H 6∋ p be a odimension1 hyperplane. Then the projetion from p onto H indues a bijetion between Q \ (Q ∩ TpQ) and
An−1 = H \ (H ∩ TpQ).Proof. Any non tangent line passing through p have to interset Q preisely ones more. All suh lines are 1{1parameterized by the points of An−1 = H \ (H ∩ TpQ). �Exerise 6.2∗. If you have some experiene in topology, show that over C all odd integer homologies of Gr(2; 4)vanish and the even ones are H0 = H2 = H6 = H8 = Z, H4 = Z ⊕ Z. Also, try to ompute the homologiesfor the real grassmannian, where the boundary maps are non trivial.



§ 6. Working example: grassmannians. 316.5.General grassmannian Gr(m;d) is de�ned as the set of all m-dimensional vetor subspaes ina given d-dimensional vetor spae V . If the nature of V is important, we write Gr(m;V ) instead ofGr(m; d). In the projetive language, Gr(m; d) is the set of all (m− 1)-dimensional projetive subspaesin Pd−1. If m = 1, then Gr(m; d) = Pd−1. There is a anonial bijetion Gr(m;V ) ≃ Gr(d − m;V ∗)indued by duality. It sends U ⊂ V to AnnU ⊂ V ∗ and wise versa.Exerise 6.3. Let dimV = 4. Fix an isomorphism V bq- V ∗, say presented by a non singular quadriQ ⊂ P(V ), and onsider an automorphism of Gr(2; V ) given by U 7−→ Ann q̂(U). Show that it maps the�-planes on Gr(2; 4) to the �-planes and wise versa.6.6.Pl�uker embedding Gr(m;V ) ⊂
u - P(�mV ) sends m-dimensional subspae U ⊂ V to the1-dimensional subspae �mU ⊂ �mV . If U is based by the vetors {u1; u2; : : : ; um} ⊂ U , then u(U) =u1 ∧ u2 ∧ · · · ∧ um up to proportionality, beause taking an other base, say vi =∑ aijuj, we get

u(U) = v1 ∧ v2 ∧ · · · ∧ vm = det (aij) · u1 ∧ u2 ∧ · · · ∧ um :6.6.1.LEMMA. The Pl�uker embedding is really injetive.Proof. If U1 6= U2, then there exist a base in V suh that some vetors w1; w2; : : : ; wr of this base give a base forU1 ∩ U2, some other u1; u2; : : : ; um−r together with {w�} give a base for U1, some other v1; v2; : : : ; vm−r togetherwith {w�} give a base for U2, and the rest e1; e2; : : : ; ed+r−2m are omplementary to U1 +U2. Let ! ∈ �d−mV bethe skew produt of all v� and e� . The skew multipliation by ! �mV � 7−→�∧!- �dV ≃ k turns into a linear formon �mV as soon as a base vetor for �dV is �xed. This linear form does vanish at u(U2) and doesn't at u(U1). �6.6.2.Example: 2× 2-minors of 2× 4-matries. Let dimV = 4 and a base {e1; e2; e3; e4} ⊂ V be �xed. Thena subspae U ⊂ V based by u1; u2 an be presented as 2× 4-matrix A = (a11 a12 a13 a14a21 a22 a23 a24) whose rows arethe oordinates of u1; u2. This matrix is de�ned by U up to the left multipliation A 7→ C ·A by any C ∈ GL2(k)(this orresponds to a base hange in U). The Pl�uker embedding sends A tou1 ∧ u2 =∑i<j det(a1i a1ja2i a2j) ei ∧ ej :So, the homogeneous oordinates of u(U) ∈ P5 in the base {eij = ei ∧ ej} are six 2× 2-minors of A. In partiular,the left multipliations by C ∈ GL2 doesn't e�et on the ratios between 2 × 2-minors of A. An other laim: sixnumbers x1; x2; : : : ; x6 give a olletion of 2× 2-minors for some 2× 4 matrix i� they satisfy (maybe, after somerenumbering) the Pl�uker equation x1x2 = x3x4 + x5x6.Exerise 6.4. Is there 2× 4 - matrix with minors a) { 2; 3; 4; 5; 6; 7 } b) { 3; 4; 5; 6; 7; 8 } ?6.7.Matrix notations and Pl�uker oordinates on Gr(m;d). A point U ∈ Gr(m; d) an bepresented by (m×d)-matrix AU whose rows are the oordinates of some base vetors {u1; u2; : : : ; um} ⊂ Uwith respet to a �xed base {e1; e2; : : : ; ed} ⊂ V . Suh a matrix is not unique and is de�ned by U only upto the left multipliation by any C∈GLm (this orresponds to a base hange in U). So, the grassmannianGr(m; d) an be onsidered as a fator spae of Matm×d(k) by the left ation of GLm(k). Under the Pl�uk-er embedding , the homogeneous oordinates of u(U) ∈ �mV in the standard base eI = ei1∧ei2∧ · · · ∧eimare equal to the maximal minors of A. They are stable under the left GLm-ation and are alled Pl�ukeroordinates of U .6.8.AÆne overing and aÆne oordinates on Gr(m;d). Consider the standard aÆne ard UI ⊂
P(�mV ) given by xI = 1, where xI is the oordinate along eI = ei1 ∧ ei2 ∧ · · · ∧ eim . The inverse image
UI def= u−1(UI) ⊂ Gr(m; d) onsists of all U suh that AU has non zero maximal minor in the olumns(i1; i2; : : : ; im). Any suh U has a unique matrix representation A(I)U = (a(I)ij ) with the identity m×m-submatrix staying in these olumns. It is given by A(I)U = A−1U;I · AU , where AU is an arbitrary matrixrepresentation for U and AU;I ⊂ AU is m×m-submatrix formed by the olumns (i1; i2; : : : ; im). So, thepoints of UI ⊂ Gr(m; d) are 1{1 parametrized by m (d−m) matrix elements (a(I)�� ) staying outside theolumns (i1; i2; : : : ; im) in A(I)U . In other words, we have an aÆne hart Am(d−m) ∼- UI ⊂ Gr(m; d)



32 Algebrai Geometry. Start Up Course.whih overs an open dense subset of the grassmannian. The harts UI are alled standard and overthe whole of Gr(m; d) when I runs through the length m inreasing subsets in {1; 2; : : : ; d}.Exerise 6.5. Write down the expliit transition funtions between the standard aÆne harts U12 and U23 onGr(2; 4).Exerise 6.6∗. If you had deal with smooth topology, hek that real and omplex grassmannians are thesmooth (moreover, analyti) manifolds.6.9.Cell deomposition. The Gauss method shows that for any U ⊂ V there exists a unique base
{u1; u2; : : : ; um}, of U , suh that the orresponding matrix AU = (a��) is a strong step matrix , thatis, (a��) ontains the identity m × m-submatrix, say in olumns (j1; j2; : : : ; jm), suh that eah rowvanishes at the left of the unity oming from this identity submatrix (i. e. for all i = 1; 2; : : : ;m we haveaij = 0 ∀ j < ji).Exerise 6.7. Prove that di�erent strong step matries give di�erent subspaes in V .So, there exist a bijetion between Gr(m; d) and the set of all strong step matries. The last one splits intodisjoint union of the aÆne spaes. Namely, all strong step matries that ontain the identity submatrixin the �xed olumns I = (i1; i2; : : : ; im) have exatlymn−m2 − (i1 − 1)− (i2 − 2)− · · · − (im −m) = dimGr(m; d)− m∑�=1(i� − �)free entries to put there any numbers from k. Hene, topologially, Gr(m; d) is a disjoint union of( dm) aÆne ells AI enumerated by length m inreasing subsets I ⊂ {1; 2; : : : ; d}. The I-th ell ishomeomorphi to the aÆne spae and has odimension m∑�=1(i� − �) in Gr(m; d).6.10.Young diagram notations. Traditionally, the �-th di�erene (i� − �) in a length m inreasingsubset I ⊂ {1; 2; : : : ; d} is denoted by �m+1−� in order to have a partition (d −m) > �1 > �2 > · · · >�m > 0 instead of the inreasing olletion 1 6 i1 < i2 < · · · < im 6 d. By the de�nition, a partition �is a not inreasing olletion of non negative integers � = (�1; �2; : : : ; �m). A length `(�) is a number ofthe last non zero element in �. A weight of � is |�| def= ∑� �� . A Young diagram of � is a flushleft'edolletion of ell rows whose lengths are �1; �2; : : : ; �m. For example, the partition � = (5; 4; 4; 1) haslength `(�) = 4 weight |�| = 14 and Young diagram . In other words, the partition is just theYoung diagram, its weight is the number of ells, and its length is the number of rows.Exerise 6.8. Chek that there is a bijetion between the length m inreasing subsets I ⊂ {1; 2; : : : ; d} and theYoung diagrams ontained in the retangle of size m× (d−m).In terms of Young diagrams, the grassmannian Gr(m; d) is deomposed into the disjoint union of aÆneells enumerated by the Young diagrams ontained in the m × (d − m) - retangle. �-th ell hasodimension |�| and is isomorphi to Am(d−m)−|�|. In partiular there is a unique 1-point ell, whihhas odimension m (d − m) and orresponds to the retangle itself, and a unique open dense ell ofodimension zero, whih orresponds to the empty diagram and oinides with the standard aÆne hart
U{1;2;:::;m}. A topologial losure of �-th aÆne ell is alled a Shubert yle and denoted by ��.Exerise 6.9. Chek that 6 Shubert yles on the Pl�uker quadri Gr(2; 4) ≃ QP ⊂ P5 are: �00 = QP ;�22 = p = (0 : 0 : 0 : 0 : 0 : 1) ∈ P5; �10 = QP ∩ TpQP ; �11 = ��(O), where O = (0 : 0 : 0 : 1) ∈ P3;�20 = ��(�), where � ⊂ P3 is given by x0 = 0; �21 = ��(O) ∩ ��(�).Remark for who studied the topology. Clearly, the Shubert yles generate the homologies of Gr(m; d). Moreover, for theomplex grassmannian they form the base of H∗(Gr(m;Cd);Z) over Z. It is a nie (but not simle) ombinatorial problem, toexpress the (topologial) intersetions of the Shubert yles in terms of the Shubert yles. The orresponding tehniqueis known as a Shubert alulus and is desribed in GriÆts-Harris, Fulton-Harris and Madonald. Roughly speaking, thehomology ring H∗(Gr(m;Cd);Z) is isomorphi to the trunated ring of symmetri polynomials via sending the Shubertyles �� to the Shur polynomials s�.Exerise 6.10∗. Show that �10�21 = �220 = �211 = �22, �20�11 = 0, and �210 = �20 + �11 in the integer homologyring of omplex Gr(2; 4).



§ 6. Working example: grassmannians. 33Hint. To alulate �210 realize �10 as �1;0(`) = QP ∩ Tu(`)QP = {`′′ ⊂ P3 | ` ∩ `′′ 6= ∅}. Then, taking twointerseting lines ` and `′ in P3 we get �10(`)∩�10(`′) = ��(O)∪��(�), where O = `∩ `′ and � is spanedby ` and `′.6.11.Pl�uker equations In general ase, an image of the Pl�uker embedding Gr(m;V ) ⊂ u- P(�mV ),i. e. the variety of deomposable quadrati grassmannian polynomials, is desribed by the quadratiPl�uker relations onsidered in n◦ 5.5.2 and generalizing those we written in n◦ 6.2.2 and n◦ 6.6.2 fordimV = 4. Note that in the latter partiular ase we ould write four generi relations from n◦ 5.5.2that orrespond to all possible distributions of 4 = 3 + 1 indexes {1; 2; 3; 4} between K and J .Exerise 6.11. Chek that they all produe the same quadrati equation A12A34 − A13A24 + A14A23 = 0 on2× 2 - minors Aij of 2× 4 - matrix A.



34 Algebrai Geometry. Start Up Course.
§7.Working example: Veronese urves.In this setion we always assume that k is algebraially losed and hark 6= 2.7.1.Linear span of Veronese urve. Reall (see n◦ 5.4.1) that the Veronese urve Cn ⊂ Pn is theimage of Veronese's map

P1 = P(U∗) ⊂ vn - Pn = P(SnU∗) ;whih takes a linear form � = �0t0 + �1t1 ∈ U∗ to its n-th power:vn(�) = �n =∑(ni) �i0�n−i1 ti0tn−i1 :As in n◦ 5.4.1, we write polynomials f ∈ SnU∗ in the form f =∑(ni) ai ti0tn−i1 and use ai as homoge-neous oordinates on Pn = P(SnU∗).Given an arbitrary hyperplane � = {a ∈ Pn | ∑Aiai = 0}, the intersetion Cn ∩ � onsists of alla = a(�) that satisfy the equation ∑i Ai�i0�n−i1 = 0 whose left side is non zero polynomial of degreen. So, a hyperplane setion of Veronese's urve always onsists1 of n points ounted with appropriatemultipliities (typially, of n distint points). In partiular, the linear span of any (n + 1) Veronese'surve points gives the whole of Pn.7.1.1.COROLLARY (ARONHOLD PRINCIPLE). To prove that some linear in f assertion holds for allpolynomials f , it is enough to verify it only for all powers of all linear forms. �Exerise 7.1. Use the Aronhold priniple to give another proof of the Taylor formula (5-6).7.2.Projeting twisted ubi. Let us desribe all plane projetions of the twisted ubi C3 ⊂ P3 =
P(S3U∗). Up to a projetive isomorphism, the projetion does not depend on the hoie of a targetplane as soon as the enter is �xed, beause the projetion of one target plane onto another gives anlinear isomorphism between the projetion images. Let p = p(t) = `1(t)`2(t)`3(t) ∈ P3 = P(S3V ∗) bea projetion enter. After some parameter hange we an suppose that either `1 = `2 = `3 = t20, (thismeans that p∈C), or `1 = `2 = t0 ; `3 = t1 (2), or `1 = (t0 + t1) ; `2 = (t0 + ! t1) ; `3 = (t0 + !2t1),where ! = 3√1 6= 1 (that is, p(t) = t30 + t31 has 3 distint roots).In the �rst ase p = (1 : 0 : 0 : 0); take a target plane to be a0 = 0 with the oordinates (x0 : x1 :x2) = (a1 : a2 : a3). Then the projetion is given by parametri equations (x0 : x1 : x2) = (�20 : �0�1 : �21)and oinides with the plane Veronese oni x0x2 = x21.In the seond ase p = (0 : 1 : 0 : 0); take a target plane to be a1 = 0 with the oordinates(x0 : x1 : x2) = (a0 : a2 : a3). Then the projetion is given by parametri equations (x0 : x1 : x2) = (�30 :�0�21 : �31) and in the aÆne hart {x0 = 1} it turns into x = �2, y = �3, where x = x1=x0, y = x2=x0,and � = �1=�0. So, we get a urve y2 = x3 or, in the homogeneous oordinates, x32 = x23x0. This urveis alled a uspidal ubi, beause of the singularity form at the origin.In the third ase p = (1 : 0 : 0 : 1); take a target plane � = {a2 = 0} with the oordinates (x0 : x1 :x2) = ((a0 − a1) : a1 : a2) (the �rst three oordinates w.r.t. the base { t30 ; 3 t20t1 ; 3 t0t21 ; t30 + t31 }). So,the projetion from p = t30+ t31 gives the parameterized urve (x0 : x1 : x2) = ((�30 − �31) : �20�1 : �0�21) .In aÆne hart x0 = 1 we get, like above, x = �=(1− �3), y = �2=(1− �3) or xy = x3 − y3. This urvehas a self intersetion point at the origin and is alled a nodal ubi.7.2.1.Example: geometri desription of rational urves. A plane urve C ⊂ P2 is alled rational if thereare 3 oprime homogeneous polynomials p0(t), p1(t), p2(t) of the same degree in t = (t0 : t1) suh that a map
P1 �7→(p0(�):p1(�):p2(�))- P2 gives (maybe, after removing some �nite sets of points from P1 and C) a bijetionbetween P1 and C .Exerise 7.2. Interseting C with lines, show that degC = deg pi.1reall that we suppose the ground �eld to be algebraially losed2geometrially, this means that p lies on a tangent line to C3



§ 7. Working example: Veronese urves. 35When deg pi = d , a map (td0 : td−10 t1 : : : : : t0td−11 : td1) 7−→ (p0(t) : p1(t) : p2(t)) de�nes a projetion of theVeronese urve Cd ⊂ Pd into some plane P2 ⊂ Pd. So, we have7.2.2.CLAIM. Eah rational plane urve of degree d is an appropriate projetion of the Veroneseurve Cd ⊂ Pd. �7.2.3.COROLLARY. A smooth plane ubi urve is not rational.Proof. Rational ubi urve is a plane projetion of the twisted ubi C3 ⊂ P3. But suh a projetion is either aoni or a singular ubi. �7.3. Simplies insribed into the Veronese urve. Let pi = �ni , where 1 6 i 6 n, �i ∈ U∗, be anarbitrary olletion of n distint points on the Veronese urve Cn ⊂ Pn = P(SnU∗). For eah i onsiderthe penil of hyperplanes passing through (n − 2)-dimensional fae (p1; : : : pi−1; pi+1; : : : ; pn) oppositeto pi in the (n − 1) dimensional simplex (p1; p2; : : : ; pn). These n penils are parameterized uniformlyby the points of P×1 = P(U) as follows. For any � ∈P(U∗) denote by �̂ ∈P(U) the annihilator1 Ann (�)and for eah i take the produt �i = �̂1; · · · ; �̂i−1�̂i+1; · · · ; �̂1 ∈ Sn−1U . De�ne a plane �i(u) ⊂ P(SnU∗),whih orresponds to u ∈ P(U) in i-th penil, as the annihilator of u�i ∈ SnU . This means that�i(u) = {f(t) ∈ SnU∗ | f̃(�̂1; : : : ; �̂i−1; u; �̂i+1; : : : ; �̂n) = 0}where f̃ is the full polarization of f onsidered as a symmetri multilinear form on U . In partiular, forf(t) = �n(t) ∈ Cn we have �̃n(�̂1; : : : ; �̂i−1; u; �̂i+1; : : : ; �̂n) = �(u) ∏� 6=i � (�̂�)So, for any u ∈ P(U) the plane �i(u) pass through all p� = �n� with � 6= i and through the pointp = �n ∈ Cn whose � annihilate u (i. e. suh that u = �̂ ). In other words,Cn =⋃u �1(u) ∩ �2(u) ∩ · · · ∩ �n(u) (7-1)Sine PGL2(k) ats on P(SnU∗) via linear variable a linear isomorphism between projetive lines isuniquely de�ned by the images of any 3 distint points, we get the following orollary.7.3.1.CLAIM. The Veronese urve is uniquely reovered from any olletion of its (n + 3) distintpoints a; b; ;p1; p2; : : : ; pn as follows. Consider n hyperplane penils through the (n − 2)-dimensionalfaes of the insribed simplex (p1; p2; : : : ; pn) and parameterize them uniformly by u∈P1 in suh a waythat the hyperplanes passing through a, b,  appear in eah penil when u = 0; 1; ∞. Then Cn oinideswith the inidene graph (7-1) when u runs through the parameter line P1. �7.4.Natural ation of PGL1 = PGL(U∗) on P(SnU∗) indued by the substitutions (t0; t1) 7−→(at0+ bt1; t0+ dt1) sends the Veronese urve to itself. We all it the reparameterization of the Veroneseurve.7.4.1.CLAIM. Let p1; p2; : : : ; pn; a ; b ;  ∈ Pn = P(SnU∗) be any n+ 3 points with no (n+ 1) on thesame hyperplane. Then there exists a projetive linear isomorphism Pn ∼- Pn that sends these pointsonto Veronese urve Cn; this isomorphism is unique up to a reparameterization of the Veronese urve.Proof. For eah i = 1; 2; : : : ; n identify P1 = P(U) with a penil of hyperplanes through p1; : : : pi−1; pi+1; : : : ; pn
q2q1
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by sending u = e0; e1; (e1 − e0) to the hyperplanes that ontain a, b,  and denote by �i(u) the u-th hyperplanein the i-penil. Let the hyperplane (p1; p2; : : : ; pn) appear in i-th penil whenu = ui. We laim that u1; u2; : : : ; un ∈ P(U) are mutually distint.Indeed, onsider 2-dimensional plane � = (a; b; ) and denote by q1 and q2its intersetion with i-th and j-th (n−2)-dimensional faes of (p1; p2; : : : ; pn).Sitting in this plane, we will see the piture shown on �g 7⋄1. Our i-th and1if � = �0t0 + �1t1, then b� = �1e0 − �0e1, where {eo; e1} ⊂ U is the base of U dual to {t0; t1} ⊂ U∗



36 Algebrai Geometry. Start Up Course.j-th penils of hyperplanes are represented inside � by the penils of linespassing through q1, q2 and the hyperplane (p1; p2; : : : ; pn) is represented bythe line (q1q2) (ompare this onstrution with drawings from the §3).Exerise 7.3. Show that no 3 of q1; q2; a; b;  are ollinear (in partiular,q1; q2 are distint).Hint. Use linear generality of p1; p2; : : : ; pn; a ; b ; .For eah pair i 6= j there are two ways to identify the parameter line P(U)with the penil of lines passing through O = (aq1) ∩ (bp2): one takes u ∈ Uto the line through �i(u) ∩ (b), another one takes u ∈ U to the line through�j(u) ∩ (a). These two parameterizations oinide, beause they attah the same u's to a, b, . Sine O, q1, q2are not ollinear, two lines orresponding to u = ui, u = uj (they join O with �i(ui) ∩ (b) = (q1q2) ∩ (b) and�j(uj) ∩ (a) = (q1q2) ∩ (a) respetively) are distint, i. e. ui 6= uj .Now, denote by � the inidene graph (7-1) build from our urrent penils of hyperplanes. Let ui = Ann (�i)for �1; �2; : : : ; �n ∈ U∗. By the n◦ 1.11.1, there exists a unique projetive linear automorphism Pn ∼- Pn whihsends pi 7−→ �ni for 1 6 i 6 n, a 7−→ tn1 , and b 7−→ tn0 . It identi�es � with the Veronese urve, beause it sendsthe hyperplane penil through p1; : : : pi−1; pi+1; : : : ; pn to the one through �n1 ; : : : �ni−1; �ni+1; �nn in suh a waythat �i(u) goes to the hyperplane through �n as soon as � = Annu. Indeed, this takes plae for u = e1, u = e0and u = ui when a, b and pi go to tn0 , tn1 and �ni . Hene, this holds for eah u and for u = e1 − e0 we have 7−→ (t0 + t1)n. This proves the existene.Uniqueness follows from the above onstrution as well. Namely, after appropriate parameter hange we ansuppose that the isomorphism in question sends a, b,  to tn0 , tn1 and (t0 + t1)n. So, it indues the uniformparameterization of hyperplane penils trough p� and this parameterization oinides with the above one. So, theimages of p1; p2; : : : ; pn are uniquely reovered as �i = Ann (ui). �



§8.Commutative algebra draught.8.1.Noetherian rings. We write (f1; f2; : : : ; fm) for the ideal {g1f1 + g2f2 + · · · + gmfm | g� ∈ A}spanned (as A-module) by {f1; f2; : : : ; fm} ⊂ A. A ommutative ring A is alled Noetherian, if itsatis�es the next lemma:8.1.1.LEMMA. The following properties of a ommutative ring A are mutually equivalent(1) any olletion of elements {f�} ontains a �nite subset generating the same ideal as the whole set;(2) any ideal admits a �nite set of generators;(3) for any in�nite hain of embedded ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · there exists n ∈ N suh thatI� = In ∀ � > n.Proof. Clearly, (1) ⇒ (2). To dedue (3) from (2), take a �nite set of generators for the ideal ⋃ I� ; sine they allbelong to some In, we get I� = In for � > n. Finally, (1) follows from (3) applied to the hain In = (f1; f2; : : : ; fn),where fi are hosen from {f�} in order to have f� 6∈ (f1; f2; : : : ; f�−1). �8.1.2.THEOREM (HILBERT'S THEOREM ON A BASIS). If A is Noetherian, then A[x℄ is Noetherian.Proof. Let I ⊂ A[x℄ be an ideal. We write Ld ⊂ A for a set of leading oeÆients of all degree d polynomials inI. Clearly, eah Ld and L∞ def= ⋃d Ld are ideals in A. Let L∞ be generated by a1; a2; : : : ; as ∈ A oming fromf (∞)1 ; f (∞)2 ; : : : ; f (∞)s∞ ∈ I and let max�(deg f�) = m. Similarly, write f (k)1 ; f (k)2 ; : : : ; f (k)sk for the polynomials whoseleading oeÆients span the ideal Lk for 0 6 k 6 m−1. It is easy to see that I is spanned by s0+ · · ·+ sm−1+ s∞polynomials f (�)� . �Exerise 8.1. Verify the latter laim neatly.8.1.3.COROLLARY. If A is Noetherian, then A[x1; x2; : : : ; xn℄ is Noetherian. �8.1.4.COROLLARY. Any �nitely generated k-algebra is Noetherian for any �eld k.Proof. A polynomial algebra k[x1; x2; : : : ; xn℄ is Noetherian by the previous orollary. Any its fator algebra A isNoetherian as well: full preimage of any ideal I ⊂ A under the fatorizing morphism k[x1; x2; : : : ; xn℄ -- A isan ideal in k[x1; x2; : : : ; xn℄, i. e. admits a �nite set of generators, whose lasses span I over A, ertainly. �8.2. Integrality. Let A ⊂ B be two ommutative rings. An element b ∈ B is alled integer over A, if itsatis�es the onditions from n◦ 8.2.1 below. If all b ∈ B are integer over A, then B is alled an integerextension of A or an integer A-algebra.8.2.1.LEMMA. The following properties of an element b ∈ B ⊃ A are pairwise equivalent:(1) bm = a1 bm−1 + · · · + am−1 b+ a0 for some m ∈ N and some a1; a2; : : : ; am ∈ A;(2) A-module spanned by all nonnegative powers {bi}i>0 admits a �nite set of generators;(3) there exist a �nitely generated faithful1 A-submodule M ⊂ B suh that bM ⊂M .Proof. The impliations (1) =⇒ (2) =⇒ (3) are trivial. To dedue (1) from (3), let {e1; e2; : : : ; em} generate Mover A and let the multipliation map M m 7→bm- M be presented by a matrix Y , i. e.(be1; be2; : : : ; bem) = (e1; e2; : : : ; em) · Y :Note that if A-linear map M κ- M takes (e1; e2; : : : ; em) 7−→ (e1; e2; : : : ; em) ·X, where X is a square matrixwith entries in A, then the Sylvester relation detX · Id = X̂ · X implies an inlusion (detX) ·M ⊂ κ(M). Inour ase this an be applied to the zero operator M κ- 0 and the matrix X = b · Id − Y . We onlude that1A-module M is alled faithful , if aM = 0 implies a = 0 for a ∈ A37



38 Algebrai Geometry. Start Up Course.the multipliation by det(b · Id− Y ) annihilates M . Sine M is faithful, det(b · Id− Y ) = 0. This is a polynomialequation on b with the oeÆients in A and the leading term bn as required in (1). �8.2.2.Example: integer algebrai numbers. Let K ⊃ Q be a �nite dimensional1 �eld extension; then elementsz ∈ K are alled algebrai numbers. Suh a number z is integer over Z i� there are some #1; #2; : : : ; #m∈ K suhthat the multipliation by z sends their Q-linear span to itself and is presented there by a matrix whose entriesbelong to Z.8.2.3.Example: invariants of a �nite group ation. Let a �nite group G at on a k-algebra B via k-algebraautomorphisms B g- B, g ∈ G, and let A = BG = {a ∈ B | ga = a ∀ g∈G } be the subalgebra of G-invariants.Then B is an integer extension of A. Indeed, if b1; b2; : : : ; bs∈ B form a G-orbit of any given b = b1 ∈ B, then thepolynomial �(t) =∏(t− bi) is moni2, lies in A[t℄, and annihilates b.8.3. Integer losures. A set of all b ∈ B that are integer over a subring A ⊂ B is alled an integerlosure of A in B. If this losure oinides with A, then A is alled integrally losed in B.8.3.1.LEMMA. The integer losure of A is a subring in B (in partiular, ab is integer for any a ∈ Aas soon b is integer). If C ⊃ B is an other ommutative ring and  ∈ C is integer over an integer losureof A in B, then  is integer over A as well (in partiular, any integer B-algebra is an integer A-algebraas soon B is an integer A-algebra).Proof. If pm = xm−1 pm−1+ · · · +x1 p+x0, qn = yn−1 qn−1+ · · · +y1 q+y0 for p; q ∈ B, x� ; y� ∈ A, then A-modulespanned by piqj with 0 6 i 6 (m − 1), 0 6 j 6 (n − 1) is faithful (it ontains 1) and goes to itself under themultipliation by both p+q and pq. Similarly, if r = zr−1 r−1+ · · · +z1 +z0 and all z� are integer over A, thena multipliation by  preserves a faithful A-module spanned by a suÆient number of produts izj11 zj22 · · · zjrr . �8.3.2.COROLLARY (GAUSS LEMMA). For any two ommutative rings A ⊂ B let f(x); g(x) ∈ B[x℄be two moni polynomials. Then all oeÆients of h(x) = f(x)g(x) are integer over A i� all oeÆientsof both f(x), g(x) are integer over A.Proof. There exists3 a ring C ⊃ B suh that f(x) =∏(t− ��) and g(x) =∏(t− ��) in C[x℄ for some �� ; �� ∈ C.By n◦ 8.3.1, all oeÆients of h(x) =∏(t−��)∏(t−��) are integer over A⇐⇒ all �� ; �� are integer over A⇐⇒all oeÆients of f(x) and g(x) are integer over A. �8.3.3.LEMMA. Let B ⊃ A be integer over A. If B is a �eld, then A is a �eld. Vie versa, if A is a�eld and B has no zero divisors, then B is a �eld.Proof. If B is a �eld integer over A, then any non zero a ∈ A has an inverse a−1 ∈ B, whih satisfy an equationa−m = �1 a1−m + · · · + �m−1 a−1 + �0 with �� ∈ A. We multiply the both sides by am−1 and geta−1 = �1 + · · · + �m−1 am−2 + �0 am−1 ∈ A :Conversely, if A is a �eld and B is an integer A-algebra, then all non negative integer powers bi of any b ∈ Bform a �nite dimensional vetor spae V over A. If b 6= 0 and there are no zero divisors in B, then x 7−→ bx is aninjetive linear operator on V , i. e. an isomorphism. A preimage of 1 ∈ V is b−1. �8.3.4.Example: algebrai elements and minimal polynomials. If A = k is a �eld and B⊃k is a k-algebra, thenb ∈ B is integer over k i� b satis�es f(b) = 0 for some f ∈ k[x℄. Traditionally, suh b is alled algebrai over krather than integer .We write k[b℄ for a k-linear span of nonnegative integer powers {bn}n>0. If ∃ b−1 ∈ B, then we write k(b) for a
k-linear span of all integer powers {bn}n∈Z. Clearly, k[b℄ ⊂ B is the minimal k-subalgebra ontaining 1 and b. Inother terms, k[b℄ = im (evb) = k[x℄= ker(evb), where evb : k[x℄ f(x) 7→f(b)- B is an evaluation homomorphism.If b is algebrai, then ker(evb) = (f) for some non zero f ∈ k[x℄, beause k[x℄ is a prinipal ideal domain. Thisf is �xed uniquely as a moni polynomial of lowest degree suh that f(b) = 0; it is alled the minimal polynomial1as a vetor spae over Q2a polynomial is alled moni or unitary , if its leading oeÆient equals 13For any ommutative ring A and any moni non onstant f(x) ∈ A[x℄ there exists a ommutative ring C ⊃ A suh thatf(x) = Q(x − �) in C[x℄ for some � ∈ C. It is onstruted indutively as follows. Consider a fator ring B = A[x℄=(f)(whih ontains A as the ongruene lasses of onstants) and put b def= x (mod f) ∈ B. Then f(b) = 0 in B[x℄. Hene theresidue after dividing f(x) by (x − b) in B[x℄ vanishes and we get the fatorization f(x) = (x − b)h(x) with h(x) ∈ B[x℄.Now repeat the proedure for h, B instead of f , A e. t. .



§ 8. Commutative algebra draught. 39of b over k. Note that in this ase 1; b; b2; : : : ; bdeg(f)−1 form a basis for the vetor spae k[b℄ over k and if B hasno zero divisors, then k[b℄ is a �eld by n◦ 8.3.3 (in partiular, the minimal polynomial of b has to be irreduible).If b is not algebrai, then ker(evb) = 0 and k[b℄ ≃ k[x℄ is a polynomial ring. It is in�nite dimensional as avetor spae over k and it is not a �eld.We generalize this alternative in n◦ 8.5.1 below.8.3.5.LEMMA. Let K = Q(A) be a fration �eld of a ommutative ring A without zero divisors, Bbe any K-algebra, and b ∈ B be algebrai over K with minimal polynomial f ∈ K[x℄. If b is integer overA, then all oeÆients of f are integer over A.Proof. Sine b is integer, g(q) = 0 for some moni g ∈ A[x℄. Then g = fh in K[x℄ for some moni h ∈ K[x℄ and allthe oeÆients of g, h are integer over A by the Gauss lemma from n◦ 8.3.2. �8.4.Normal rings. A ommutative ring A without zero divisors is alled normal , if it is integrallylosed in Q(A). Certainly, any �eld is normal.Exerise 8.2. Show that the ring of integer numbers Z is normal.Hint. A polynomial a0tm + a1tm−1 + · · · + am−1t + am ∈ Z[t℄ annihilates a fration p=q ∈ Q with oprimep; q ∈ Z only if q|a0 and p|am8.4.1.COROLLARY. Let A be a normal ring with the fration �eldK = Q(A). If f ∈ A[x℄ is fatorizedin K[x℄ as f = gh, where both g; h are moni, then g; h ∈ A[x℄.Proof. Indeed, all the oeÆients of g; h are integer over A by n◦ 8.3.2. �8.4.2.COROLLARY. Let A be normal ring with the fration �eld K = Q(A) and B be any K-algebra.Then b ∈ B is integer over A i� it is algebrai over K and its minimal (over K) polynomial lies in A[x℄.Proof. This follows immediately from n◦ 8.3.5. �8.5.Finitely generated ommutative k-algebras. Let k be an arbitrary �eld. A ommutative k-algebra B is alled �nitely generated , if there is a k-algebra epimorphism k[x1; x2; : : : ; xm℄ �-- B. Inthis ase the images bi = �(xi) ∈ B are alled algebra generators for B over k.8.5.1.LEMMA. A �nitely generated k-algebra B an be a �eld only if eah b ∈ B is algebrai over k.Proof. Let B be a �eld and {b1; b2; : : : ; bm} be some algebra generators for B over k. We use indution over m.The ase m = 1, B = k[b℄ was onsidered in n◦ 8.3.4. For m > 1, if bm is algebrai over k, then k[bm℄ is a �eld andB is algebrai over k[bm℄ by the indutive assumption. Hene, by n◦ 8.3.1, B is algebrai over k as well. So, it isenough to show that bm must be algebrai over k as soon m > 1.Suppose the ontrary: let bm be not algebrai. Then k(bm) is isomorphi to the �eld k(x), of rational funtionsin one variable, via sending bm 7−→ x. By the indutive assumption, B is algebrai over k(bm) and b1; b2; : : : ; bm−1satisfy polynomial equations with oeÆients in k(bm). Multiplying these equations by appropriate polynomialsin bm, we an put their oeÆients into k[bm℄ and make all their leading oeÆients to be equal to the samepolynomial, whih we denote by p(bm) ∈ k[bm℄.Now, B is integer over a subalgebra F ⊂ B generated over k by bm and q = 1=p(bm). By n◦ 8.3.3, F is a �eld.So, there exists a polynomial g ∈ k[x1; x2℄ suh that g(bm; q) is inverse to 1 + q in F . Let us write the rationalfuntion g(x ; 1=p(x)) ∈ k(x) as h(x)=pk(x), where h ∈ k[x℄ is oprime to p ∈ k[x℄. Multiplying the both sides of
(1 + 1p(bm)) h(bm)pk(bm) = 1by pk+1(bm), we get for bm a polynomial equation h(bm) (p(bm) + 1) = pk+1(bm). It is nontrivial, beauseh(x)(1 + p(x)) is not divisible by p(x). Hene, bm should be algebrai over k. �8.6.Hilbert's Nullstellensatz. Let us write V (I) = {a ∈ An | f(a) = 0 ∀ f ∈ I } ⊂ An for aÆnealgebrai variety de�ned by a system of polynomial equations I ⊂ k[x1; x2; : : : ; xn℄. Certainly, V (I) isnot hanged when I is extended to an ideal spanned by I.Vie versa, for any subset V ⊂ An we write I(V ) = {f ∈ k[x1; x2; : : : ; xn℄ | f |V ≡ 0} for a set ofall polynomials vanishing along V . Clearly, I(V ) is always an ideal and I(V (I)) ⊃ I for any ideal I.Generially, the latter inlusion is proper. For example, if I = (x2) ∈ C[x℄, then V (I) = {0} ⊂ A1(C)and I(V (I)) = (x).



40 Algebrai Geometry. Start Up Course.8.6.1.THEOREM (WEEK NULLSTELLENSATZ). Let k be an arbitrary algebraially losed �eld andI ⊂ k[x1; x2; : : : ; xn℄ be an ideal. Then V (I) = ∅ i� 1 ∈ I.Proof. If 1 ∈ I, then V (I) = ∅, ertainly. Let I ⊂ k[x1; x2; : : : ; xn℄ be a proper ideal. We must �nd a point p ∈ Ansuh that f(p) = 0 for all f ∈ I. We an assume that I is maximal , i. e. any g 6∈ I is invertible modulo I. Indeed,otherwise an ideal J generated by g and I would be proper and stritly larger than I and we ould replae I byJ ; a �nite hain of suh replaements leads to some maximal ideal.As soon I is maximal the fator algebraK = k[x1; x2; : : : ; xn℄=I is a �eld. Hene, any element of K is algebraiover k ⊂ K by n◦ 8.5.1. Sine k is algebraially losed, this means that any polynomial is (mod I)-ongruent tosome onstant. Let #1; #2; : : : ; #n be the onstants presenting basi linear forms x1; x2; : : : ; xn(mod I). Then anypolynomial f ∈ k[x1; x2; : : : ; xn℄ is (mod I) ongruent to f(#1; #2; : : : ; #n) ∈ k. In partiular, f(#1; #2; : : : ; #n) = 0for any f ∈ I as required. �8.6.2.COROLLARY (STRONG NULLSTELLENSATZ). Let k be an arbitrary algebraially losed �eldand I ⊂ k[x1; x2; : : : ; xn℄ be an ideal. Then f ∈ I(V (I)) i� fk ∈ I for some k ∈ N.Proof. If V (I) = ∅, there is nothing to prove. Clearly, vanishing of fk along V (I) always implies vanishing of fitself. So, the theorem is redued to the following statement: if f vanishes along a nonempty algebrai varietyV (I), then fk ∈ I for some k.To prove it, onsider bigger aÆne spae An+1 with oordinates (t; x1; x2; : : : ; xn) and identify the initial Anwith the hyperplane t = 0 in this bigger spae. If f ∈ k[x1; x2; : : : ; xn℄ ⊂ k[t; x1; x2; : : : ; xn℄ vanishes along V (I),then an ideal J ⊂ k[t; x1; x2; : : : ; xn℄ spanned by I and a polynomial g(t; x) = 1 − t f(x) has empty zero setV (J) ⊂ An+1, beause g(x; t) ≡ 1 on V (I). By the week Nullstellensatz 1 ∈ J , i. e.q0(x; t)(1− tf(x)) + q1(t; x)f1(x) + · · ·+ qs(x; t)fs(x) = 1 (8-1)for appropriate q0; q1; : : : ; qs⊂ k[t; x1; x2; : : : ; xn℄ , f1; f2; : : : ; fs ⊂ I. Consider a homomorphism
k[t; x1; x2; : : : ; xn℄ - k(x1; x2; : : : ; xn)that sends t 7−→ 1=f(x), x� 7−→ x� . It takes (8-1) to the identityq1(1=f(x) ; x) f1(x) + · · ·+ qs(1=f(x) ; x) fs(x) = 1inside k(x1; x2; : : : ; xn). Sine I is proper, some of q�(1=f(x); x) atually have nontrivial denominators of the formf� . Hene, multiplying by appropriate power fk, we get an expression q̃1(x) f1(x)+ · · ·+ q̃s(x) fs(x) = fk(x) withq̃� ∈ k[x1; x2; : : : ; xn℄. �8.7.Fatorization. Let A be a ommutative ring without zero divisors. An element q ∈ A is alledirreduible, if it is not invertible and q = rs implies that one of r; s is invertible. An element p ∈ A isalled prime, if it generates a prime ideal in A, i. e. if A=(p) is not zero and has no zero divisors.Exerise 8.3. Chek that p is prime i� it is not invertible and p|rs implies that p divides at least one of r; s.Exerise 8.4. Show that eah prime element is irreduible.A ring A is alled fatorial , if any a ∈ A is a �nite produt of irreduible elements:a = q1 q2 · · · qmand suh irreduible fatorization is unique up to multipliation of its fators by invertible elements1,i. e. given two irreduible fatorizationsq1 q2 · · · qm = a = q′1 q′2 · · · q′n ;then m = n and (after appropriate renumbering) qi = si q′i for some invertible si ∈ A.8.7.1.LEMMA. Any fatorial ring A is normal.Proof. Let �=� ∈ Q(A) satisfy a polynomial equation tn + a1tn−1 + · · ·+ an−1t+ an = 0, where �i ∈ A. Then �nis divisible by �. Sine A is fatorial, eah irreduible divisor of � divides �, that is, �=� ∈ A. �1reall that if a = bs for an invertible s, then a and b are alled assoiated (with eah other) elements of ring



§ 8. Commutative algebra draught. 418.7.2.LEMMA. A Noetherian ring without zero divisors is fatorial i� all its irreduible elements areprime.Proof. In a Noetherian ring, any element f is a �nite produt of irreduible elements: in the ontrary ase f anwritten as f = f1g1, where f1 is reduible and an be written as f = f2g2 an so on in�nitely many times produingan in�nite hain of stritly inreasing ideals (f) ⊂ (f1) ⊂ (f2) ⊂ (f2) ⊂ : : : . Further, if there are no zero divisorsand all irreduible elements are prime, then two irreduible fatorizations ∏ qi = ∏ q′j have the same number offators and satisfy qi = siq′i for some invertible si (after appropriate renumbering). Indeed, sine prime q′1 divides∏ qi it divides some qi, say q1. So, q1 = s1q′1, where s1 is invertible, beause q1 is irreduible. Now we haveq′1(s1 ∏i>2 qi − ∏j>2 q′j) = 0, whih implies s1 ∏i>2 qi = ∏j>2 q′j , and we an replae q2 by s1q2 and use indution overthe number of fators.It remains to note that in fatorial ring all irreduible elements are prime: if ab = pq, where q is irreduible,then irreduible fatorization of either a or b should ontain an element sq with invertible s. �8.7.3.Greatest ommon divisor. Let A be a fatorial ring and a1; a2 ∈ A have the prime fatoriza-tions: a1 = q1 · · · qsq′s+1 · · · q′m ; a2 = q1 · · · qsq′s+1 · · · q′n ;where no q′i, q′j are assoiated (the ase s = 0, without any q's, is also possible). The produt q1 · · · qs(or 1, if s = 0) is alled the greatest ommon divisor of a1, a2 and denoted by gd(a1; a2). Note thatgd(a1; a2) is de�ned up to invertible fator. Indutively,gd(a1; a2; : : : ; an) = gd (gd(a1; a2; : : : ; an−1); an) :Given a polynomial f = a0xn + a1xn−1 + · · · + an−1x + an ∈ A[x℄, then gd(a1; a2; : : : ; an) is alled aontent of f and is denoted by ont(f).8.7.4.LEMMA. ont(fg) = ont(f) · ont(g) for any f; g ∈ A[x℄.Proof. It is enough to hek that ont(fg) = 1, if ont(f) = ont(g) = 1. If all the oeÆients of fg are divisibleby some prime p ∈ A, then fg (mod p) = 0 in the ring (A=pA)[x℄, whih has no zero divisors, beause p is prime.So, either f (mod p) = 0 or g (mod p) = 0. �8.7.5.LEMMA. If A is fatorial, then A[x℄ is fatorial as well.Proof. Let k = Q(A) be the quotient �eld. By n◦ 8.7.2, it is enough to show that any irreduible f ∈ A[x℄ remainsto be irreduible inside the fatorial ring k[x℄. Let f = gh in k[x℄. We an write g(x) = a−1g′(x), h(x) = b−1h′(x)for some a; b ∈ A and g′; h′ ∈ A[x℄ suh that ont(g′) = ont(h′) = 1. Now ab f = g′h′, where ont(g′h′) = 1 byn◦ 8.7.4 and ont(f) = 1, beause f is irreduible in A[x℄. Hene. ab is invertible and h′′ = (ab)−1h′ ∈ A[x℄. Thisleads to the deomposition f = h′′g′ inside A[x℄. �8.7.6.COROLLARY. If A is fatorial, then A[x1; x2; : : : ; xn℄ is fatorial (in partiular, normal). �Exerise 8.5. Let k be an algebraially losed �eld of any harateristi, X ⊂ An(k) be an algebrai hy-persurfae given by a polynomial equation f(x1; x2; : : : ; xn) = 0, where f ∈ k[x1; x2; : : : ; xn℄, and letg(x) ∈ k[x1; x2; : : : ; xn℄ vanish at any point of X. Show that g is divisible by any irreduible fator off Hint. Sine k[x1; x2; : : : ; xn℄ is fatorial, the result follows from Hilbert's Nullstellensatz8.8.Resultant systems. We �x a olletion of m degrees d1; d2; : : : ; dm and write Sd = P(SdV ∗) forthe spae of hypersurfaes of degree d in Pn = P(V ). Let R ⊂ Sd1 × Sd2 × · · · × Sdm be a set ofall hypersurfae olletions S1; S2; : : : ; Sm ⊂ Pn suh that ⋂S� 6= ∅. Then R is an algebrai variety ,i. e. an be desribed by a �nite system of multi-homogeneous polynomial equations on the oeÆients offorms (f1; f2; : : : ; fm) ∈ Sd1V ∗ × · · · × SdnV ∗ de�ning the hypersurfaes S1; S2; : : : ; Sm. This equationsystem depends only on n;d1; d2; : : : ; dm and is alled a resultant system. Indeed, onsider an idealI ⊂ k[x0; x1; : : : ; xn℄ generated by f� . Then ⋂S� ⊂ P(V ) is empty ⇐⇒ V (I) ⊂ A(V ) either is emptyor oinides with the origin O ∈ A(V ). In the both ases eah xi vanishes along V (I), i. e. by Hilbert'sNullstellensatz xmi ∈ I for some m, that is SdV ∗ ⊂ I ∀ d ≫ 0. Sine V (xm0 ; xm1 ; : : : ; xmn ) = {O} thisondition is also suÆient. So, ⋂S� = ∅ i� k-linear map:�d : Sd−d0V ∗ ⊕ Sd−d1V ∗ ⊕ · · · ⊕ Sd−dnV ∗ (g0;g1; :::; gn) 7→P g� f� - Sd (8-2)



42 Algebrai Geometry. Start Up Course.is non surjetive ∀ d≫ 0. In terms of the standard monomial bases, �d is presented by a matrix whoseentries are linear forms in the oeÆients of f� . Sine for d ≫ 0 the dimension of the left side in (8-2)beames greater then the right one1, R oinides with the zero set of all d× d - minors of all �d with dlarge enough. By Hilbert's theorem on a basis, this in�nite equation system is equivalent to some �nitesubsystem. Say, we will see in n◦ 8.8.2 that for n = 1, m = 2 the smallest d produing a non trivialrestrition is d = d0 + d1 − 1, when �d beomes a square matrix; in this ase R is a hypersurfae givenby equation det�d0+d1−1 = 0.8.8.1.Example: projetion Pm × An �- An sends algebrai varieties to algebrai varieties, i. e. ifX = { (q; p) ∈ Pm × An | f�(q; p) = 0 }is given by some polynomial equations f�(t; x) = 0 (homogeneous in t = (t1; t2; : : : ; tm) ∈ Pm), then its projetiononto An also an be desribed by a system of polynomial equations.Indeed, onsider f� as homogeneous polynomials in t with the oeÆients in k[x1; x2; : : : ; xn℄. Then the image�(X) ⊂ An onsists of all p suh that the homogeneous in t polynomials f�(t; p) have a ommon zero on Pm. As wehave seen, this means that their oeÆients, whih are polynomials in p, satisfy the system of resultant equations.8.8.2.Example: resultant of two binary forms. If k is algebraially losed, then eah polynomial f(t) = a0 tm +a1 tm−1 + · · · + am−1 t + am an be fatorized as f(t) = a0∏(t − #�) = am∏(1 − #−1� t), where #1; #2; : : : ; #mare all its roots. In homogeneous world, eah degree d homogeneous polynomialA(t0; t1) = a0 td1 + a1 t0 td−11 + a2 t20 td−21 + · · · + ad−1 td−10 t1 + ad td0has similar deomposition A(t0; t1) = d∏i=0(�′′i t0 − �′it1) = d∏i=0 det(t0 t1�′i �′′i ) , whih means that A vanishes at dpoints �1; �2; : : : ; �d∈ P1 with homogeneous oordinates �i = (�′i : �′i). In partiular, eah oeÆient ai, of A(t),is expressed as bihomogeneous degree (i; d− i) polynomial in (�′; �′′):ai = (−1)d−i�i(�′; �′′) ; where �i(�′; �′′) = ∑#I=i(∏i∈I �′i ·∏j 6∈I �′′j )(here I runs through all inreasing length i subsets in {1; 2; : : : ; d} and �i is a bihomogeneous version of the i-thelementary symmetri funtion).Now, let us �x two degrees m;n ∈ N and onsider a polynomial ring k[�′; �′′; �′; �′′℄ in four olletions ofvariables �′ = (�′1; �′2; : : : ; �′n) ; �′′ = (�′′1 ; �′′2 ; : : : ; �′′n) ; �′ = (�′1; �′2; : : : ; �′m) ; �′′ = (�′′1 ; �′′2 ; : : : ; �′′m) Then theprodut RAB def= ∏i;j (�′i�′′j − �′′i �′j) = n∏j=1A(�j) = (−1)mn m∏i=1B(�i) ;vanishes i� two homogeneous binary formsA(t0; t1) = n∑i=0 ai ti0 tn−i1 andB(t0; t1) = m∑j=0 bj tj0 tm−j1 (whose oeÆientsai = (−1)n−i�i(�′; �′′) , bj = (−1)m−j�j(�′; �′′) have a ommon root. Clearly, RA;B is bihomogeneous ofbidegree (mn;mn) in (�; �) and may be expressed in terms of the oeÆients of A, B. This expression is alleda resultant of the polynomials A(t0; t1), B(t0; t1) and generates the ideal of all resultant relations for two binaryforms. More preisely, RA:B up to a salar fator oinides with the Silvester determinant
det
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Indeed, onsider a vetor spae U with a basis {t0; t1} and a linear map Sm−1U ⊕Sn−1U MA;B- Sm+n−1U whihsends a pair of polynomials (h1(t); h2(t)) to A(t)h1(t) + B(t)h2(t) as in 8-2. The Silvester matrix is transpose1the leading terms of their expansions as polynomials in d are mdn=n! and dn=n! respetively



§ 8. Commutative algebra draught. 43to the matrix of MA;B in the standard monomial bases. If a point (�; �) lies on the quadri �′i�′′j − �′′i �′j = 0,then (�′′i t0 − �′it1) = (�′′i t0 − �′it1) up to a salar fator. This linear form divides A(t), B(t) and any polynomialA(t)h1(t) + B(t)h2(t). Hene, imMA;B 6= Sm+n−1U . So, the Silvester determinant vanishes along eah quadri�′i�′′j −�′′i �′j = 0 and, by Hilbert's Nullstellensatz, it is divisible by RA;B. The quotient has to be a onstant, beausethe both polynomials are bihomogeneous of the same bidegree (mn;mn) in (�; �). Moreover, sine the Silvesterdeterminant vanishes as soon A(t) and B(t) are not oprime, RAB spans the ideal of all resultant relations | so,it is prinipal in the ase of two binary forms.8.8.3.Example: elimination tehnique. Let C1, C2 be two plane urves of degrees m and n given by equationsF (x) = 0 and G(x) = 0 in x = (x0 : x1 : x2). Consider F , G as (non homogeneous) polynomials in x0 with theoeÆients in k(x1; x2) and take their resultant1 RF;G(x1; x2) ∈ k[x1; x2℄. If it is identially zero, then F and Ghave a ommon divisor in k(x1; x2)[x0℄.Exerise 8.6. Dedue from the Gauss lemma that it an be taken with the oeÆients in k[x1; x2℄.So, if R ≡ 0, then C1 and C2 have a ommon omponent. If R 6≡ 0, then (x1; x2)-oordinates of any intersetionpoint p ∈ C1 ∩C2 have to satisfy the resultant equation RF;G(x1; x2) = 0 whih is homogeneous of degree mn. So,the urves have either a ommon omponent or at most mn intersetion points, whih may be found by solving ahomogeneous polynomial equation in x1; x2 only. These proedure is alled an elimination of a variable.

1resultant of non-homogeneous polynomials F (x0) and G(x0) is de�ned as the resultant of tn0F (t1=t0) and tm0 G(t1=t0)



§9.Projetive hypersurfaes.In this setion we assume that k is algebraially losed and hark 6= 2.9.1. Spae of hypersurfaes. Projetive spae P(SdV ∗) onsists of all non zero d-th degree homo-geneous polynomials onsidered up to a salar fator. It is alled a spae of degree d hypersurfaes in
Pn = P(V ). Geometrially, eah polynomial whose prime fatorization is f(x) = s∏i=1 pi(x)mi de�nes azero set Zf def= {x∈Pn | f(x) = 0} = s⋃i=1mi · Zpi ;whih is an union of the irreduible omponents Zpi = {x ∈ P(V ) | pi(x) = 0} ounted with integermultipliities mi. We will also write Zf = m1Zp1 +m2Zp2 + · · · +msZps. By ex. 8.5, eah irreduibleomponent Zpi does not admit any further deomposition into a sum of proper subsurfaes.Exerise 9.1. Find dimP(SdV ∗).Traditionally, 1-, 2-, and 3-dimensional projetive subspaes in the spae of hypersurfaes are alled,respetively, penils, nets and webs of hypersurfaes.9.1.1.Example: penil of plane urves ` = (C1C2) ⊂ P(SdV ∗) on P2 = P(V ) is de�ned by any two distintelements C1; C2 ∈ `. A urve �C1 + �C2 ∈ ` (whose homogeneous oordinates w. r. t. the basis {C1; C2}, of `, are(� : �)) is given in P2 by the equation �f1(x) + �f2(x) = 0, where f1(x) = 0 and f2(x) = 0 are the equations ofthe basi urves C1, C2. In partiular, eah urve from the penil (C1C2) ontains all intersetion points C1 ∩C2.Another remarkable property: any penil of plane urves ontains a urve passing through any presribed pointp ∈ P2. Indeed, urves passing through a given point form a odimension 1 hyperplane in the spae of urves andthis hyperplane intersets eah line of urves.As an appliation of penils, let us give another fruitful proof of the Pasal theorem from n◦ 3.3.1. Given ahexagon p1p2p3p4p5p6 insribed in a non singular oni C, write x = p3p4 ∩ p6p1, y = p2p3 ∩ p5p6, z = p1p2 ∩ p4p5for the intersetion points of its opposite sides. Fix some 7-th point p7 ∈ C, whih di�ers from p1; p2; : : : ; p6, andonsider a penil of ubi urves (Q1Q2) spanned by 2 ompletely splitted ubis formed by `opposite triples' ofsides Q1 = (p1p2) ∪ (p3p4) ∪ (p5p6) and Q2 = (p2p3) ∪ (p4p5) ∪ (p6p1). All ubis of this penil pass through 9intersetion points Q1 ∩ Q2 = {p1; p2; : : : ; p6; x; y; z} and at least one of them, say Q, pass through p7 as well.Sine the oni C has more than 6 ommon points with the ubi Q, it should be a omponent of this ubi,i. e. Q = C + some line, where the line has to pass through x; y; z 6∈ C.9.2. Interation with lines. Let S ⊂ Pn be a hypersurfae given by a homogeneous equation F (x) = 0of degree d and ` = (pq) ∈ Pn be a line spanned by p; q ∈ V . Write (� : �) for internal homogeneousoordinates of a point �p + �q ∈ `. In these oordinates, ` ∩ S is given by the equation f(�; �) = 0obtained from F (x) = 0 by the substitution x = �p+ �q. By the Newton{Taylor formula,f(�; �) = F (�p+ �q) = d∑i=0 �i�n−i(di) F̃ (pi; qn−i) ; where (9-1)F̃ (pi; qn−i) def= pl(F )(p; p; : : : ; p︸ ︷︷ ︸i ; q; q; : : : ; q︸ ︷︷ ︸d−i ) = (d− i)!d! �iF�pi (q) = i!d! �d−iF�qd−i (p) : (9-2)Note that the bottom term F (pi; qn−i) is bihomogeneous of degree (i; n− i) in (p; q).If f(�; �) ≡ 0 or, equivalently, F̃ (pi; qn−�) = 0 for all i, then ` ⊂ S.If f(�; �) 6≡ 0, then f(�; �) = ∏i(�′′i � − �′i�)si is a produt of linear forms1. Eah linear formorresponds to an intersetion point � = (�′ : �′′) = �′p + �′′q ∈ ` ∩ S. The maximal power si suhthat f(�; �) is divisible by (�′′i �− �′i�)si is alled a loal intersetion index between S and ` at �. It isdenoted by (S; `)�. So, degS =∑�∈S∩`(S; `)� as soon as ` 6⊂ S, i. e. a line either lies on S or intersetS in degS points ounted with multipliities.9.3.Tangent lines and tangent spae. A line ` is alled a tangent line to S, if there is a pointp ∈ S ∩ ` with (S; `)p > 2. We say that ` does touh S at p or that p is a tangeny point .1namely, f(�; �) = �df(t; 1), where t = �=� and f(t; 1) ∈ k[t℄; now, f(t; 1) = Q(t− �i)mi44



§ 9. Projetive hypersurfaes. 459.3.1.CLAIM. For any p ∈ S and any q∈Pn the line (pq) touh S at p i� F̃ (pn−1; q) = 0.Proof. If p∈S, that is F̃ (pn) = F (p) = 0, the aÆne version of (9-1) near p takes the form:F (p+ tq) = t(d1) F̃ (pn−1; q) + t2(d2) F̃ (pn−2; q2) + · · ·and (S; (pq))p is the maximal power of t fatored out of F (p+ tq). It is > 2 i� F̃ (pn−1; q) = 0. �9.3.2.COROLLARY. The union of all tangent lines through p∈S is a projetive spaeTpS def= {y∈Pn ∣∣∣ n∑i=0 yi �F�xi (p) = 0} :It is either a hyperplane or the whole of Pn. The last happens i� �F�xi (p) = 0 ∀i. �The spae TpS is alled a tangent spae to S at p. If TpS = Pn, then S is alled singular at p and pis alled a singular point of S. Otherwise p is alled a smooth point of S. S is alled smooth, if all itspoints are smooth.9.3.3.COROLLARY. Let q be either a smooth point on S or any point outside S. Then the apparentontour1 of S visible from q is slashed by the hypersurfae of degree (d− 1)S(d−1)q def= {y∈Pn ∣∣∣ n∑i=0 qi �F�xi (y) = 0} :In partiular, n∑i=0 qi �F�xi (y) 6≡ 0 as a polynomial in y.Proof. Indeed, (qy) touh S at y, if 0 = F̃ (yn−1; q) = plqF (y) = 1d ∑ni=0 qi �F�xi (y). If this polynomial vanishesidentially in y, then taking y = q we get F (q) = 0, i. e. q ∈ S. At the same timeF (q; q; : : : ; q; y) = pln−1q F (y) = pln−2q plqF (y) ≡ 0 ;beause of F̃ (yn−1; q) ≡ 0. So, q is singular point of S. �9.4.Point multipliities. A number multS(p) def= min`∋p (`; S)p is alled a multipliity of p on S. A pointp∈S is singular i� any line through p intersets S with index > 2 at p. So, p ∈ S is smooth i� p hasthe multipliity 1. A point p has multipliity > m i� all possible (m− 1)-typle partial derivatives of Fvanish at p.9.5.Polar hypersurfaes. A hypersurfae S(r)q def= {y∈Pn ∣∣∣ F̃ (qn−r; yr) = 0} is alled a r-th degreepolar of S with respet to p. If F (qn−r; yr) vanishes identially in y, we say that the polar is trivial ,i. e. oinides with the whole of Pn. Intuitively, for a smooth point q ∈ S, the polar S(r)q is a degree rsurfae whih gives the most losed approximation for S near q in a sense that the both have at q thesame tangent hyperplanes (i. e. their linear polars at q oinide), the same `tangent quadris' (i. e. theirquadrati polars at q oinide), and so on up to oinidene of (r−1)-th degree polars. If q∈S is singularof multipliity m > 2, then all the polars of degree 6 (m − 1) w. r. t. p are trivial and the m-th degreepolar is non trivial but singular at p.9.5.1.Example: spae of singular onis. Let V be 3D vetor spae, P5 = P(S2V ∗) be the spae of onis on
P2 = P(V ), and S ⊂ P5 be a lous of the singular onis. Let us �x some oordinates and present quadrati formsq(x) ∈ S2V ∗ as q(x) = x ·A · tx with symmetri 3× 3-matries A. Sine q is singular i� detA = 0, we see that S isan irreduible ubi hypersurfae in P5. We would like to �nd its singular points and desribe non singular tangenthyperplanes. By Sylvester's relations, detA =∑� (−1)i+�ai�Ai� , where Ai� is 2 × 2-minor situated outside i-throw and j-th olumn. So, � detA�aij = (−1)i+jAij and a point q ∈ S is singular i� rkA = 1.Exerise 9.2. Show that any m × n matrix aij of rank 1 has aij = �i�j , i. e. an be written as the produt ofappropriate olumn t(�1; �2; : : : ; �m) and row (�1; �2; : : : ; �n).1i. e. the set of all tangeny points p 6= q where S touhed by the tangent lines drawn from q



46 Algebrai Geometry. Start Up Course.Hint. A linear operator kn x 7→Ax- km has rkA = 1 i� dim imA = 1; if w = (�1; �2; : : : ; �m) generatesimA, then A(v) = �(v)w, where kn �- k is linear form, say � = (�1; �2; : : : ; �n) : : :In our ase A = (aij) is symmetri and we should have �i = �i, i. e. aij = �i�j for some �0; �1; �2 ∈ k. So, A∈Sis singular i� q(x) = (∑�ixi)2 is a double line. Thus, the set of singular points of S oinides with 2-dimensionalVeronese's surfae V ⊂ S, whih parameterizes double lines in P2.Now, let q(x) = x ·A · tx be a smooth point of S, i. e. a pair of distint lines `1 ∪ `2 ⊂ P2. Then the orrelationmap V x 7→x·A- V ∗ has 1-dimensional kernel spanned by v = `1 ∩ `2, that is rk (A) = 2 and the adjoint matrixÂ = ((−1)i+jAij) is non zero. By the Sylvester relations: A·Â = Â·A = det(A)·Id = 0, eah row and eah olumnof Â lies in the kernel of A, i. e. is proportional to v. Thus, rk Â = 1 and (−1)i+jAij = �i�j , where (�0 : �1 : �2)are homogeneous oordinates of v. So, B = (bij) ∈ TqSn ⇐⇒∑ij bij · (−1)i+jAij = 0 ⇐⇒∑ij bij �i�j = 0 ⇐⇒v ·B · tv = 0. In other words, the tangent spae TqS at q = `1 ∪ `2 ⊂ P2 onsists of all onis passing through thepoint `1 ∩ `2 ∈ P2.Exerise 9.3. Extend this result to general ase dimV = n + 1, i. e. show that a point q on the hypersurfaeS ⊂ P(S2V ∗), of singular quadris on Pn = P(V ), is non-singular i� the orresponding quadri Qq ⊂ P(V )has just one singular point v(q) ∈ P(V ) and prove that TqS onsists of all quadris passing through v(q).



§10.Working example: plane urves.In this setion we assume that k is algebraially losed and hark 6= 2.10.1.Geometrial tangents at singularity. Let C ⊂ P2 be a urve given by an equation F (x) = 0of degree d and p∈C be a (singular) point of multipliity m > 2. Then all the polars C(�)p (whih wouldbe given by equations1 F̃ (pd−� ; x�) = 0) are trivial for 0 6 � 6 (m − 1) and m-th degree polar C(m)p(given by F̃ (pd−m; xm) = 0) is non trivial but singular: its Taylor expansion near pF̃ (pd−m; (p+ tq)m) = m∑�=1 t�(m�) F̃ (pd−m+�; q�) = tm F̃ (pd−m; qm)ontains just one term and a line (p; q) either is a omponent of C(m)p (when F̃ (pd−m; qm) = 0) orintersets C(m)p only at p with multipliity m (when F (pd−m; qm) 6= 0). So, C(m)p splits into union of mlines (pqi), where qi are the roots of F̃ (pd−m; qm) = 0 onsidered as degreem equation on q, where q runsthrough any �xed line ` 6∋ p. (Of ourse, some of (pqi) may oinide when the roots beame multiple.)The lines (pqi) are alled geometrial tangent lines to C at p.Geometrially, generi line (pq), through p, intersets C at p with multipliity m, beause the Taylorexpansion F (p+tq) = ( dm) ·tm · F̃ (pd−m; qm)+ · · · starts with non-zerom-th degree term. The geometritangents (pqi) are the lines whose intersetion multipliity with C at p jumps w. r. t. the generi value.Algebraially, this means that F̃ (pd−m; xm) = �1(x) �2(x) · · · �m(x) is the produt of m linear forms�1; �2; : : : ; �s whose zeros are the geometri tangents (pqi) (again, some of them may oinide).10.1.1.Example: the simplest singularities. Given a urve C ⊂ P2, an m-typle point p∈C is alled an m-typlenode (or an m-typle sel�ntersetion) if there are m distint geometrial tangents `1; `2; : : : ; `m to C through p.Geometrially, this means that C has m mutually transversal branhes through p. The di�erene (`i; C)p −m− 1is alled an order of the ontat between `i and the orresponding branh of C. A node is alled ordinary if allthe geometrial tangents have the seond order ontats with its branhes, that is (`i; C)p = m+ 1 ∀ i.
XY XY

Fig. 10⋄1. The node y2 = x2(x+ 1). Fig. 10⋄2. The usp y2 = x3.A double point p∈C is alled a usp (or a selfontat) if the quadrati polar of p is a double line `. Geomet-rially, this means that C has two branhes whih do touh eah other at p. The unique geometrial tangent ` atp is alled a uspidal tangent . A loal intersetion number (`; C)p measures an order of the selfontat for C at p;learly, (`; C)p > 3. A usp is alled ordinary , if (`; C)p = 3 is minimal possible.We say that C has only the simplest singularities, if the singular points of C are exhausted by ordinary doublenodes and ordinary usps. Two ubi urves with the simplest singularities are shown on the �gs. �g 10⋄1{�g 10⋄2.For higher degree urves, the neighborhood of the simple singularity looks similarly2.Exerise 10.1. Show that irreduible ubi urve has at most one (automatially simple) singularity.Hint. A line ` has to be a omponent of a ubi C as soon as (`; C) > 4.10.1.2.Example: how muh is to put a singularity on a urve? Given a point p∈P2, then the polar mapSdV ∗ F 7→�d−mF=�pd−m-- SmV ∗1reall that eF (pd−� ; x�) = pl(F )(p; p; : : : ; p
| {z }d−� ; x; x; : : : ; x

| {z }� ) = �!d! �(d−�)F�p(d−�) (x) = (d− �)!d! ��F�x� (p)2one an show that any smooth urve in Pn admits a plane projetion that has only the simplest singularities47



48 Algebrai Geometry. Start Up Course.is a linear epimorphism. Hene the urves whose m-degree polar oinides with a given olletion of lines throughp form a projetive subspae of odimension dim(SmV ∗) − 1 = m(m + 3)=2. For example, 5 parameters in aurve equation are �xed by assuming that this urve has at a given point a usp with a given uspidal tangeny.However, these restritions, if ome from several distint points, are not independent, in general.10.2.AÆne neighborhood of a singularity. Pratial omputation of geometri tangents usuallybeomes simpler in aÆne hart with the origin in the singular point in question. Let C have an aÆneequation f(x; y) = 0 in suh a hart U . Write it as∑�>0 f�(x; y) = 0, where eah f�(x; y) is homogeneousof degree �, and onsider a line `�:� given parametrially as1 x = �t ; y = �t. Then C ∩ ` is given bythe following equation on t:fm(�; �) tm + fm+1(�; �) tm+1 + · · · + fd(�; �) td = 0where m is the degree of lowest non trivial homogeneous omponent of f and eah f�(�; �) is atuallynothing but the �-th degree polar of p evaluated at q = (� : �). Thus, the multipliity of p oinideswith the degree of lowest non trivial homogeneous omponent of f and the diretions (� : �) of thegeometrial tangents through p are the roots of this omponent, i. e. satisfy the equation 'm(�; �) = 0.10.2.1.Example: analyzing singularities. Taking x = �t, y = �t in the nodal ubi equation y2−x2−x3 = 0, weget the lowest term (� + �)(� − �) t2, whih vanishes for (� : �) = (1 : ±1); so, there are two distint geometrialtangents x = ±y. Loal intersetion number (`; C)p = 3 for eah tangent line `, i. e. eah tangent has the seondorder ontat with its branh. The uspidal ubi on the �g 10⋄2 has the lowest term �2 t2. So, the seond polaris a the double line x = 0 with loal intersetion 3 with C at the origin.As an advaned example, onsider a quarti given by the polynomial F (t) = t40 − t30t1 + t20t22 − t21t22. Itssingularities are t∈P2 where all partial derivatives�F=�t0 = 4 t30 − 3 t20t2 − 2 t0t22�F=�t1 = −2 t1t22�F=�t2 = −t30 + 2 t20t2 − 2 t21t2vanish simultaneously. It happens at two points a = (0 : 0 : 1) and b = (0 : 1 : 0). Take an aÆne hart withx = t0=t2 ; y = t1=t2 near a. Then F = 0 turns into x2 − y2 − x3 + x4 = 0 with two simple geometrial tangentsx = ±y at the origin. Sine a loal intersetion number equals 3 for eah tangeny, a is an ordinary node. Takinga hart with x = t0=t1 ; y = t2=t1 near b, we get the equation y2 − x4 + x3y − x2y2 whose geometrial tangent isa double line ` = {x = 0} with (`; C)p = 4. So, b is the non ordinary usp, where C has a selfontat of order 4.10.3.Blow up. Geometrially, the substitution x = �t, y = �t lifts C from P2 to a surfae � ⊂ P1×P2alled a blow up of p∈P2. It is desribed as follows. Identify a penil of lines through p with any �xedline P1 = (ab) 6∋ p and onsider the inidene graph � def= {(`; q) ∈ P1 × P2 | `∋ q}. It is an algebraisurfae in P1 × P2: if we put p = (1 : 0 : 0), a = (0 : 1 : 0), b = (0 : 0 : 1), take q = �a+ �b, and onsider((� : �); (x0 : x1 : x2)) as oordinates on P1×P2, then (x0 : x1 : x2) ∈ (pq) is equivalent to the quadratirelation �x2 = �x1.Projetion � �- P2 is bijetive outside p, but �−1(p) ≃ P1 is the penil of lines through p on P2(see �g 10⋄3). A map ( (� : �) ; t) 7−→ ( (� : �) ; (1 : �t : �t) ) ∈ P1×P2 gives a rational parameterizationfor some aÆne neighborhood of this exeptional �ber in �. Full preimage �−1(C), of a urve C ⊂ P2passing through p, onsists of 2 omponents: �−1(p) ≃ P1 and and some urve whose equation (in termsof parameters (� : �; t) on �) is a result of the substitution x = �t, y = �t in the aÆne equation for C.1as in the beginning of this leture, line `�:� has a form (p + tq), where q = (� : �) ∈ U∞ ≃ P1 is runing through thein�nite projetive line of the hart U
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Fig. 10⋄3. Blow up. Fig. 10⋄4. The Zeuthen rule.10.4.Loal intersetion multipliity. Consider two urves C1; C2 ⊂ P2 given by homogeneous equa-tions F = 0, G = 0 of degrees n, m without ommon divisors. Let u ∈ C1 ∩ C2. We �x two points p, vsuh that the line (pu) satis�es the onditions:(pu) ∩ C1 ∩ C2 = {u} & v 6∈ (pu) (10-1)and will use the triple {p; u; v} as a basis for P2. Let a point q(x) = u+ x v tend to u (as x→ 0) alongthe line (pu). We restrit the both urves onto a varying line `(x) = (p; q(x)) and write �0(x); : : : ; �n(x)for the points C1 ∩ `(x) and �0(x); : : : ; �m(x) for the points C2 ∩ `(x) (see �g 10⋄4). These points arethe roots of two homogeneous polynomials fx(t0; t1) = F (t0p + t1q(x)), gx(t0; t1) = G(t0p + t1q(x)) int = (t0 : t1) with oeÆients depending on the parameter x. When x varies, the pints ��(x), ��(x) drawthe branhes of C1 and C2. Let �1(x); : : : ; �r(x) ; �1(x); : : : ; �s(x) be all the branhes that ome to uas x→ 0.Intuitively, over �a ontinuous �eld� like k = R;C, a loal intersetion multipliity (C1; C2)u, of theurves at the point u, equals to the sum of orders of rs in�nitesimals �i(x) − �j(x) w. r. t. x as x → 0.This naive geometri de�nition is known as the Zeuthen rule.Algebraially, the sum of orders of in�nitesimals �i(x)− �j(x) oinides with the multipliity of thezero root of the resultant Rfx;gx onsidered as a polynomial in x. Thus, over an arbitrary �eld k wean de�ne (C1; C2)u as the multipliity of the fator x in the prime fatorization of Rfx;gx in k[x℄. Thisde�nition does not depend on a hoie of p, v satisfying (10-1), beause of the following10.4.1.LEMMA. Consider the resultant Rf;g(p; q) ∈ k[p; q℄, of two binary forms f(t0; t1) = F (t0p +t1q), g(t0; t1) = G(t0p + t1q), as a polynomial in p = (p0; p1; p2), q = (q0; q1; q2). Then its irreduiblefatorization in k[p; q℄ has a form1:Rf;g(p; q) = onst · ∏w∈C1∩C2 detw0 w1 w2p0 p1 p2q0 q1 q2mw (10-2)where the multipliities mw are omputed by the Zeuthen rule with any hoie of p, v satisfying (10-1).1geometrially, Rf;g(p; q) = 0 de�nes in the spae of lines (pq) a �gure whose irreduible omponents are penils of linesentered at the intersetion points and the multipliities of these omponents are predited by the Zeuthen rule



50 Algebrai Geometry. Start Up Course.Proof. Denote the determinants in the right side of (10-2) by Dw(p; q). Geometrially, Dw(p; q) = 0 is an irreduiblequadri, whih onsists of all pairs p; q ∈ P2 whose joining line (pq) belongs to the penil of lines through w. Ifw ∈ C1 ∩ C2, then R(p; q) vanishes along the quadri Dw(p; q) = 0. Hene, by Hilbert's Nullstellensatz, any suhDw(p; q) divides the resultant. Vie versa, if R(p; q) = 0, then the restritions of F , G onto the line (p; q) havea ommon root, i. e. (p; q) pass through some w ∈ C1 ∩ C2 and ∏w∈C1∩C2 Dw(p; q) vanishes at this (p; q). So,this produt vanishes everywhere along V (R(p; q)) and, again by Hilbert, R(p; q) should divide some power of∏w∈C1∩C2 Dw(p; q). To hek the Zeuthen rule, �x p and q = q(x) as on �g 10⋄4. The ondition (10-1) impliesthat only Dw(p; q(x)) with w = u vanishes at x = 0 in the right hand side of (10-2). This vanishing determinantDu(p; q(x)) = det(u; p; u+ x v) = x det(u; p; v) is proportional to x. �10.5. Intersetion theory of plane urves. It follows immediately from the Zeuthen rule, that theloal intersetion multipliities are distributive w. r. t. the urve branhes, that is if C1 has b1 branhespassing through u and C2 has b2 ones, then (C1; C2)u is the sum of b1b2 mutual intersetion indiesbetween the branhes1.Sine eah Dw(p; q) in (10-2) is bilinear in (p; q) and Rf;g(p; q) has bidegree (mn;mn), we get theB�ezout theorem:10.5.1.THEOREM. ∑w∈C1∩C2(C1; C2)w = degC1 · degC2 for any two plane projetive urves withoutommon omponents. �10.5.2.Example: proper tangents and lass. A tangent lane is alled proper , if its tangeny point is smooth.A number of proper tangents to C passing through a generi point q ∈ P2 is alled a lass of C and denotedby  = (C). If degC = d, then by n◦ 9.3.3 the tangents oming form a point q ∈ P2 \ Sing (C) touh C at thepoints of C ∩ C(d−1)q , where C(d−1)q is (d − 1)-th degree polar of q. If C is irreduible, then C ∩ C(d−1)q onsistsof d(d − 1) points2 ounted with multipliities. Besides the proper tangeny points, C ∩ C(d−1)q ontains also allsingular points of C, beause eah line trough a singularity is (non proper) tangent. So, lass of irreduible urvesatis�es inequality  6 d(d− 1), whih turns to equality i� C is smooth.10.5.3.Example: inetions. A smooth point p∈C is alled an inetion, if (C; TpC)p > 3. An inetion isalled ordinary (or simple), if this number equals 3. If p∈C is an inetion, then the quadrati polar C(2)p of phas the zero restrition onto ` = TpC, i. e. ` is a omponent of C(2)p . Note that p is a smooth point of the oniC(2)p , beause C(2)p and C have the same linear polar w. r. t. p and p is smooth on C. So, p∈C is an inetion i�C(2)p = ` ∪ `′ with ` ∩ `′ 6= p. The points q ∈ P2 with degenerate quadrati polar C(2)q form a urve HC , whihis alled the Hessian of C. It is de�ned by the equation detC(2)q = 0, whih has degree 3(d − 2) in q, whered = degC. Hene, an irreduible urve of degree d > 3 has at most 3d(d − 2) inetions, whih are ontained inC ∩HC . Again, this intersetion ontains also all singular points3 of C.10.5.4.Example: aÆne loalization. Let us restrit the piture �g 10⋄4 onto aÆne hart where (pv) is thein�nity, (uv) is the x-axis, and (up) is the y-axis. Then the line penil through p turns to the family of vertiallines x = onst. Consider aÆne equations f(x; y) = 0, g(x; y) = 0 for C1, C2 as (nonhomogeneous) polynomialsin y with the oeÆients in k[x℄. Their resultant Rf;g(x) is a polynomial in x and vanishes at x = 0. Themultipliity of this zero root oinides with (C1; C2)(0;0). If there are known some expliit analyti expressions ofall the branhes y = �i(x) and y = �j(x) through x (even not algebrai, say several starting terms of the (formalfrational) power series expansions are OK), then (C1; C2)(0;0) usually an be also omputed expliitly by lookingat either the orders of �i(x) − �j(x) or the order of the resultant.10.6.Dual urves. Let C ⊂ P2 be an irreduible urve given by an equation F (x) = 0 of degree d. Forany smooth p∈C its tangent �p = TpC de�nes a point �∗p = Ann �p ∈ P× on the dual plane P×2 . When pvaries along C, �∗p also is running through some urve C× ⊂ P×2 alled a dual urve for C. The degree ofdual urve, i. e. the number of its intersetion points with a generi line # = q× ⊂ Px2 , is nothing but the1in partiular, (n1C1+n2C2; D) = n1(C1; D)+n2(C2; D), where m1C1+m2C2 is a urve given by equation Fm11 Fm22 = 0and F1 = 0, F2 = 0 are the equations for C1 and C22Note that this is not true in positive harateristi: for example, if har (k) = 2, then all tangents to the smooth onix20 = x1x2 pass through one ommon point.3In fat, even for singular urves one an write preise equations between degree, lass, number of inetions and somedata desribing singularities; we'll do this below for urves with simplest singularities.



§ 10. Working example: plane urves. 51number of proper tangents to C living in a generi penil of lines (entered at a generi point q ∈ P2).Thus deg(C×) = (C).10.6.1.CLAIM. C×× = C; in partiular, deg(C) = (C×).Proof. A tangent line # = T�∗1C× ⊂ P×2 , at a smooth point �∗1 ∈ C×, is a limit of seant lines � = (�∗1 ; �∗2 ) as�∗2 → �∗1 (see �g 10⋄5 { �g 10⋄6). The seant � represents a penil of lines through �∗ = �1 ∩ �2 ∈ P2. Clearly,�∗ → p1 as p2 → p1. �We also see on �g 10⋄5 { �g 10⋄6 that under the duality C ←→ C× selfontats (usps) turns intoinetions and sel�ntersetions | to multiple tangents1. In partiular, if C has at most the simplesingularities, then speial proper tangents of C× are exhausted by simple inetions and double tangents.
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�#�∗1 �∗2�∗1Fig. 10⋄5. A urve C ⊂ P2. Fig. 10⋄6. The dual urve C× ⊂ P×2 .10.7.Pl�uker identities. Let C be a urve of lass  and degree d with singularities exhausted by Æordinary sel�ntersetions of multipliities m1;m2; : : : ;mn and κ ordinary usps. Then = d (d− 1)− 3κ − Æ∑�=1m�(m�−1) (10-3)If we assume, in addition, that C has only ordinary inetions, then their number � = �(C) equals� = 3 d (d− 2)− 8κ − 3 Æ∑�=1m�(m�−1) (10-4)These formulas are known as the Pl�uker identities. We will prove them in the remaining subsetionsusing geometri approah traed bak to Chasles, Cayley and Brill2Exerise 10.2. Let q 6∈ C lie neither on an inetion tangeny nor on a geometri tangeny through a singularpoint of C; we write C(d−1)q for (d−1)-th degree polar of q with respet to C. Dedue (10-3) from the equality(C;C(d−1)q ) = d(d− 1) by proving that (C;C(d−1)q )p equals 1 for smooth p, equals 3, if p is an ordinary usp,and equals m(m− 1), if p is an ordinary m-typle sel�ntersetion.Hint. In the �rst ase p is smooth on C(d−1)q and TpC(d−1)q 6= TpC; in the seond ase p is smooth on C(d−1)qagain, but TpC(d−1)q oinides with the uspidal tangeny; in the third ase p is an (m − 1)-typle pointon C(d−1)q , but eah geometrial tangeny of C at p is transversal to C(d−1)q , that is, intersets it withmultipliity (m− 1). Now, use the Zeuthen rule.If both C and C× have at most the simple singularities, then the Pl�uker relations written for the bothurves turn into  = d (d− 1)− 3κ − 2 Æ � = 3 d (d− 2)− 8κ − 6 Æd =  (− 1)− 3 �− 2� κ = 3  (− 2)− 8 �− 6�where � is a number of bitangents to C. Any three of d, , κ, Æ, �, � an be found from these equationsas soon as the other three are known.1a proper tangeny is alled multiple, if it touh the urve in several distint points2we follow the book: J. G. Semple, L. Roth. Introdution to algebrai geometry. (Oxford, 1949)



52 Algebrai Geometry. Start Up Course.10.8.Blowing up � ⊂ P2 × P2. Identify P×2 with the set of lines on P2 and onsider the inidenegraph
B

def= {(p; q; `) | p; q ∈ `} ⊂ P2 × P2 × P×2It is given by two quadrati equations∑#�x� =∑#�y� = 0 on (x; y; #) ∈ P2 × P2 × P×2 . Topologially,
B is a 4-dimensional ompat manifold. A projetion B

�- P2 × P2 is bijetive outside the diagonal� def= {(p; p)} ⊂ P2 × P2. Eah �ber �−1(p; p) = {(p; p; `) | ` ∋ p} over (p; p)∈� is naturally identi�edwith the line penil through p on P2 and 3-dimensional submanifold E def= �−1(�) ⊂ B is alled anexeptional divisor . Let us denote the projetions of B onto onsequent fators of P2 × P2 × P×2 by �1,�2, �3 and write A1 = �−11 (�), A2 = �−12 (�), M = �−13 (�) for the full preimages of a generi line � livingon these planes. Topologially, A1, A2, andM are 3-dimensional yles on B and their homology lassesdon't depend on the hoie of the line � in eah plane. Any 1-parametri algebrai family of �pointed�lines (pq) ⊂ P2 an be pitured by an algebrai urve � ⊂ B. Topologial loation of suh a urve isdesribed by a triple of numbers:�1 = #(� ∩A1) | a number of p-points in � = {(p; q; `)} laying on a generi line � ⊂ P2;�2 = #(� ∩A2) | a number of q-points in � = {(p; q; `)} laying on a generi line � ⊂ P2;� = #(� ∩M) | a number of lines ` in � = {(p; q; `)} passing through a generi point1 �×∈P2.Strongly speaking, we should use the topologial intersetion indies instead of �the numbers of points�.But for all � we will onsider below there is an open dense set of lines2 suh that all orrespondingA1, A2, M interset � transversally in a �nite onstant number of points. We will always suppose that�1, �2, � are alulated using A1, A2, M taken from these open dense sets3. The triples (p; q; `) ∈ �with p = q, i. e. the intersetion points � ∩ E, are alled exeptional . Typially, � has a �nite numberof exeptional points. Our goal is to equip the exeptional points with appropriate multipliities andexpress the number �(�) of �exeptional points ounted with multipliities� through �1, �2, � in thefollowing three examples.10.8.1.Example: join family. Let C1; C2 ⊂ P2 be two urves of degrees d1; d2 without ommon omponents.Fix any point u∈P2 outside the both urves and all the lines joining pairs of their intersetion points. Then� = {(p; q; `)∈B | p∈C1; q∈C2; `∋u }is a urve in B given by an obvious triple of algebrai equations. Its exeptional points are (p; p; (pu)) withp ∈ C1 ∩C2, that is �(�) ounts the intersetions of C1 and C2. Further, �1 = �2 = d1d2, beause a generi line �interset, say C1, in d1 distint points p1; p2; : : : ; pd1 and for eah of them C2 ∩ (up�) onsist of d2 points. Finally,� = d1d2 too, beause there is a unique line ` = (u�×) passing through a given �× and this line ontains d1d2distint pairs (pi; qj) with pi ∈ C1 ∩ `, qj ∈ C2 ∩ `, if �× is general enough.10.8.2.Example: seant family. In the above example, let C1 = C2 = C be the same irreduible urve ofdegree d given by an equation F (x) = 0 and u be a point outside the urve, all its singular tangents, and all linesjoining pairs of distint singularities. Then a losure of {(p; q; `)∈B | p 6= q; p; q ∈C; `∋ u } is a urve given bythe equations F (x) = F (y) = #(u) = 0 in (x; y; #) ∈ P2 × P2 × Px2 . Exeptional points of this urve are (p; p; (pu))suh that mult(C; (pu))p > 2, i. e. either (pu) = TpC or p ∈ Sing(C). So, � ounts singular points of C and propertangents oming from  to C. By the same reasons as above, �1 = �2 = � = d (d− 1) in this ase.10.8.3.Example: tangent family. Let C be as above and � be a losure of {(p; q; `)∈B | p 6= q; p; q ∈C; ` =TpC } (it is given by the equations F (x) = F (y) = F̃ (xd−1; y) = 0). Exeptional points of � are (p; p; `) suh thatmult(C; `)p > 3, i. e. either inetion tangents at smooth p or geometri tangents at singular p. So, �(�) ountsinetions and singularities. Sine a simple tangent at a smooth point p interset the urve in (d− 2) more pointsq, we have �1 = d (d− 2). Clearly, � =  (d− 2), beause there are  proper tangents to C through generi �×∈P2by the de�nition of lass. Finally, �2 = d ( − 2), beause a generi line intersets C in d distint smooth pointsq1; q2; : : : ; qd and for eah of them there are (−2) proper tangents (qjp) touhing C at some p 6= qj : when a pointq 6∈ C tends to some qj ∈ C, preisely 2 of  tangents through q turn to TqjC (see �g. �g 10⋄7; other argumentswill appear in n◦ 10.10.4 and ex. 10.3).1here � ⊂ P×2 is the penil of lines through a point �× ∈ P22in the spae of all lines3it will be an exerise for readers, to hek the existene of suh open sets of lines in eah of examples below



§ 10. Working example: plane urves. 5310.9.A orrespondene on P1 is alled algebrai of type m-n, if the pairs of orresponding points
Fig 10⋄7. Two proper tangent linesdisappear as q → qj .

(p; q) ∈ P1 × P1 form an algebrai urve  ⊂ P1 × P1 given by an irreduible bihomogeneous polynomialg(t′; t′′) of bidegree (m;n) in (t′; t′′) = ( (t′0 : t′1) ; (t′′0 : t′′1) ). Thisurve is alled a graph of the orrespondene. So, images of a givenpoint p ∈ P1 are presented by the equation g(p; t) = 0 in t ∈ P1 andpreimages | by the equation g(t; p) = 0. Sine these equations haverespetivelym and n ordinary distint roots for almost all1 p, a generipoint has n distint images and m distint preimages under an m-norrespondene.A point e ∈ P1 is alled a �xed point of the orrespondene, if itorresponds to itself2, that is, if g(e; e) = 0. So, the set of all �xed points is  ∩�, where � = {(t; t)} ⊂
P1 × P1 is the diagonal. Sine g(t; t) is homogeneous of degree m+ n in t = (t0; t1), any algebrai m-norrespondene has m+n �xed points ounted with multipliities, where the multipliity of a �xed pointe means the loal intersetion multipliity (;�)(e;e), of the urve g(t′; t′′) = 0 and the line t′ = t′′ atthe point (e; e)∈ . In partiular, it an be alulated by the Zeuthen rule applied in any aÆne hart
A1 × A1 = A2 ∋ (e; e).10.9.1.CLAIM. Let U ⊂ P1 be an aÆne hart with the origin at a �xed point e of a orrespondene, x be an aÆne oordinate on U , and y1(x); y2(x); : : : ; ym(x) be all -images of x whih tend to 0 asx→ 0. Then (;�)(0;0) equals the sum of orders of in�nitesimals yi(x) − x with respet to x.Proof. Let (x; y) be aÆne oordinates on A2 = U × U (see �g 10⋄8). Sine the both lines x = 0 and y = 0 ontainjust one intersetion point (0; 0)∈∩� we an use the line penil x = onst parameterized by the x-axis to alulate(;�)(0;0) as the sum of orders of in�nitesimals �i(x) − �j(x) where �i and �j run trough the intersetions of avertial line x = onst respetively with  and with �. So, �i(x) = yi(x) and there is just one �(x) = x. �10.10.Exeptional point multipliities. A urve � ⊂ B, of pointed lines (p; q; `), de�nes an algebraiorrespondene on P1 as follows. Fix a point a∈P2 suh that it lies on preisely � distint lines ` of �and a generi line through a ontains exatly �1 distint p-points and exatly �2 distint q-points of �.Then onsider the penil of lines through a as P1 in question and say that (ap) ←→ (aq) i� (p; q; `)∈�for some3 `. This is an algebrai �1-�2 orrespondene, beause a generi point has �2 images and �1preimages, ertainly. A line through a orresponds to itself under � preisely in two ases: either itbelongs to �, i. e. ontains 2 points p 6= q suh that (p; q; `) ∈ �, or it pass through an exeptional pointe suh that (e; e; `) ∈ � for some `.
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Fig. 10⋄8. Fixed point. Fig. 10⋄9. Exeptional point. Fig. 10⋄10. Intersetion point.Let us de�ne the multipliity of an exeptional point (e; e; `) ∈ � as a multipliity of the orresponding�xed point (ae) of the orrespondene �. By n◦ 10.9.1, it an be alulated geometrially as follows.Parameterize the penil of lines through a by some line L 6∋ a, whih pass through an exeptional pointe (see �g �g 10⋄9), and �x on L an aÆne oordinate x entered at e. Let (ay1); (ay2); : : : ; (aym), where1that is, for all p outside some �nite subset on P1 where the both disriminants vanish2of ourse, besides itself, a �xed point may have several other (pre) images as well3of ourse, ` = (pq), if p 6= q



54 Algebrai Geometry. Start Up Course.y� ∈ L, be all lines orresponding to (ax) and tending to (ae) as x → e. Then the multipliity of (pe)equals the sum of orders of in�nitesimals yi(x)− x w. r. t. x as x→ 0.10.10.1.CLAIM (CHASLES{CAYLEY{BRILL FORMULA). The total number of exeptional pointsounted with multipliities equals �(�) = �1 + �2 − �.Proof. Sine deg(�) = (�1; �2), it has �1+�2 �xed points. By the hoie of a, eah line (ap) suh that (p; q; (ap)) ∈� for some q 6= p, q ∈ (ap) has multipliity 1 as a �xed point for �. The residuary ontribution of exeptional�xed points equals �(�). �
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Fig. 10⋄11. Fig. 10⋄12. Fig. 10⋄13.10.10.2.Example: exeptional point multipliities in join family (ontinuation of n◦ 10.8.1). In this ase themultipliity of an exeptional point (e; e; (e)) ∈ � oinides with the loal intersetion number (C1; C2)e (see�g. �g 10⋄10). Indeed, use the line penil entered at  to ompute (C1; C2)e by the Zeuthen rule as it wasexplained in the previous leture. If we take a outside all geometri tangents to the both urves at e and suhthat e is the only intersetion point of C1 and C2 on (ae), then (C1; C2)e is a sum of orders p − qj w. r. t. t ast → 0. But it is lear from �g. �g 10⋄10 that p − qj is like x − yj and t is like x as soon the both lines (e) and(ae) do not touh the branhes of C1, C2 at e. So, �(�) is the sum of loal intersetion numbers of C1 and C2,i. e. (C1; C2) = �(�) = �1 + �2 − � = d1d2 + d1d2 − d1d2 = d1d2. We get the B�ezout theorem.10.10.3.Example: exeptional point multipliities in seant family (ontinuation of n◦ 10.8.2). There are 3 typesof exeptional points here. A proper tangeny (e; e; (e)) (see �g 10⋄11) has multipliity 1, beause any x losed toe has a unique image y oming to e when x→ e and y−x is like x− e. If e is an ordinary m-typle sel�ntersetion,then a line through  losed to (e) ontains m p-points running through m branhes of C; eah suh p-pointprodues (m−1) q-points oming from other (m−1) branhes; so, there are m(m−1) di�erenes y−x and eah ofthem is like (x−e) (see �g 10⋄12) as soon (e) does not touh any branh. If e is an ordinary usp (see �g. �g 10⋄13,where the line penil through a is parameterized by the uspidal tangent), then any x losed to e produes twop-points (intersetions of (ax) with two branhes of C) and eah of them has just one q-point (intersetion of (p)with the other branh of C); it is easy to see from �g. �g 10⋄13 that (x− y) ∼ (p− q) ∼ (x− e)3=2 as x→ e. So,the uspidal point ontributes 2 · (3=2) = 3. Hene,+ Æ∑� m�(m� − 1) + 3κ = �(�) = �1 + �2 − � = d(d− 1) + d(d− 1)− d(d− 1) = d(d− 1)by the Chasles{Cayley{Brill formula. This gives the �rst Pl�uker identity.
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§ 10. Working example: plane urves. 5510.10.4.Example: exeptional point multipliities in tangent family (ontinuation of n◦ 10.8.3). We see on�g 10⋄14 { �g 10⋄16 that eah di�erene (y − x) is like (x − e) for all three types of exeptional points. Aninetion point (�g 10⋄14) produes a unique di�erene and has a multipliity 1; eah of m branhes through anm-typle sel�ntersetion (�g 10⋄15) produes (m− 1) di�erenes, so the multipliity equals m(m− 1) here; a usp(�g 10⋄16) produes 2 di�erenes and has multipliity 2. Hene,�+ Æ∑� m�(m� − 1) + 2κ = �(�) = �1 + �2 − � = d(d− 2) + d(− 2)− (d− 2) = d2 − 4 d+ 2 by the Chasles{Cayley{Brill formula. Sine  = d(d−1)−∑m�(m� −1)−3κ, we get the seond Pl�uker identity� = 3 d(d− 2)− 3 ∑m�(m� − 1)− 8κ.Exerise 10.3. Let  be a smooth point of C in n◦ 10.8.2 and n◦ 10.10.3. Chek that a multipliity of anexeptional point (; ; TC)∈� equals 2 (so, we have really �2 = d(− 2) in n◦ 10.8.3).



§11.AÆne algebrai { geometri ditionary.In this setion we assume that the ground �eld k is algebraially losed.11.1.AÆne varieties: their ideals and oordinate algebras. Let X = V (J) ⊂ An be an aÆnealgebrai variety given by some ideal J ⊂ k[x1; x2; : : : ; xn℄ of polynomial equations. We write I(X) for theideal of all polynomials vanishing along X. If k is algebraially losed, then by Hilbert's NullstellensatzI(X) = √J def= { f ∈k[x1; x2; : : : ; xn℄ | fn∈J for some n∈N }is the radial of J . Clearly, V (J1) ⊂ V (J2)⇐⇒ √J1 ⊃ √J2. A �nitely generated ommutative k-algebra
k[X℄ def= k[x1; x2; : : : ; xn℄=I(X)is is alled a oordinate algebra (or a struture algebra) of the aÆne algebrai variety X ⊂ An. Ge-ometrially, k[X℄ onsists of funtions X v 7→f(v) - k obtained by restriting the polynomials f ∈

k[x1; x2; : : : ; xn℄ onto X ⊂ An. These funtions are alled regular algebrai funtions on X. Thus,algebra k[X℄ is redued , i. e. has no nilpotent elements: fn = 0 ⇒ f = 0.Exerise 11.1. Let X = {O} ∈ An be the origin. Desribe I(X) and k[X℄.11.1.1.PROPOSITION. Eah redued �nitely generated algebra A over an algebraially losed �eldan be realized as A = k[X℄ for some aÆne algebrai variety X.Proof. Sine A = k[x1; x2; : : : ; xn℄=I is redued, fn ∈ I ⇒ f ∈ I for any f ∈ k[x1; x2; : : : ; xn℄. By Hilbert'sNullstellensatz, this means that X = V (I) ⊂ An has I(X) = I and A = k[x1; x2; : : : ; xn℄=I(X) = k[X℄. �11.2.Points. Given a point p ∈ X, the evaluation map evp : k[X℄ f 7→f(p) - k oinides with thefatorization k[X℄ f 7→ f (modmp)- k[X℄=mp, where mp def= {f ∈ k[X℄ | f(p) = 0}. Hene, mp = ker(evp)is a proper maximal ideal in k[X℄. It is alled a maximal ideal of p.11.2.1.PROPOSITION. If k is algebraially losed, then the orrespondenes p ←→ evp ←→ mpestablish bijetions between the points of X, the homomorphisms k[X℄ - k idential on k, and theproper maximal ideals in k[X℄.Proof. Eah k-algebra homomorphism k[X℄ - k is surjetive and its kernel is a proper maximal ideal in k[X℄.Vie verse, for any maximal ideal m ⊂ k[X℄ the fator algebra k[X℄=m is a �eld and is �nitely generated as a
k-algebra. By n◦ 8.5.1 it is algebrai over k and hene oinides with k, beause k is algebraially losed. Thus,
m is the kernel of the anonial fatorization homomorphism k[X℄ -- k[X℄=m = k and the orrespondeneevp ←→ mp is bijetive.Clearly, p 6= q ⇒ mp 6= mq, beause we an always �nd a linear form An '- k suh that ' ∈ mp but ' 6∈ mq.To show that eah proper maximal ideal m ⊂ k[X℄ is a maximal ideal of some point p ∈ X let us write k[X℄as k[x1; x2; : : : ; xn℄=I(X). Then full preimage of m is also a proper maximal ideal m̃ ⊂ k[x1; x2; : : : ; xn℄, beause
m̃ ⊃ I(X) and k[x1; x2; : : : ; xn℄=m̃ = k[X℄=m = k. We onlude that V (m̃) ⊂ An is nonempty and is ontained inX. So, there is a point p∈X suh that f(p) = 0 for any f ∈m, i. e. m ⊂ mp. Sine m is maximal, m = mp. �11.3.Algebrai varieties via spetra. A set of all proper maximal ideals in a given k-algebra Ais alled a maximal spetrum of A and is denoted by Spem (A). We an treat an aÆne algebraivariety over an algebraially losed �eld k pure algebraially as a maximal spetrum Spem (A) of anarbitrary �nitely generated redued k-algebra A whose elements f ∈A are onsidered as the funtionsSpem (A) m7→f (modm) - k.11.4.Regular morphisms of algebrai varieties. Any map of sets X '- Y produes a pull bakhomomorphism '∗ from the algebra kY , of all k-valued funtions on Y , to the algebra kX , of all k-valuedfuntions on X. It sends Y f- k to the omposition'∗f def= f◦' : X '- Y f- k :



§ 11. AÆne algebrai { geometri ditionary. 57A map X '- Y between aÆne algebrai varieties is alled a regular morphism of algebrai varieties,if '∗ sends the regular algebrai funtions on Y to the regular algebrai funtions on X, i. e. indues awell de�ned homomorphism of oordinate algebras
k[Y ℄ '∗- k[X℄ :11.4.1.PROPOSITION. Let A, B be �nitely generated redued algebras over any algebraially losed�eld k. Then eah homomorphism B  - A suh that  (1) = 1 is a pull bak homomorphism  = '∗for a unique regular map Spem (A) '- Spem (B). This map ' sends a maximal ideal m ⊂ A to itsfull preimage '∗−1(m) ⊂ B and an be treated as a pull bak homomorphism ' =  ∗, for B  - A, ifthe points of Spem (A), Spem (B) are treated as k-algebra homomorphisms A - k, B - k.Proof. Let Spem (A) '- Spem (B) be a regular morphism, p ∈ Spem (A) be a point, and f ∈ B be a funtionon Spem (B). Then f('(p)) = 0 ⇐⇒ '∗f(p) = 0, i. e. f ∈ m'(p) ⇐⇒ '∗(f) ∈ mp. So, if B  - A is a pullbak of some Spem (A) '- Spem (B), then ' has to send mp 7−→  −1(mp) for eah p ∈ Spem (A). Onthe other hand,  −1(m) ⊂ B is proper maximal ideal for any proper maximal m ⊂ A, beause '∗(1) = 1 ⇒B= −1(m) = im ( )=(m∩ im ( )) ≃ k. So, ' : Spem (A) mp 7→ −1(mp)- Spem (B) is well de�ned map of sets.To ompute its pull bak homomorphism, note that for any b∈B, p∈Spem (A) we have'∗b(p) = b('(p)) = b (mod m'(p) ) = b (mod  −1(mp) ) =  (b) (mod mp ) =  b(p) :So, '∗ =  as required. �11.5.Geometri shemes. Let A be an arbitrary algebra over a �eld k. All nilpotent elements of Aform an ideal n(A) ⊂ A. It is ontained in any proper maximal ideal m ⊂ A, beause A=m = k has nonilpotent elements. So, a fator algebra Ared def= A=n is redued and has the same maximal spetrumX = SpemA = SpemAred. If k is algebraially losed, then the intersetion of all maximal ideals inAred is zero, beause it onsists of all funtions vanishing everywhere on the aÆne algebrai variety X.Hene, the intersetion of all maximal ideals in A oinides with n(A).Exerise 11.2. Show that in general situation, when A is an arbitrary ommutative ring, n(A) oinides withthe intersetion of all proper prime1 ideals p ⊂ AA pair (A; SpemA), where A is an arbitrary �nitely generated algebra over algebraially losed �eld,is alled an aÆne geometrial sheme. AÆne algebrai variety X = SpemA = SpemAred is alleda support of this sheme. Intuitively, the sheme di�ers from X by allowing some �in�nitezimals�,i. e. nilpotent �funtions� whose �numerial values� vanish everywhere on X. Usually, these nilpotentsenode some �multipliities� attahed to X.11.5.1.Example: an intersetion of aÆne algebrai varieties X;Y ⊂ An is de�ned as V (I(X) + I(Y )), i. e. bythe union of all equations for X and Y . If the intersetion is non-transversal, a fator algebraA = k[x1; x2; : : : ; xn℄=(I(X) + I(Y ))is not redued. Say, if I(X) = (x), I(Y ) = (x2 − y) in k[x; y℄, then the fator algebra A = k[x; y℄=(x; y2 − x) ≃

k[y℄=(y2) has quadrati nilpotent y. Geometrially, the intersetion of the line X = V (x) and the parabolaY = V (x2 − y) onsists of unique point Spem (k) = SpemAred, where they touh eah other with multipliity 2.This multipliity an be extrated from non redued algebra A but it is lost under the replaement of A by Ared.Thus, if we want, say, to develop an intersetion multipliities tehnique, then we have to treat intersetions asgeometri shemes rather than algebrai varieties and investigate the di�erene between A and Ared.By the de�nition, a regular morphism (A; SpemA) ('∗;') - (B; SpemB) of shemes is a pair thatonsists of an algebra homomorphism B '∗- A and a regular map Spem (A) '- Spem (B) suh that'∗f(p) = f('(p)) for all f ∈ B, p ∈ Spem (A). Note that now '∗ an not be reovered from ', beausethe latter one knows nothing about the nilpotent in�nitesimals.1an ideal p ⊂ A is alled prime, if A=p has no zero divisors



58 Algebrai Geometry. Start Up Course.11.6.A diret produt of aÆne algebrai varieties. Let A, B be �nitely generated k-algebras.Then the tensor produt of algebras1 A⊗B is a �nitely generated k-algebra with the multipliation(A⊗B)× (A⊗B) (a⊗b;�⊗�)7→a�⊗b� - A⊗B :11.6.1.PROPOSITION. A set-theoretial produt X × Y , of aÆne algebrai varieties X = SpemA,Y = SpemB, is naturally identi�ed with Spem (A⊗B). Both projetionsX ��X X × Y �Y- Yare regular morphisms w. r. t. the struture of an aÆne algebrai variety on X × Y presribed by thisidenti�ation and for any two regular maps X �' Z  - Y there exists a unique regular mapZ '× - X × Y that �ts into ommutative diagramX × YX ��
�X Y�Y

--Z'× 
6  -�'Proof. Assume for a moment that A ⊗ B is redued and de�ne X × Y as Spem (A ⊗ B) and the projetions �X ,�Y as the regular maps whose pull-bak homomorphisms are the anonial algebra inlusions� : A ⊂

aa⊗1- A⊗B � 1⊗bb
⊃ B : � :Then the last asseveration of the proposition turns to the universal property whih haraterizes the tensor produtof algebras. Namely, if Z = Spem (C), then for any two algebra homomorphisms A '∗

- C � ∗ B there is aunique homomorphism A⊗B '∗⊗ ∗

- C suh that ('∗ ⊗  ∗)◦� = '∗ and ('∗ ⊗  ∗)◦� =  ∗.Exerise 11.3. Dedue this property from the universality of the tensor produt of vetor spaes disussed in §4.In partiular, for the points of Z, i. e. the regular morphisms Spem (k) - Z (or, equivalently, the algebrahomomorphisms C -- k)), we get a set-theoretial bijetionsSpem (A)× Spem (B) ≃ Hom(Spem (k); X)×Hom(Spem (k); Y ) ≃
≃ Hom(Spem (k); X × Y ) ≃ Spem (A⊗B) :Thus, it remains to show that A ⊗ B is redued. We an write f ∈ A ⊗ B as ∑ a� ⊗ b� , where the funtionsb� ∈ B are linearly independent over k. If f produes the identially zero funtion on X × Y , i. e. f(p; q) = 0

∀(p; q)∈X × Y , then ∑ a�(p) · b� = 0 in k[Y ℄. Hene, all a�(p) = 0 ∀ p∈X . Thus, all a� = 0 in A and f = 0 inA⊗B. �11.7.Zariski topology. Any aÆne algebrai variety X = SpemA admits a anonial topology whoselosed sets are V (I) = {x∈X | f(x) = 0 ∀ f ∈ I }, where I ⊂ A is an arbitrary ideal. This topology isalled the Zariski topology .Exerise 11.4. Chek that V (I) satisfy the losed set properties, namely: ∅ = V (1); X = V (0); ⋂V (I�) =V (∑ I�), where ∑ I� onsists of all �nite sums ∑ f� with f� ∈ I� ; V (I) ∪ V (J) = V (IJ), where IJ is anideal spanned by all produts ab with a∈I, b∈J .Sine any ideal I ⊂ k[X℄ is �nitely generated, eah losed set is a �nite intersetion of hypersurfaes:V (I) = V (f1; f2; : : : ; fm) = ⋂V (f�). Hene, any Zariski open set is a �nite union of prinipal open sets
D(f) def= X \ V (f) = {x∈X | f(x) 6= 0}.1as a vetor spae over k it oinides with the tensor produt of vetor spaes A, B and onsists of all �nite sums
P a� ⊗ b� with a� ∈A, b� ∈B; for example, k[x℄⊗ k[y℄ is naturally isomorphi to k[x; y℄



§ 11. AÆne algebrai { geometri ditionary. 59The Zariski topology has a pure algebrai nature. Sine the Zariski neighborhoods express rathersome divisibility onditions than any distane relations, their properties are far enough from the metritopology standards.11.7.1.Example: irreduible losed sets. A topologial spae X is alled reduible, if X = X1 ∪ X2 for someproper losed subsets X1; X2 ⊂ X. This is a vapid notion in the usual metri topology, where everything isreduible. In Zariski topology, the reduibility of X means an existene of non zero funtions f1; f2 ∈ k[X℄ suhthat f1 vanishes along X1 and f2 vanishes along X2. Sine f1f2 vanishes everywhere, f1f2 = 0 in k[X℄. So, X isreduible i� k[X℄ has zero divisors. For example, a hypersurfae {g(x) = 0} ⊂ An is irreduible i� g is a power ofan irreduible polynomial. Irreduible algebrai sets are similar to the prime numbers in arithmetis.11.7.2.PROPOSITION. Any aÆne algebrai variety admits a unique �nite deomposition X = ⋃Xi,where Xi ⊂ X are irreduible proper losed subsets suh that Xi 6⊂Xj ∀ i 6= j (they are alled irreduibleomponents of X).Proof. A deomposition is onstruted step by step. If X is reduible, the �rst step takes X = Z1 ∪ Z2, whereZ1;2 are proper losed subsets. Let X = ⋃Z� after n steps. If eah Z� is irreduible, then for eah � and anyirreduible losed subset Y ⊂ X either Y ∩ Z� = ∅ or Y ⊂ Z� , beause of Y = ⋃(Z� ∩ Y ). So, if we take awayall Z� ontained in some other Z�, then we get the required deomposition and it is unique. If there are somereduible Z� after n steps, (n + 1)-th step replaes eah of them by a union of two proper losed subsets. If thisproedure would never stop, then it produes an in�nite hain of stritly embedded subsets X ⊃ Y1 ⊃ Y2 ⊃ : : :,i. e. an in�nite hain of stritly inreasing ideals (0) ⊂ I1 ⊂ I2 ⊂ : : : , whih does not exist in the Noetherianalgebra k[X℄. �11.7.3.Example: �big� open sets. Zariski topology is week and non Hausdorf. For example, Z ⊂ A1 is Zariskilosed i� Z is �nite. If X is irreduible, then any non empty open U1; U2 ⊂ X have a nonempty intersetion,beause in the ontrary ase X = (X \ U1) ∪ (X \ U2).Exerise 11.5. Prove that f = g in k[X℄, if X is irreduible and f |U = g|U over some open non-empty U ⊂ X.Hint. If U = D(h), then X = V (h) ∪ V (f − g).11.7.4.Example: Zariski topology on X×Y is �ner than the produt of Zariski topologies on X and Y , beausethe losed Z ⊂ X ×Y are not exhausted by the produts of losed subsets on X, Y . For example, if X = Y = A1,then any urve, say a hyperbola V (xy − 1), is losed in Zariski topology on A1 × A1 = A2, whereas the produtsof losed sets on A1 are exhausted by �nite unions of isolated points and oordinate lines.11.7.5.PROPOSITION. A regular morphism X '- Y of algebrai varieties is ontinuous in Zariskitopology.Proof. A preimage '−1(Z) of a losed Z = V (I) ⊂ Y onsists of all x∈X suh that 0 = f('(x)) = '∗−1f(x) forall f ∈I. So, it oinides with the zero set of an ideal '∗−1(I) ⊂ k[X℄. �11.8.Deomposition of regular morphism. Let X '- Y be a regular morphism of aÆne algebraivarieties. Then, k-algebra homomorphism k[Y ℄ '∗- k[X℄ an be deomposed as
k[Y ℄ -- im ('∗) ⊂ - k[X℄ :Sine k[X℄ is redued, im ('∗) ⊂ k[X℄ is redued too, i. e. there is an aÆne algebrai varietyZ = Spem im ('∗)suh that X '- Y is deomposed as X '1- Z '2- Y and k[Y ℄ '∗2- k[Z℄ is surjetive, k[Z℄ '∗1- k[X℄is injetive. The injetivity of '∗1 means that non zero funtion f ∈ k[Z℄ an not vanish along '1(X),i. e. '1(X) ⊂ Z is dense. The surjetivity of '∗2 means that '2 indues an isomorphism between Z anda losed subset V (ker'∗2) ⊂ Y given by the ideal1 ker('∗2) = ker(') ⊂ k[Y ℄. In other words, the Zariskilosure Z = '(X) ⊂ Y is an aÆne algebrai variety and the maps X - '(X) ⊂ - Y are regularmorphisms.1note that this ideal is automatially radial



60 Algebrai Geometry. Start Up Course.11.9.Dominant morphisms, losed embeddings, and �nite morphisms. If X is irreduible anda homomorphism k[Y ℄ '∗- k[X℄ is injetive, then the orresponding morphism X '- Y is alleddominant . Geometrially, this means that '(X) = Y . If X is reduible, then ' is alled dominant whenits restrition onto eah irreduible omponent of X is dominant.A morphism X '- Y is alled a losed embedding , if k[Y ℄ '∗- k[X℄ is surjetive. This means that' identi�es X with V (ker'∗) ⊂ Y .Exerise 11.6. Show that any dominant morphism of irreduible aÆne varieties X '- Y an be deomposedas X ⊂
 - Y × Am �-- Y ; (11-1)where  is a losed embedding and � is the natural projetion along Am.Hint. Let A = k[X℄, B = k[Y ℄. A has a natural struture of a �nitely generated B-algebra provided by theinlusion B ⊂

'∗

- A; thus, there is an epimorphism of B-algebras B[x1; x2; : : : ; xm℄  -- A for some m.Given a regular morphism X '- Y , then the oordinate algebra k[X℄ an be onsidered as analgebra over '∗(k[Y ℄) = k['(X)℄ ⊂ k[X℄. A morphism ' is alled �nite, if k[X℄ is integer over '∗(k[Y ℄).Sine k[X℄ is �nitely generated as algebra over '∗(k[Y ℄) (even over k), �niteness of ' means that k[X℄ is�nitely generated as '∗(k[Y ℄)- module, i. e. there are some f1; f2; : : : ; fm∈ k[X℄ suh that any h∈k[X℄an be written as h =∑'∗(gi) fi for some gi∈k[Y ℄.11.9.1.PROPOSITION. Let X '- Y be a �nite morphism of aÆne algebrai varieties. Then '(Z) islosed for any losed Z ⊂ X and indued morphism Z '|Z- '(Z) is �nite. Moreover, if X is irreduibleand Z 6= X, then '(Z) 6= Y .Proof. Let I = I(Z) ⊂ k[X℄ be the ideal of Z ⊂ X. Then Z '|Z- Y has '∗Z : k[Y ℄ '∗

- k[X℄ - k[X℄=I. Sine
k[X℄ is �nitely generated as '∗(k[Y ℄)-module, k[Z℄ = k[X℄=I is �nitely generated as a module over

k['(Z) ℄ = '|∗Z (k[Y ℄) = '∗(k[Y ℄)=(I ∩ '∗(k[Y ℄)) ;i. e. Z - '(Z) is a �nite morphism. To prove that '(Z) = '(Z), we an restrit ourself onto irreduibleomponents of Z, i. e. suppose that Z is irreduible. Let B = k[Z℄, A = k['(Z) ℄ ⊂ B, and f1; f2; : : : ; fm generateB as A-module. Sine '|Z takes a maximal ideal mp ⊂ B to the maximal ideal mp ∩A ⊂ A, a point q ∈ Spem (A)does not belong to Spem (B) i� its maximal ideal mq ⊂ A generates non proper ideal in B, that is mq ·B = B. Inthis ase we an write fi =∑�i�f� for some �i� ∈mq; that is the zero homomorphism of A-modules: B - 0,whih takes eah fi to zero, an be presented in terms of the generator system {f�} by the matrix E − (��i).Hene, the multipliation by det(E − (�ij)) annihilates B. Sine there no zero divisors in B = k[Z℄, we getdet(E − (�ij)) = 0. But det(E − (�ij)) = 1 + � where �∈mq. So, 1∈mq and mq ⊂ A is non proper as well.To prove that '(Z) 6= Y for Z  X, let us take a non zero funtion f ∈ k[X℄ vanishing along Z and write theinteger equation of the lowest possible degree for f over '∗(k[Y ℄) asfm + '∗(g1) fm−1 + · · · + '∗(gm−1) f + '∗(gm) = 0 :Computing its left side at any z ∈ Z, we get '∗(gm)(z) = 0, that is gm('(z)) = 0. So, if '(Z) = Y , then gm ≡ 0along Y , i. e. '∗(gm) = 0 in k[X℄. Sine k[X℄ has no zero divisors, the minimal equation above is divisible by f .Contradition. �11.10.Normal algebrai varieties. If Y is irreduible, then k[Y ℄ has no zero divisors. Its quotient�eld is alled the �eld of rational funtions on Y and is denoted k(Y ). An irreduible variety Y is allednormal , if k[Y ℄ is a normal ring, i. e. there are no rational funtions f ∈ k(Y ) \ k[Y ℄ integer over k[Y ℄.By n◦ 8.7.1, any algebrai variety X with fatorial oordinate algebra k[X℄ is normal. For example, allaÆne spaes An are normal.11.10.1.PROPOSITION. Let X '- Y be a surjetive �nite morphism. If Y is normal, then '(U) isopen for any open U ⊂ X and eah irreduible omponent of X is surjetively mapped onto Y .Proof. We will identify k[Y ℄ with a subalgebra of k[X℄ embedded into k[X℄ via '∗. To prove the �rst assertion,we an suppose that U = D(f) is prinipal. Then for any p ∈ D(f) it is enough to �nd a ∈ k[Y ℄ suh that'(p) ∈ D(a) ⊂ '(D(f)). Consider a map = '× f : X p7→('(p);f(p))- Y × A1 : (11-2)



§ 11. AÆne algebrai { geometri ditionary. 61It is regular and �nite, beause its pull bak homomorphism is the evaluation map ∗ : k[Y × A1℄ = k[Y ℄[t℄ t7→f- k[X℄ (11-3)and k[X℄ is �nitely generated as k[Y ℄-module. We an treat evaluation (11-3) as taking values in a k(Y )-algebraB = k(Y ) ⊗
k[Y ℄k[X℄, whih onsists of all frations b=a, where b ∈ k[X℄, a ∈ k[Y ℄, a 6= 0, modulo the equivaleneb′=a′ ∼ b′′=a′′ ⇐⇒ b′′a′ − b′a′′ divides zero in k[X℄(k[X℄ is mapped into B via f 7−→ f=1). Sine f is integer over k[Y ℄, f is algebrai over k(Y ) and the kernel ofthe extended evaluation k(Y )[t℄ t7→f- B is a prinipal ideal (�f ) ⊂ k(Y )[t℄ spanned by the minimal polynomial�f (t) = tm + a1tm−1 + · · ·+ am−1t+ am ∈ k(Y )[t℄ for f over k(Y ). By n◦ 8.4.2, the the oeÆients of �f belongto k[Y ℄, i. e. �f ∈ k[Y × A1℄. Thus, ker ∗ = (�f ) and im = Spem (k[Y × A1℄=(�f )) = V (�f ).In other words, regular morphism (11-2) gives a �nite surjetion of X onto hypersurfae V (�f ) ⊂ Y ×A1 andthe initial morphism ' is obtained from (11-2) by projeting this hypersurfae onto Y . Thus, for any y ∈ Y theset '−1(y) ⊂ X is surjetively mapped by f onto the set of all roots of the polynomial�f (y; t) = tm + a1(y) tm−1 + · · · + am(y) ∈ k[t℄obtained by evaluating the oeÆients of �f at y ∈ Y . In partiular, D(f) ∩ '−1(y) is sent by f to non-zeroroots. We onlude that y ∈ '(D(f) i� �f (y; t) ∈ k[t℄ has a non zero root (i. e. �f (y; t) 6= tm). Sine p ∈ D(f),the polynomial �f ('(p); t) should have some non zero intermediate oeÆient ai('(p)) 6= 0, i < m. This fores�f (y; t) to have a non zero root over eah y ∈ D(ai) ⊂ Y . We onlude that '(D(f)) ⊃ D(ai) ∋ '(p) as required.What about irreduible omponents, onsider the irreduible deomposition X = ∪X� . ThenUi = X \ ∪� 6=iX� = Xi \ ∪� 6=i(Xi ∩X�)is open in X and dense in Xi. Sine '(Ui) is non empty open subset of Y , '(Xi) = '(Ui) = Y . �



§12.Algebrai manifolds.12.1.Loalization. Let U ⊂ X be an open subset of an aÆne algebrai variety and u ∈ U . A funtionU f- k is alled regular at u, if there are p; q ∈ k[X℄ suh that q(u) 6= 0 and f(x) = p(x)=q(x)
∀x ∈ D(q) ∩ U . All funtions U f- k regular at any u ∈ U form a ommutative ring denoted by
OX(U) or by �(U;OX). It is alled a ring of loal regular funtions on U ⊂ X.12.1.1.CLAIM. Let X be irreduible and h ∈ k[X℄. Then any f ∈ OX(D(h)) an be written asf(x) = r(x)=hd(x) for appropriate r ∈ k[X℄, d ∈ N. In partiular, for h ≡ 1, we get OX(X) = k[X℄.Proof. If f ∈ OX(D(h)), then ∀u∈D(h) there are pu; qu ∈ k[X℄ suh that qu(u) 6= 0 and f(x) = pu(x)=qu(x) forall x ∈ D(qu) ∩ D(h). So, ⋂u∈U V (qu) sits inside V (h) and, by Hilbert's Nullstellensatz, some power hd belongsto the ideal spanned by qu, i. e. there are some u1; u2; : : : ; um ∈ D(h) suh that hd = ∑ qu�g� for appropriateg1; g2; : : : ; gm ∈ k[X℄. At the same time, f(x) qu� (x) = pu� (x) for eah � and any x ∈ D(h), inluding x ∈
D(h) ∩ V (qu� ). Indeed, let qu� (w) = 0 for some w ∈ D(h). Rewriting f = pu�=qu� as pw=qw with qw(w) 6= 0,we get pu� (x) qw(x) = qu� (x) pw(x) for all x ∈ D(h · qu� · qw). By ex. 11.5, this holds for any x ∈ X at all. Inpartiular, pu� (w) = qu� (w) pw(w)=qw(w) = 0. We onlude that f hd =∑ f qu� g� =∑ pu� g� ∈ k[X℄. �12.1.2.COROLLARY. Any prinipal open set D(f) = Spem k[X℄[f−1℄ is an aÆne algebrai variety,the inlusion D(f) ⊂ - X is a regular map with the pull bak homomorphism k[X℄ ⊂ - k[X℄[f−1℄. �12.2. Struture sheaf. The orrespondene OX : U 7−→ OX(U) is alled a struture sheaf of anaÆne algebrai manifold X. If U = ⋃Wi is an union of open sets, then U f- k is regular i� eah itsrestrition f |Wi is regular on Wi. Conversely, a olletion of funtions Wi fi- k suh that fi ≡ fj onWi ∩Wj gives a unique regular funtion f ∈ OX (∪Wi) whose restrition onto Wi is fi for all i.Note that although n◦ 12.1.2 says that open sets are loally aÆne, a generi open U ⊂ X is notan aÆne algebrai variety and in general there is no natural 1{1 orrespondene between the points ofSpem OX(U) and the ones of U .Exerise 12.1. Let U = An \O be the omplement to the origin. Show that OAn(U) = k[An℄ for n > 2.Hint. Use the overing U = S

D(xi) and n◦ 12.1.1.12.3.Algebrai manifolds. Let X be a topologial spae. An open subset U ⊂ X is alled an algebraiaÆne hart on X, if there exists an aÆne algebrai variety XU and a homeomorphism XU 'U- U . Twoalgebrai harts XU 'U- U and XW 'W- W on X are alled ompatible, if their transition map'WU = 'W ◦'−1U , whih identi�es '−1U (U ∩W ) ⊂ XU with '−1W (U ∩W ) ⊂ XW , is a regular isomorphismof algebrai open sets, i. e. its pull bak � ('−1W (U ∩W ) ; OXW ) '∗WU- � ('−1U (U ∩W ) ; OXU ) is a wellde�ned isomorphism of k-algebras. A (�nite) open overing X = ⋃U� by mutually ompatible algebraiharts is alled a (�nite) algebrai atlas on X. Two algebrai atlases are alled equivalent , if their unionis an algebrai atlas too. A topologial spae X equipped with a lass of equivalent (�nite) algebraiatlases is alled an algebrai manifold (of �nite type).Exerise 12.2. Chek that projetive spaes and Grassmannians are algebrai manifolds of �nite type as wellas any zero set of a olletion of multihomogeneous polynomials on Pn1 × Pn2 × · · · × Pnm .12.3.1.Example: a diret produt X × Y of algebrai manifolds X, Y is an algebrai manifold too. Its atlasonsists of all pairwise produts U ×W , where U ⊂ X, W ⊂ X are aÆne algebrai harts on X, Y .12.3.2.Example: separability. The standard atlas on P1 onsists of two harts 'i : A1 ∼- Ui ⊂ P1, i = 0; 1,and '−10 (U0 ∩ U1) = '−11 (U0 ∩ U1) = {t ∈ A1 | t 6= 0} is the omplement to the origin. The harts U0;1 = A1are glued together along A1 \ {O} via transition map '01 : t 7→ 1=t. If we replae it by the identity map'̃01 : t 7→ t, then we get an other manifold alled �A1 with doubled origin�, whih looks like ------------------:----------------- .Suh the pathology is known as a non-separability . It has appeared, beause the latter gluing rule '̃01 is �non-omplete� and ould be extended from A1 \ {O} to a larger set. This an be formalized as follows. Two inlusionsU0 � ⊃ U0 ∩ U1 ⊂ - U1 give an embedding U0 ∩ U1 ⊂ - U0 × U1. In the ase of P1, this is an inlusion(A1 \O) ⊂ - A2 given as x = t ; y = 1=t; it identi�es U0 ∩U1 with a losed subset V (xy− 1) ⊂ A2 = U0×U1. Inthe seond ase, the embedding U0 ∩ U1 ⊂ - U0 × U1 = A2 is given as x = t ; y = t and has a non-losed image



§ 12. Algebrai manifolds. 63� \ {(0; 0)}, where � = V (x − y) ⊂ A2 is the diagonal. An algebrai manifold X is alled separable, if an imageof the anonial embedding U ∩W ⊂ - U ×W is losed for any two aÆne harts U;W ⊂ X. Sine this image isnothing more than the intersetion of diagonal � ⊂ X ×X with the aÆne hart U ×W on X ×X, a manifold Xis separable i� the diagonal � ⊂ X ×X is losed. For example, An and Pn are separable, beause the diagonalsin An × An and in Pn × Pn are given, aordingly, by the equations xi = yi and xiyj = xjyi.12.4.Regular funtions and morphisms. Let U ⊂ X be an open set. A funtion U f- k isalled regular , if eah point u ∈ U has an aÆne neighborhood XW 'W- W ∋ u suh that f◦' ∈
OXW ('−1(U ∩W )). In other words, a loal funtion on X is regular, if it indues a loal regularfuntions on eah aÆne hart. Regular funtions U - k form a ommutative ring OX(U); a orre-spondene U 7−→ OX(U) is alled a struture sheaf on X. More generally, a map of algebrai manifoldsX '- Y is alled a regular morphism, if its pull bak is well de�ned homomorphism of k-algebras:
OY (U) '∗- OX('−1U) for any open U ⊂ Y . For example, a set of regular morphisms X - A1oinides with OX(X).12.5.Rational maps. A regular1 morphism U '- Y , whih is de�ned only on some open denseU ⊂ X, is alled a rational map from X to Y . One should be areful in omposing rational maps,beause an image of the �rst map may be ompletely outside the domain where the seond is de�ned.12.5.1.Example: a projetion An+1 �- Pn sending a point A ∈ An to the line (OA) ∈ Pn is a rationalsurjetion de�ned on U = An \O. In terms of the standard aÆne hart

An 'i- Ui = {(t0; t1; : : : ; tn) ∈ Pn | ti = 1} ;the pull bak homomorphism OPn(Ui) �∗

- OAn+1(�−1(Ui)) sendsf(x1; x2; : : : ; xn) ∈ k[x1; x2; : : : ; xn℄ = OPn(Ui)to the rational funtionf̃(t0; t1; : : : ; tn) = f(t0=ti ; : : : ; ti−1=ti ; ti+1=ti ; : : : ; tn=ti) ∈ OAn+1(D(ti)) = OAn+1(�−1(Ui)) :12.6.Closed submanifolds. Any losed subset Z ⊂ X of an algebrai manifoldX has natural strutureof algebrai manifold. Namely, for any aÆne hart U the intersetion Z ∩U is a losed subset of U , thatis an aÆne algebrai set Spem (OX(U)=IZ(U)), where IZ(U) = {f ∈ OX(U) | f |Z ≡ 0} is the idealof Z ∩ U on U . The orrespondene U 7−→ IZ(U) is alled the ideal sheaf of the losed submanifoldZ ⊂ X. This is a subsheaf of the struture sheaf. It onsists of all loal regular funtions vanishingalong Z. A regular morphism of arbitrary algebrai manifolds X '- Y is alled a losed embedding , if'(X) ⊂ Y is a losed submanifold and ' gives an isomorphism between X an '(X). One an say thatan algebrai manifold X is aÆne i� it admits a losed embedding into aÆne spae. Similarly, a manifoldX is alled projetive, if it admits a losed embedding X ⊂ - Pm for some m.12.6.1.Example: losed submanifold X ⊂ Y is separable as soon Y is, beause the diagonal in X × X is apreimage of the diagonal in Y ×Y under an embedding X ×X ⊂ - Y ×Y . In partiular, any aÆne or projetivemanifold is separable and has a �nite type.12.6.2.Example: graph of morphism. Let X '- Y be a regular morphism. A preimage of the diagonal� ⊂ Y × Y under an indued morphism X × Y '×IdY- Y × Y is alled a graph of ' and is denoted by �'.Geometrially, �' = {(x; f(x)} ⊂ X×Y . It is losed, if Y is separable. For example, a graph of a regular morphismof aÆne manifolds Spem (A) '- Spem (B) is given in A⊗B by the equation system 1⊗ f = '∗(f)⊗ 1, wheref runs through B and B '∗

- A is the pull bak of '.12.6.3.Example: family of losed submanifolds. Any regular morphism X �- Y may be onsidered as afamily of losed submanifolds Xy = �−1(y) ⊂ X parameterized by the points y ∈ Y . If X �- Y , X ′ �′

- Y1as above, the regularity means that the pull bak OY (W ) '∗

- OX('−1(W )) is a well de�ned k-algebra homomorphism



64 Algebrai Geometry. Start Up Course.are two families with the same base, then a regular morphism X '- X ′ is alled a morphism of families (or amorphism over Y ), if it sends Xy to X ′y for any y ∈ Y , i. e. if � = �′◦'. A family X �- Y is alled onstant ortrivial with a �ber F , if it is isomorphi over Y to the diret produt F × Y �Y- Y .12.6.4.Example: blow up a point p ∈ Pn. Lines passing through a given point p ∈ Pn form a projetivespae E ≃ Pn−1, whih an be identi�ed with any hyperplane H ⊂ Pn suh that p 6∈ H. An inidene graph
Bp = {(`; q) ∈ E × Pn | q ∈ `} is alled a blow up of p ∈ Pn.If n > 2, then the projetion �p : Bp -- Pn is bijetive outside q = p, but a preimage �−1p (p) ⊂ Bp oinideswith E; this �ber is alled an exeptional divisor .The seond projetion %E : Bp -- E �bers Bp as a line bundle over E. This line bundle is alled atautologial line bundle over E. Its �ber %È over a point ` ∈ E oinides with the line ` ⊂ Pn itself.If we �x homogeneous oordinates (t0 : t1 : : : : : tn) on Pn suh that p = (1 : 0 : · · · : 0) and identify E withthe hyperplane H = {(0 : q1 : · · · : qn)} ⊂ Pn, then (q; t) ∈ Bp i� qitj = qjti for all 1 6 i < j 6 n, i. e. i�rk  1 0 · · · 00 q1 · · · qnt0 t1 · · · tn = 2 :Thus, Bp is losed submanifold of H × Pn.12.7.Closed morphisms. A regular morphism X '- Y is alled losed , if '(Z) ⊂ Y is losed forany losed Z ⊂ X. Of ourse, any losed embedding is losed. The theorem from n◦ 11.9.1 says that any�nite morphism of aÆne manifolds is losed. By n◦ 8.8.1, the projetion Pm×An - An is also losed.12.7.1.PROPOSITION. If X is a projetive manifold, then the projetion X × Y - Y is losedfor any manifold Y .Proof. Taking an aÆne hart on Y , we an suppose that Y is aÆne, i. e. that X × Y is a losed submanifold of
Pm × An. Then our projetion is the restrition of the losed map Pm × An - An onto the losed subsetX × Y ⊂ Pm × An. �12.7.2.PROPOSITION. If X is projetive and Y is separable, then any morphism X '- Y is losed.Proof. Sine Y is separable, the graph �' ⊂ X × Y is losed. Z × Y is also losed in X × Y for any losed Z ⊂ X.But '(Z) is the image of �' ∩ (Z × Y ) under the projetion X × Y - Y . �12.7.3.COROLLARY. If X is a onneted projetive manifold, then OX(X) = k. Moreover, eahregular map from X to any aÆne manifold ontrats X into one point.Proof. Let us identify k = A1 with an aÆne hart on P1 and onsider a global regular funtion X f- k as a regularmorphism X f- P1. Sine f(X)  P1 is losed and onneted, it is one point. In partiular, if X '- An isregular, then eah oordinate form xi ∈ k[An℄ takes a onstant value along '(X). �12.8.Finite morphisms of manifolds. A regular morphism of arbitrary algebrai manifoldsX '- Yis alled �nite, if W = '−1(U) is an aÆne hart on X for any aÆne hart U ⊂ Y and the restritionW 'W- U is a �nite morphism of aÆne algebrai varieties. It follows from n◦ 11.9.1 that any �nitemorphism is losed and a restrition of a �nite morphism onto any losed submanifold Z ⊂ X is a �nitemorphism as well. Moreover, if X is irreduible, then eah proper losed Z ⊂ X goes to a proper losedsubset of Y .12.8.1.Example: a projetion of any projetive manifold X  Pn from any point p 6∈ X onto any hyperplaneH 6∋ p is a �nite morphism. To hek this, let us �x the oordinates as in n◦ 12.6.4 and follow the notationsof that example. Consider a standard aÆne hart on H, say Uqn = {q = (0 : u1 : · · · : un−1 : 1)} ⊂ H. Itspreimage Y = �−1p (Uqn) ⊂ X under the projetion from p lies inside the one over Uqn with the puntured vertexp (beause p 6∈ X). The blow up maping �p identi�es this puntured one with the aÆne spae An = Uqn ×A1 viathe substitution t = #p+qu, where t = (t0 : t1 : : : : : tn) is the homogeneous oordinate on Pn, p = (1 : 0 : : : : : 0),qu = (0 : u1 : · · · : un−1 : 1) ∈ Uqn . If X is given by a system of homogeneous equations f�(t) = 0, then Y is givenin aÆne oordinates (u; t) by equationsf�(#p+ qu) = �(�)0 (u)#m + �(�)1 (u)#m−1 + · · · + �(�)m (u) = 0 : (12-1)



§ 12. Algebrai manifolds. 65So, Y is aÆne and it remains to hek that k[Y ℄ = k[u℄[#℄=(f�(#p + qu)) is a �nitely generated k[u℄-module. Tothis aim it is enough to �nd an integer equation with �0(u) ≡ 1 in the ideal spanned by equations (12-1). Thenalready a fatorization through this equation leads to a �nitely generated k[u℄-module.Note that the leading oeÆients �(�)0 (u) have no ommon zeros in Uqn . Indeed, if all �(�)0 (u) vanish at u = u0,then the homogeneous versions of (12-1)�(�)0 (u0)#m0 + �(�)1 (u0)#m−10 #1 + · · · + �(�)m (u0)#m1 = 0(they are obtained by substitution t = #0 p + #1 qu and desribe the intersetion X ∩ (pqu0)) have the solution(#0 : #1) = (1 : 0), whih orresponds to the point p 6∈ X.Thus, the ideal spanned by the leading oeÆients �(�)0 (u) is non proper and ontains the unity as required.Exerise 12.3. Chek that a omposition of �nite morphisms is �nite and prove that any projetive manifoldadmits a �nite surjetive morphism onto a projetive spae.12.8.2.COROLLARY. Eah aÆne manifold X admits a �nite surjetive morphism ' onto appropriateaÆne spae Am.Proof. Let X  An, where An is embedded in Pn as the standard hart U0. We write H∞ for Pn \U0 and X ⊂ Pnfor the projetive losure of X. A projetion of X from any point p ∈ H∞ \ (X ∩H∞) onto any hyperplane L 6∋ pindues a �nite morphism from X = X \ (X ∩H∞) to An−1 = L \ (L ∩H∞). If it is non surjetive, we repeatthis proedure. �12.9.Dimension. For an arbitrary algebrai manifold X and an arbitrary point x ∈ X, the maximaln ∈ N suh that there exists a hain of irreduible losed subsets
{x} = X0  X1  · · ·  Xn−1  Xn ⊂ X : (12-2)is alled a dimension of X at x and is denoted by dimxX.Certainly, if X is irreduible, then Xn = X in the maximal hain (12-2). If X is reduible, thendimxX oinides with the maximal dimension of irreduible omponents passing through x.Exerise 12.4. Show that dimpX = dimp U for any aÆne hart U ∋ p.Hint. Let X1; X2 ⊂ X be two losed irreduible subsets and U ⊂ X be an open set suh that both X1 ∩ U ,X2 ∩ U are nonempty. Then X1 = X2 ⇐⇒ X1 ∩ U = X1 ∩ U , beause Xi = Xi ∩ U .12.9.1.LEMMA. Let X '- Y be a �nite morphism of irreduible manifolds. Then dimxX 6dim'(x) Y for any x ∈ X and the equality holds i� '(X) = Y .Proof. By ex. 12.4, we an assume that both X, Y are aÆne. Then n◦ 11.9.1 implies that eah hain (12-2) in Xprodues a hain · · ·  '(Xi)  '(Xi+1)  · · · of losed irreduible submanifolds in Y . Vie versa, if '(X) = Y ,then given a hain Y0  Y1  · · ·  Yn−1  Yn = Y , for eah i we an hoose an irreduible omponent Xi of'−1(Yi) mapped surjetively onto Yi. This gives a hain (12-2) in X. �12.9.2.PROPOSITION. dimpAn = n at any p ∈ An.Proof. Clearly, dimA0 = 0. Suppose indutively that dimAn−1 = n − 1. Sine any proper losed X ⊂ An has a�nite projetion on An−1, the above lemma implies that dimpX 6 (n− 1) for any p. Thus, dimp An 6 n. On theother hand, there is a hain (12-2) onsisting of aÆne subspaes passing through p. So, dimp An > n. �12.9.3.COROLLARY. Let X be an irreduible aÆne manifold and X '- Am be a surjetive �nitemorphism. Then dimpX = m at eah p ∈ X. In partiular, m doesn't depend on a hoie of ' anddimpX is the same for all p ∈ X. �Exerise 12.5. Prove that dim(X × Y ) = dimX + dimY for any irreduible manifolds X, Y .Exerise 12.6. Let V (f) ⊂ An be given by irreduible f ∈ k[x1; x2; : : : ; xn℄. Show that dimV (f) = n− 1.Hint. Find a surjetive �nite projetion V (f) - An−1 (omp. with ex. 12.3 and n◦ 12.8.2).12.9.4.LEMMA. If X is irreduible, then dimp V (f) = dimp(X)− 1 for any non onstant f ∈ OX(X)and any p ∈ V (f).Proof. We an assume that X is aÆne. Fix some �nite surjetion X �- Am and onsider the indued map = � × f : X x 7→(�(x);f(x))- Am × A1



66 Algebrai Geometry. Start Up Course.as in the proof from n◦ 11.10.1. It maps X �nitely and surjetively onto aÆne hypersurfae V (�f ) ⊂ Am × A1,where �f (u; t) = tn + �1(u) tn−1 + · · · + �n(u) ∈ k[u1; u2; : : : ; um℄[t℄is the minimal polynomial for f over k(Am). Write H ⊂ Am × A1 for a hyperplane given by equation t = 0.Then V (f) =  −1 (H ∩ V (�f )). The intersetion H ∩ V (�f ) is a hypersurfae of H given in H = An by equation�n(u) = 0. Thus, there is a �nite surjetion V (f)  -- V (an) ⊂ An. Now the proposition follows from ex. 12.6and n◦ 12.9.1. �12.9.5.COROLLARY. dimp V (f) > dimp(X)−1 for any algebrai manifold X, an arbitrary f ∈ k[X℄,and any p ∈ V (f). �12.9.6.COROLLARY. For any two losed submanifolds X1; X2 ⊂ An and any x ∈ X1 ∩X2dimx(X1 ∩X2) > dimx(X1) + dimx(X2)− n :Proof. Write X1 ⊂
'1- An, X2 ⊂

'2- An for the orresponding losed embeddings. Then X1 ∩X2 is the preimage ofdiagonal � ⊂ An ×An under the map X1 ×X2 ⊂
'1×'2- An ×An. It is given inside X1 ×X2 by the pull baksof n equations xi = yi, whih de�ne � inside An × An. It remains to apply n◦ 12.9.5. �12.9.7.COROLLARY. If dim(X1) + dim(X2) > n for some losed X1; X2 ⊂ Pn, then X1 ∩X2 6= ∅.Proof. Let Pn = P(V ). Consider aÆne ones1 X ′1; X ′′2 ⊂ An+1 = A(V ) formed by the lines passing through theorigin O ∈ An+1 and belonging to X1; X2 respetively. By the previous orollary, dimO(X ′1 ∩X ′′2 ) > dimO(X1) +1 + dimO(X2) + 1− n− 1 > 1. So, X ′1 ∩X ′′2 is exhausted by O. �12.9.8.THEOREM. Let X '- Y be a dominant morphism of irreduible manifolds. Then:(1) dimx '−1('(x)) > dimX − dimY for any x ∈ X_,(1) there exists open dense U ⊂ Y suh that dim'−1(y) = dimX − dimY for all y ∈ U .Proof. In (1) we an replae Y by an aÆne neighborhood of '(x), i. e. assume that Y is aÆne. Appropriate �niteprojetion Y -- Am redues (1) to the ase Y = Am = Spem k[u1; u2; : : : ; um℄, '(x) = 0. Now '−1(0) is anintersetion of m hypersurfaes V ('∗(ui)) in X and the required inequality follows indutively from n◦ 12.9.5.In (2) we an suppose that both X, Y are aÆne and ' is obtained by restriting the projetion Y ×Am �-- Yonto some losed submanifold X ⊂ Y × Am (omp. with the deomposition (11-1) from ex. 11.6). Now we aregoing to apply the arguments from n◦ 12.8.2 �berwise over Y .Namely, onsider the losure X ⊂ Y × Pm and hoose a hyperplane H ⊂ Pm and a point p ∈ Pm \ H suhthat the setion Y × {p} ⊂ Y × Pm is not ontained in X. The �berwise projetion from p onto H is well de�nedover an open subset U ⊂ Y omplementary to �((Y × {p}) ∩ X), where � : Y × Pm -- Y is the projetionalong Pm (this is a losed morphism). Replaing Y by any non empty prinipal open subset of U , we get a �nitemorphism X - Y × Am−1. After a number of suh replaements we an suppose that ' is a �nite surjetionX -- Y ×An followed by the projetion Y ×An -- Y . Now all �bers have dimension n = dimX − dimY . �12.9.9.COROLLARY (CHEVALLEY'S SEMI-CONTINUITY THEOREM). For any morphism of alge-brai manifolds X '- Y and eah k ∈ Z a subset Xk def= {x ∈ X | dimx '−1('(x)) > k } is losed in X.Proof. We an suppose that X, Y are irreduible. If k 6 dim(X) − dim(Y ), then Xk = X by the above theorem.For k > dim(X) − dim(Y ) we an replae Y by Y ′ = Y \ U , where U is the same as in n◦ 12.9.8, and X | byX ′ = '−1(Y ′). Clearly, Xk ⊂ X ′ and we an repeat the arguments dereasing the dimensions of X, Y . �Exerise 12.7. Show that isolated points in the �bers of a morphism X '- Y �ll an open subset in X.12.9.10.COROLLARY. For any losed morphism X '- Y and eah k ∈ Z a subsetYk def= { y ∈ Y | dim'−1(y) > k }1they have the same equations as X1, X2 but these equations are onsidered now as aÆne rather than homogeneous



§ 12. Algebrai manifolds. 67is losed in Y . �12.9.11.COROLLARY. Let X '- Y be a losed morphism with irreduible �bers of the samedimension. Then irreduibility of Y implies that X is irreduible as well.Proof. Let X = X ′ ∪X ′′. Sine eah �ber '−1(y) is irreduible, it ompletely belongs to one of X ′, X ′′. Applyingn◦ 12.9.10 to the restrition X ′ '|X′- Y , we see that a set of all �bers ompletely ontained in X ′ is mappedto some losed subset Z ′ ⊂ Y . Similarly, all �bers ompletely ontained in X ′′ are also mapped to some losedZ ′′ ⊂ Y . So, Y = Z ′ ∪ Z ′′ but both Z ′, Z ′′ should be proper as soon as X ′, X ′′ were proper. �



§13.Working example: lines on surfaes.13.1.Variety of lines on surfaes of given degree. We are going to analyze the set of lines lyingon a surfae S ⊂ P3 of a given degree d.Exerise 13.1. Carry out the omplete analysis for d = 2.To this aim onsider the spae PN = P(SdV ∗), of surfaes of degree d in P3 = P(V ), and identify the setof all lines in P(V ) with the Pl�uker quadri QP ⊂ P5 = P(�2V ). Let� def= { (S; `) ∈ PN ×QP | ` ⊂ S } ⊂ PN ×QPbe the inidene graph.13.1.1.CLAIM. � is losed submanifold of PN ×QP .Proof. 2-dimensional subspae spanned by u;w ∈ V oinides with the image of the ontration map V ∗ - V ,whih sends � ∈ V ∗ to 〈 � ; u ∧ w 〉. So, the line ` = (uw) lies on a surfae S given by F = 0 i� F (〈 � ; u ∧ w 〉) ∼= 0identially in � ∈ V ∗. In oordinates, let e� form a basis of V , �� be the oordinates of � w. r. t. the dual basisof V ∗, and u ∧ w = ∑�6=� p�� e� ∧ e� , where p�� = −p�� are the assoiated Pl�uker oordinates on P5 ⊃ Q. Then
〈 � ; u ∧ w 〉 =∑i �i · (∑� pi�e�). Substitute this into F , expand the result through the monomials in �, and writedown that all oeÆients of this expansion vanish | this gives a system of polynomial equations on the oeÆientsof F and pij desribing � ⊂ PN ×QP ⊂ PN × P5. �13.1.2.CLAIM. Projetion � �2- QP is surjetive; all its �bers are projetive spaes of dimensiond(d+ 1)(d+ 5)=6− 1.Proof. Let a line ` ⊂ P(V ) be given by x0 = x1 = 0. Then S ⊃ ` i� S has an equation 0 = x2 · F2(x) + x3 · F3(x),where F2; F3 ∈ Sd−1V ∗ are arbitrary homogeneous polynomials. These equations form a vetor spae W , whihoinides with the image of the linear operator Sd−1V ∗⊕Sd−1V ∗ (f;g) 7→x2f+x3g- SdV ∗ whose kernel onsists ofall (f; g) suh that x2f = −x3g that is possible i� f = x3h and g = −x2h for some h ∈ Sd−2V ∗. Hene, the kernelis isomorphi to Sd−2V ∗ and dimW = 2 dim(Sd−1V ∗)−dim(Sd−1V ∗) = 16 ( 2 d(d+1)(d+2)− (d−1)d(d+1)) =d(d+ 1)(d+ 5)=6 . �13.1.3.COROLLARY. � is an irreduible projetive manifold of dimension d(d+ 1)(d+ 5)=6 + 3.Proof. This follows at one from n◦ 12.9.11 and n◦ 12.9.8. �13.1.4.CLAIM. A generi1 surfae Sd ⊂ P3 of degree d > 4 does not ontain lines.Proof. By n◦ 12.7.2, the image of the projetion � �1- PN , that is the set of all surfaes ontaining some lines,is losed irreduible submanifold of PN = P(SdV ∗). By n◦ 12.9.8, its dimension equals dim� minus the minimaldimension of non-empty �bres of �1. We see that the image is proper as soon dim� < N , i. e. whend(d+ 1)(d+ 5)=6 + 3 < (d+ 1)(d+ 2)(d+ 3)=6 :This holds for all d > 4. �13.1.5.CLAIM. Eah ubi surfae S3 ⊂ P3 ontains lines; generially, this is a �nite set of lines.Proof. Taking in the previous proof d = 3, we get dim� = N = 19. Thus, to show that �1 is surjetive, it is enoughto �nd a non-empty 0-dimensional �ber of �1, i. e. to present a ubi surfae ontaining a �nite set of lines.Let us �nd all the lines, say, on a ubi C with aÆne equation xyz = 1. This aÆne piee does not ontain thelines at all, beause x = x0 + � t ; y = y0 + � t ; z = z0 +  t lies on C i� �� = 0, ��z0 + �x0 + �y0 = 0, and�y0z0+�x0z0+x0y0 = 0, but x0y0z0 = 1, whih leads to ontradition when we go from the left to the right: forexample, � = 0 ⇒ � = 0 or  = 0 ⇒ � =  = 0. To desribe C at in�nity, put x = x1=x0, y = x2=x0, z = x3=x0and rewrite its equation as x1x2x3 = x30. Thus, C ∩ {x0 = 0} onsists of 3 lines: xi = x0 = 0, i = 1; 2; 3. �Exerise 13.2∗. Find all lines on the (smooth) Fermat ubi CF , given by ∑x3i = 0.1at least any one from some dense open subset in the spae of all degree d surfaes



§ 13. Working example: lines on surfaes. 69Hint. CF is preserved by the permutations of the oordinates; up to permutations, a pair of linear equationsfor ` ⊂ CF an be redued by the Gauss method to x0 = �x2 + �x3, x1 = x2 + Æx3; substitute this inFermat's ubi equation, show that ��Æ = 0 e. t. .13.2.Lines on a smooth ubi. Now, let S ⊂ P3 be a smooth ubi surfae with equation F (x) = 0.13.2.1.LEMMA. A reduible plane setion of S an split either into a line and a smooth oni or intoa triple of distint lines.Proof. We have to show that a plane setion � ∩ S an not ontain a double line omponent. If there is a doubleline ` ⊂ � ∩ S, we an take the oordinates where � is given by x2 = 0 and ` is given by x2 = x3 = 0. ThenF (x) = x2Q(x) + x23L(x) = 0 for some linear L and quadrati Q. Let a be an intersetion point of ` with thequadri Q(x) = 0. Then x2(a) = x3(a) = Q(a) = 0 implies that all partial derivatives �F=�xi vanish at a, i. e. Sis singular at a. �13.2.2.COROLLARY. A point of S an belong to at most 3 lines lying on S and these lines shouldbe oplanar.Proof. Indeed, all lines passing through p ∈ S and lying on S belong to S ∩ TpS. �13.2.3.LEMMA. Given ` ⊂ S, there are preisely 5 distint planes �1; �2; : : : ; �5 ontaining ` andinterseting S in a triple of lines; moreover, if �i ∩ S = ` ∪ `i ∪ `′i, then `i ∩ `j = `i ∩ `′j = `′i ∩ `′j = ∅
∀ i 6= j (in partiular, S ontains some skew lines) and any line on S skew to ` must interset for eah ipreisely one of `i, `′i.Proof. Fix a basis {e0; e1; e2; e3} for V suh that ` = (e0e1), given by equations x2 = x3 = 0, lies on S. Then theequation F (x) = 0, de�ning S, an be written in this basis as:L00(x2; x3) ·x20+2L01(x2; x3) ·x0x1+L11(x2; x3) ·x21+2Q0(x2; x3) ·x0+2Q1(x2; x3) ·x1+R(x2; x3) = 0 (13-1)where Lij ; Q� ; R ∈ k[x2; x3℄ are homogeneous of degrees 1, 2, 3 respetively. Let us parameterize a penil of plainspassing through ` by the points e# = #2e2 + #3e3 ∈ (e2e3) and write (t0 : t1 : t2) for homogeneous oordinates inthe plane �# = (e0e1e#) w. r. t. these basi points. An equation for the plane oni (�# ∩ S) \ ` is obtained from(13-1) by the substitution x = (t0 : t1 : #2t3 : #3t3) and aneling the ommon fator t3. The resulting oni hasthe Gram matrix G = L00(#) L01(#) Q0(#)L01(#) L11(#) Q1(#)Q0(#) Q1(#) R(#)whose determinant is homogeneous degree 5 polynomial in # = (#2 : #3)D(#2; #3) = L00(#)L11(#)R(#) + 2L01(#)Q0(#)Q1(#)− L11(#)Q20(#)− L00(#)Q21(#)− L01(#)2R(#) :Thus, it has 5 roots ounted with multipliities. We have to show that all these roots are simple. Eah rootorresponds to a splitting of the oni into a pair of lines `′, `′′. There are two possibilities: the intersetion point`′ ∩ `′′ lies either on ` or outside `.In the �rst ase, we an �x a basis in order to have `′ = (e0e2) and `′′ = (e0 (e1 + e2)). These lines are givenby equations x3 = x1 = 0 and x3 = (x1 − x2) = 0. Suh the splitting orresponds to the root # = (1 : 0). Itsmultipliity equals the highest power of #3 dividing D(#2; #3). Sine `; `′; `′′ ⊂ S, the equation (13-1) has a formx1x2(x1 − x2) + x3 · q(x) with some quadrati q(x). Thus, elements of G that may be not divisible by #3 areexhausted by L11 ≡ x2 (mod #3) and Q1 ≡ −x22=2 (mod #3). So, D(#2; #3) ≡ −L00Q21 (mod #23). This term is oforder 1 in t3 as soon x1x22 and x20x2 do ome in (13-1) with non zero oeÆients. But the �rst is the only monomialthat gives non zero ontribution into �F=�x1 omputed at e2 ∈ S and the seond | in �F=�x2 at e0 ∈ S. Hene,they do ome.In the seond ase we �x a basis in order to have `′ = (e0e2), `′′ = (e1e2), whih are given by equationsx3 = x1 = 0 and x3 = x0 = 0. This splitting orresponds to the same root # = (1 : 0). Now equation (13-1) turnsto x0x1x2 + x3 · q(x) and non zero modulo #3 entry of G is only L01 ≡ x2=2 (mod #3). Thus, D(#2; #3) ≡ −L201R(mod #23), whih is of the �rst order in t3 as soon x22x3 and x0x1x2 do really appear in (13-1). The seond does,beause otherwise F is divisible by x3. The �rst is the only monomial that gives non zero ontribution into �F=�x3omputed at e2 ∈ S.The rest assertions follow immediately from n◦ 13.2.2, n◦ 13.2.1 and remark that any line in P3 intersets anyplane. �



70 Algebrai Geometry. Start Up Course.13.2.4.LEMMA. Any four mutually skew lines on S do not lie simultaneously on a quadri and thereexist either one or two (but no more!) lines on S interseting eah of these four lines.Proof. If four given lines on S lie on some quadri Q, then Q is smooth and the lines belong to the same linefamily1 ruling this quadri. Eah line from the seond ruling family on Q lies on S, beause a line passing through4 distint points of S has to lie on S. Hene, Q ⊂ S and S is reduible. It remains to apply ex. 2.4. �13.3.Con�guration of 27 lines. Take 2 skew lines a; b ⊂ S and onstrut 5 pairs of lines `i, `′ipredited by n◦ 13.2.3 applied to ` = a. Let us write `i for those lines that do meet b and `′i forremaining lines, whih do not. There are 5 more lines `′′i oupled with `i by n◦ 13.2.3 applied to ` = b.Eah `′′i meets b but neither a nor `j with j 6= i. Thus, `′′i intersets all `′j with j 6= i.Any line  ⊂ S, di�erent from 17 just onstruted, is skew to a, b but meets either `i or `′i for eahi. By n◦ 13.2.4, all lines meeting > 4 of `i's are exhausted by a, b. Let  meet 6 2 of `i's. Then, up toa permutation of indies,  meets `′1; `′2; `′3 and, say, either `′4 or `5. In the both ases we already havetwo distint lines a; `′′5 6=  interseting all these 4 lines. This ontradits to n◦ 13.2.4.We onlude that  intersets preisely 3 of 5 lines `i.13.3.1.LEMMA. Remaining lines  ⊂ S are in 1{1 orrespondene with 15 triples
{i; j; k} ⊂ {1; 2; 3; 4; 5} :Proof. There is at most one line  interseting a given triple of `i's | this is the seond possible line besides ameeting all these `i's and the rest `′j 's (all 5 are mutually skew). On the other hand, by n◦ 13.2.3, for eah i thereare preisely 10 lines on S interseting `i: 4 of them are a, b, `′i, `′′i and other 6 have to interset exatly 2 of therest four `j 's. So, we have 1{1 orrespondene between these 6 lines and 6 = (42) hoies of pairs of `'s. �Thus, we have proven13.3.2.COROLLARY. Eah smooth ubi surfae S ⊂ P3 ontains preisely 27 lines and their ini-dene ombinatoris is the same for all S. �Exerise 13.3. Let G ⊂ S27 be a group of all permutations of the 27 lines preserving all the inidene relationsbetween them; �nd the order of G. ( answer:|G|=51840=27·34·5 )Exerise 13.4∗. Consider the �eld of 4 elements F4 def= F2[!℄=(!2 + ! + 1), where F2 = Z=(2). The extension

F2 ⊂ F4 has a onjugation automorphism2 z 7−→ z def= z2, whih lives F2 �xed and permutes two roots of thepolynomial !2 + ! + 1. Show that unitary3 4 × 4 - matries with entries in F4 modulo the salar matriesform a (normal) subgroup of index 2 into the group G from ex. 13.3.Hint. The unitary group preserves the Fermat ubi CF (see ex. 13.2) whose equation over F4 turns to thestandard Hermitian form Pxixi.

1omp. with n◦ 2.8.1{n◦ 2.8.22quite similar to the omplex onjugation in the extension R ⊂ C3i. e. satisfying M ·M t = E



§14.General nonsense appendix.14.1.Categories. Let us evade an expliit formal de�nition of �a ategory�1. Informally, a ategory
C onsists of objets, whih form a lass2 denoted by ObC , and for eah pair of objets X;Y ∈ ObCthere is a set of morphisms Hom(X;Y ) = HomC (X;Y ). These sets are distint for distint pairs X, Y .It is onvenient to think of the morphisms as the arrows X - Y . All these data have to satisfy thefollowing properties:
• for any ordered triple of objets X;Y; Z ∈ ObC there is a omposition mapHom(Y;Z)×Hom(X;Y ) ('; )7→'◦ - Hom(X;Z) ;whih is assoiative: (�◦')◦ = �◦('◦ ) ;
• for any X ∈ ObC there is a unique3 identity morphism IdX ∈ Hom(X;X) that satis�es'◦IdX = ' ; IdX◦ =  for any morphisms X '- Y , Y  - X and any Y ∈ ObC .Probably, the reader is familiar with some �big� ategories like topologial spaes and ontinuous mapsas the morphisms, or �nitely generated k-algebras with unity and algebra homomorphisms preservingunity, or aÆne algebrai varieties with regular maps, e. t. .Of ourse, there are muh simpler examples of ategories. Say, eah partially ordered set an beonsidered as a ategory in whih Hom(X;Y ) onsist of one arrow, if X 6 Y , and is empty, if X andY are non omparable. Further, any monoid M (i. e. a semigroup with unity) an be onsidered as aategory with just one objet X and Hom(X;X) =M .Two objets X;Y ∈ ObC of an arbitrary ategory are alled isomorphi, if there are two arrowsX '-� Y (alled inverse isomorphisms) suh that '◦ = IdY ,  ◦' = IdX .Given a ategory C , one an always onstrut an opposite ategory C opp with the same objetsObC opp = ObC but inverted arrows HomC opp(X;Y ) def= HomC (Y;X). The duality C ↔ C opp is alledreversing of arrows.We have seen that the ategory of �nitely generated k-algebras looks like an opposite ategory forthe ategory of aÆne algebrai varieties over the same �eld k. To make this statement more preise weneed a tool �for omparing� the ategories.14.2.Funtors are �homomorphisms of ategories�. More preisely, a ovariant funtor C

F- D is amap ObC
X 7→F (X)- ObD together with a olletion of mapsHomC (X;Y ) '7→F (')- HomD(F (X); F (Y ))de�ned for eah pair X;Y ∈ ObC and preserving the ompositions, i. e. satisfyingF ('◦ ) = F (')◦F ( )as soon '◦ is de�ned. Note that this fores F (IdX) = IdF (X).1like in the alulus, where �the sets� are usually suessfully employed without proper logial bakground2expliit logial formalization of this notion requires quite deep settling down into logial asuistry laying fahr enoughfrom our urrent subjet; we would like to onsider �the ategory of all sets�, whose objets do not form a set, ertainly;but they an be desribed by means of appropriate �seond order langauge�, whih exists, and that is all we need here3uniqueness an be formally dedued from the de�ning relations, beause two identity morphisms Id′X , Id′′X satisfyId′X = Id′X◦Id′′X = Id′′X



72 Algebrai Geometry. Start Up Course.Dually, a ontravariant funtor C
F- D is a ovariant funtor C opp F- D . In other words, aovariant funtor is an �antihomomorphism of ategories�, that is takesHomC (X;Y ) '7→F (')- HomD(F (Y ); F (X))for eah pair X;Y ∈ ObC and satis�es F ('◦ ) = F ( )◦F (').For example, the dualization, whih takes eah vetor spae V over k to its dual V ∗ and eah linearmap V '- W to the dual map W ∗ '∗- V ∗, is a ontravariant funtor from the ategory of vetorspaes and linear maps to itself. The double dualization gives then an example of a ovariant funtor.For any C we always have the identity funtor C

IdC- C , whih ats identially on the objets andthe arrows.An other trivial series of examples is given by forgetful funtors. They at from ategories of setsequipped with an extra struture1 to the ategory Set of ordinary sets. Suh a funtor also atsidentially on objets and arrows | it just forgets the extra struture.Less trivial is14.2.1.Example: Hom-funtors. Eah X ∈ ObC produes two funtors from C to ategory of sets.A ovariant funtor hX : C - Set takes an objet Y to hX(Y ) def= Hom(X;Y ) and an arrow Y1 '- Y2 tothe omposition map hX(') : hX(Y1) = Hom(X;Y1)  7→'◦ - Hom(X;Y2) = hX(Y2).A ontravariant funtor hX : C - Set takes an objet Y to hX(Y ) def= Hom(Y;X) and an arrow Y1 '- Y2to the omposition map hX(') : hX(Y2) = Hom(Y2; X)  7→ ◦'- Hom(Y1; X) = hX(Y1) .Exerise 14.1. Show that in the ategory Mod(K), of modules over ommutative ring K with K-linear mor-phisms, the funtor hX takes any exat triple of modules 0 - A - B - C - 0 to an exattriple 0 - Hom(X;A) - Hom(X;B) - Hom(X;C)whose rightmost arrow is non surjetive in general. Formulate and prove the similar property of the on-travariant funtor hX .14.3.Natural transformations. Given two (ovariant) funtors F;G : C - D , a morphism offuntors2 F f7−→ G is a olletion of arrows F (X) fX- G(X) ∈ HomD(F (X); G(X)) (parameterized byX ∈ ObC ) suh that for any morphism X '- Y in C we have the following ommutative square3 ofmorphisms in D : F (X) F (') - F (Y )G(Y )fX
? G(') - G(Y )fY?

(14-1)For example, the anonial embedding V ⊂
iV- V ∗∗ of a vetor spae into double dual4 is a naturaltransformation from the idential funtor on the ategory of vetor spaes to the funtor of doubledualization.Of ourse, the identity maps give an identity transformation from any funtor to itself. Clearly, twonatural transformations an be omposed. Thus, we get14.3.1.CLAIM. For any two ategories C , D all ovariant funtors C

F- D form a ategory
Fun(C ;D) whose morphisms are natural transformations of funtors. �1it may be geometri, like a topology, a di�erentiable manifold struture e. t. . , or algebrai, like a struture of group,ring, e. t. . ; the morphisms in suh a ategory are the set theoretial maps preserving this extra struture2also alled a natural transformation of funtors3a diagram of morphisms in a ategory is alled ommutative, if the ompositions of arrows taken along di�erent passesjoining the same pair of vertexes always oinide4sending a vetor v ∈ V to the orresponding evaluation funtional V ∗ evv- k



§ 14. General nonsense appendix. 7314.4.Equivalene of ategories. A funtor C
F- D is alled an equivalene of ategories, if thereis a funtor D

G- C (alled quasi-inverse to F ) suh that the omposition GF is isomorphi to IdCin ategory Fun(C ;C ) and the omposition FG is isomorphi to IdD in ategory Fun(D ;D).Note that our requirement �be isomorphi� to the idential funtor is muh weaker than anotherpossible request �oinide with� the idential funtor.For example, onsider the ategory kn, whih has only one objet | n-dimensional oordinate vetorspae over k. The arrows in this ategory are linear maps kn - kn. There is a natural funtor
kn F- Vetn(k), whih embeds kn to the ategory of all n-dimensional vetor spae over k. This isan equivalene of ategories. To onstrut (some) quasi-inverse to F funtor Vetn(k) G- kn, we �xfor eah V some isomorphism fV : V ∼- kn, and send an arrow V '- W from HomVetn(k)(V;W )to the arrow fW ◦'◦f−1V ;kn - kn. In other words, we �x some basis in eah vetor spae and presenteah linear map by its matrix in these bases. Then GF oinides with the identity funtor on kn. Theopposite omposition FG : Vetn(k) - Vetn(k) is not the identity funtor, beause the image of FGontains just one objet kn ∈ ObVetn(k). But FG is isomorphi to the identity funtor via the naturaltransformation provided by isomorphisms V fV - kn.This example has a straightforward generalization. Let C

F- D be a (ovariant) funtor. It isalled full , if all maps HomC (X;Y ) '7→F (') - HomD(F (X); F (Y )) (14-2)are surjetive. If all maps (14-2) are injetive, F is alled faithful .14.4.1.CLAIM. A funtor C
F- D is an equivalene of ategories i� it is full faithful and eahY ∈ ObD is isomorphi to F (X) for some X ∈ ObD (depending on Y ).Proof. For any Y ∈ ObD �x some isomorphism iY : Y ∼- F (X), whih exists by our assertion, and putG(Y ) = X. For any arrow Y1 '- Y2 de�ne G(') : G(Y1) - G(Y2) as an arrow that orresponds to the arrowiY2◦'◦i−1Y1 : F (G(Y1)) - F (G(Y2))under the isomorphisms (14-2) : HomC (G(Y1); G(Y2)) ∼- HomD(FG(Y1); FG(Y2)) provided by F . Remainingveri�ations are olleted in the exerise below. �Exerise 14.2. Chek that D

G- C a) is a funtor; b) is quasi-inverse to F .14.5.Representable funtors. A ontravariant funtor C opp F- Set is alled representable, if thereexist an objet X ∈ ObC suh that in the ategory Fun(C opp;Set) the funtorhX : Y 7−→ Hom(Y;X)(from n◦ 14.2.1) is isomorphi to F . In this ase X is alled the representing objet for F . Dually, aovariant funtor C
F- Set is alled orepresentable, if in the ategory Fun(C ;Set) it is isomorphito the funtor hX : Y 7−→ Hom(X;Y )for some X ∈ ObC , whih is alled the orepresenting objet of F .It is easy to see that the mapping % : A 7−→ hA gives a ovariant funtor % : C - Fun(C opp;Set) ,whih sends an arrow A �- B in C to the natural transformation

(hA %(�)- hB) ∈ HomFun(C opp;Set)(%(A); %(B))whose ation over X ∈ ObC is %(')X : hA(X) = Hom(X;A)  7→'◦ - Hom(X;B) = hB(X) .Exerise 14.3. Chek that %(') is a natural transformation (i. e. verify that the orresponding diagrams (14-1)are ommutative), and show that %('1◦'2) = %('1)◦%('2).Thus, there is a bifuntor C opp ×Fun(C opp;Set) - Set that takes a pair (A;F ) to the setHomFun(C opp;Set)(hA; F ) ;



74 Algebrai Geometry. Start Up Course.of all natural transformations from hA to F . At the same time, there is the tautologial evaluationbifuntor ev : C opp×Fun(C opp;Set) - Set , whih takes (A;F ) to F (A). These two bifuntors areisomorphi.14.5.1.CLAIM (YONEDA LEMMA). For any ategory C there is an isomorphismHomFun(C opp;Set)(hA; F ) ∼- F (A) (14-3)funtorial in A ∈ C , F ∈ Fun(C opp;Set). It takes a natural transformation f : hA - F to anelement fA(IdA) ∈ F (A), where IdA ∈ HomC (A;A) = hA(A) is the identity and hA(A) fA- F (A) is anation of the natural transformation f over the objet A. The inverse map takes an element a ∈ F (A)to a natural transformation {Hom(X;A) fX- F (X)}X∈ObCthat sends an arrow X '- A to a value of the map F (A) F (')- F (X) at the element a.Proof. It is a kind of tautology. For any X ∈ ObC and any arrow X '- A we have ommutative diagram (14-1)hA(A) = Hom(A;A) hA(')- Hom(X;A) = hA(X)F (A)fA
? F (') - F (X) :fX

?
(14-4)The upper map sends IdA to '. So, fX(') = F (')(fA(IdA)). This means that eah natural transformationhA f- F is ompletely reovered as soon the element a = fA(IdA) ∈ F (A) is given, and any element a ∈ F (A)leads to the natural transformation f de�ned by presription that the diagrams (14-4) are ommutative for allX ∈ ObC . Bifuntoriality of the diagram (14-4) in A , F is evident. �14.5.2.COROLLARY. Funtor C

%- Fun(C opp;Set) : A 7−→ hA is full and faithful1.Proof. Required bifuntorial identi�ation HomFun(C opp;Set)(hA; hB) = HomC (A;B) follows from the Yonedalemma applied to the funtor F = hB . �Thus, representable funtors form a full subategory of Fun(C opp;Set). and this subategory isequivalent to the initial subategory C . In partiular, a representing objet (if exists) is unique up toanonial isomorphism. More preisely, given two isomorphismshX1 �f1 F f2- hX2in the ategory Fun(C opp;Set), then there exists a unique isomorphism X1 �- X2 in the originalategory C suh that for any Y ∈ ObC the ation of natural transformation f2f−11 over Y(f2f−11 )Y : hX1(Y ) - hX2(Y )oinides with the omposition map Hom(Y;X1)  7→�◦ - Hom(Y;X2).Exerise 14.4. State and prove the dual version of the Yoneda lemma, whih serves ovariant funtors hA ,and onstrut full faithful ontravariant embedding C opp %◦ - Fun(C ;D), whih sends an objet A ∈ObC to the ovariant funtor %◦(A) = hA and sends an arrow A '- B to the natural transformationhB %◦(')- hA, whose ation over X ∈ ObC is%◦(')X : hB(X) = Hom(B; Y )  7→ ◦'- Hom(X1; Y ) = hX1(Y ) :Hint. Just reverse all the arrows in the previous onstrutions.14.6.De�ning objets by �universal properties�. The funtoriality of the representing objetsallows to transfer many set-theoretial onstrutions2 to an arbitrary ategory C . Namely, one an1reall that this means oinidene HomFun(Copp;Set)(hA; hB) = HomC (A;B)2suh as a diret produt of sets e. t. .



§ 14. General nonsense appendix. 75de�ne a result of some set theoretial operation with objets Xi in C as an objet X suh that forany Y a set Hom(Y;X) oinides with the result of the original set theoretial operation applied to setsHom(Y;Xi). In other words, X should represent a funtor that takes Y to the result of the set-theoretialoperation with Hom(Y;Xi)'s. Of ourse, this de�nition is impliit and does not guarantee the existeneof X, beause the funtor in question ould be not representable. But if a representing objet exists, thenit automatially arries some �universal properties� and is unique up to unique isomorphism preservingthese properties.14.6.1.Example: a produt A×B, of A;B ∈ ObC , is an objet representing a funtorY 7→ Hom(Y;A) ×Hom(Y;B)from C opp to Set (as soon it is representable). In more details, for any Y we should have an isomorphism�Y : Hom(Y;A×B) ∼- Hom(Y;A)×Hom(Y;B) funtorial w. r. t. arrows Y1 - Y2. Following the proof fromn◦ 14.5.2, we an put here Y = A×B and write�A×B(IdA×B) ∈ Hom(A×B;A)×Hom(A×B;B)as (�A; �B) for appropriate arrows A ��A A×B �B- B.Exerise 14.5. Show that the triple A ��A A×B �B- B satis�es the following universal property: for any twomorphisms A �' Y  - B there exists a unique morphism Y '× - A×B suh that ' = �A◦('×  )and  = �B◦('×  ).Exerise 14.6. Show that for any other triple A ��′A C �′B- B satisfying the above universal property thereexists a unique isomorphism  : C ∼- A×B suh that �A◦ = �′A and �B◦ = �′B .14.6.2.Example: a oprodut A⊗B in an arbitrary ategory C is an objet orepresenting a funtorY 7→ Hom(A; Y )×Hom(B; Y )from C to Set . Reversing arrows in the previous example, we an haraterize it by the following universalproperty: there are two morphisms A iA- A⊗ B �iB B suh that for any two arrows A '- Y � B in Cthere exists a unique morphism A⊗B '⊗ - Y suh that ' = ('⊗  )◦iA and  = ('⊗  )◦iB.Exerise 14.7. Show that suh a triple A iA- A ⊗ B �iB B (if exists) is unique up unique isomorphismommuting with i-arrows.Exerise 14.8. Show that if one of two oproduts A⊗ (B ⊗ C), (A⊗B)⊗ C exists, then the other one existsas well and is isomorphi to the �rst. Prove a similar statement for the produts.14.7.Limits. Two examples above are just very partiular ases of muh more general onstrution. Fixsome ategory N (alled a ategory of indexes. A funtor N
X- C is nothing but a family of objetsX� ∈ ObC indexed by � ∈ ObN and morphisms X� '�� - X� indexed by the arrows i - j of

N .For example, if N is a partially ordered set satisfying the extra ondition ∀ i; j ∃ k : k > i, k > j,then a funtor N
X- C is alled a diret spetrum or a diret system of morphisms in C . Dually, afuntor N opp X- C is alled in an inverse spetrum or a inverse system of morphisms in C .Further, there is a funtor C

X 7→X - Fun(N ;C ) , whih attahes to eah objet X ∈ ObC aonstant family X (whose X� ≡ X, '�� ≡ IdX) and takes eah arrow X  - Y to the orrespondingmorphism of onstant families X  7→ Y .Given an arbitrary family {X� ; '��} : N - C , then an objet lim
←
X� ∈ C representing a on-travariant funtor Y 7−→ HomFun(N ;C )(Y ;X) from C to Set is alled a projetive limit of the givenfamily. By the de�nition, there is a funtorial in Y isomorphismHomC (Y; lim

←
X�) = HomFun(N ;C )(Y ;X) :



76 Algebrai Geometry. Start Up Course.Applying it to Y = lim
←
X� , we get a natural transformation lim

←
X� �- X orresponding toIdlim

←
X� ∈ HomC (lim

←
X� ; lim

←
X�) :This transformation is a family of morphisms lim

←
X� ��- X� suh that �� = '���� for all arrows '��in the family {X�}. It satis�es the following universal property: for any objet Y ∈ ObC equipped witha family of arrows1 Y  �- X� suh that  � = '�� � there exists a unique morphism Y �- lim

←
X�suh that  � = ��◦� ∀�.Exerise 14.9. Show that projetive limit is uniquely haraterized by this universal property (up to uniqueisomorphism ommuting with �� 's).Dually, an indutive limit lim

→
X� orepresents a ovariant funtor Y 7−→ HomFun(N ;C )(X;Y ) .Exerise 14.10. Show that indutive limit lim

→
X� is equipped with anonial maps X� i�- lim

→
X� and satis�esthe following universal property: given an objet Y ∈ ObC with a family of arrows X�  �- Y suh that � =  �'�� (whih give a natural transformation X  7−→ Y in Fun(N ;C )), then there exists a uniquemorphism lim

→
X� �- Y suh that  � = �◦�� ∀�.Exerise 14.11. Let N be an arbitrary partially ordered set (onsidered as a ategory). Show that any familyof N -indexed sets N

X- Set has lim
→
X.Hint. A right queue of X is a sequene of elements x� ∈ X� indexed by some S ⊂ ObN suh that all � > �belong to S as soon as � ∈ S and '��(x�) = x� ∀�; � ∈ S. Two right queues {x�}, {y�} are alledequivalent, if ∀ x�; y� ∃  > �; � : '�(x�) = '�(y�). Chek that a set of all equivalene lasses of rightqueues satis�es the universal properties de�ning lim

→
X.Exerise 14.12. Let N = N be the set of all positive integers with the standard order. Find lim

←
An and lim

→
Anof abelian groups An = Z=pnZ w. r. t. an inverse system of anonial fatorizations  nm : Z=pnZ -- Z=pmZ(∀ m < n) and w. r. t. a diret system of standard inlusions 'mn : Z=pmZ ⊂

[1℄7→[pn−m℄ - Z=pnZ (again
∀ m < n).Hint. lim

←
An = Zp is the set of all p-adi integers and lim

→
An ⊂ Q=Z onsists of (mod Z)-lasses of frationsz=p` whose denominator is a power of p (so alled p-rational numbers).Exerise 14.13. Let N = N as above but with the partial ordering presribed by the divisibility. Find lim

←
Anand lim

→
An of An = Z=nZ w. r. t. an inverse system of fatorizations  nm : Z=nZ -- Z=mZ (∀m|n) andw. r. t. a diret system of inlusions 'mn : Z=mZ ⊂

[1℄7→[n=m℄- Z=nZ (again ∀m|n).Hint. lim
→

An = Q=Z and lim
←

An = Qp Zp is the produt of all rings of p-adi integer numbers.14.7.1.Example: �bered produts (also alled Cartesian squares, or oamalgams) are de�ned in an arbitraryategory C as projetive limits w. r. t. the ategory of indexes N = {• - • � •} (3 objets and 2 non-idential arrows). Any funtor N - C is a diagram X �- B �� Y in C . Its projetive limit is denotedby X ×B Y and alled a �bered produt of X, Y over B. It omes with the following ommutative square (alled aCartesian square) X ×B YX �
' Y 

-

B �
�� -

(14-5)
1that is for any natural transformation Y  

7−→ X in Fun(N ;C )



§ 14. General nonsense appendix. 77whih is universal in the following sense: for any other ommutative squareZX �

'′ Y 
′

-

B �
�� -there exists a unique morphism Z '′× ′

- X ×B Y : '′ = '◦('′ ×  ′),  ′ =  ◦('′ ×  ′). Upper part of diagram(14-5) is uniquely (up to unique isomorphism ommuting with ',  ) de�ned by this universality.14.7.2.Example: amalgams (also alled o-Cartesian squares, or oproduts) are indutive limits w. r. t. the indexategory N opp = {• � • - •}. Their expanded de�nition is obtained from the previous one by reversingthe arrows: an amalgam of a diagram X �� B �- Y is an universal (o-Cartesian) ommutative squareX ⊗B YX ' - Y�  
B �-� �suh that for any other ommutative square ZX '′ - Y�  

′

B �-� �there exists a unique morphism X ⊗B Y '′⊗ ′

- Z satisfying '′ = ('′ ⊗  ′)◦',  ′ = ('′ ⊗  ′)◦ .14.8.Additive ategories. Categories appearing in ommutative algebra and geometry typially haveextra strutures on their morphisms Hom(X;Y ): usually we an add morphisms, form their kernels,images e. t. . A ategory C is alled additive, if it satis�es the following properties:
• bifuntor X;Y 7−→ Hom(X;Y ) takes its values in the ategory of abelian groups Ab instead of

Set , i. e. Hom(X;Y ) is an abelian group ∀ X;Y ∈ ObC and the ompositionHom(Y;Z)×Hom(X;Y ) ('; )7→'◦ - Hom(X;Z) ;is bilinear (or distributive): ('1 + '2)◦( 1 +  2) = f1◦ 1 + f1◦ 2 + f2◦ 1 + f2◦ 2;
• there is a zero objet 0 ∈ ObC suh that Hom(0; 0) = 0 is the zero group;Exerise 14.14. Dedue from the previous property that Hom(X; 0) = Hom(0; X) = 0 ∀X ∈ ObC and 0is de�ned by this property up to unique isomorphism (namely, the zero morphism 0 0- 0′).
• for any pair of objets A;B there exist a diagram1:A iA-��A A⊕B �iB�B- B (14-6)1its middle term A⊕B is alled a diret sum of A, B and all the diagram is alled a splitted exat triple



78 Algebrai Geometry. Start Up Course.suh that �b◦iA = 0, �A◦iB = 0, �A◦iA = IdA, �B◦iB = IdB and iA◦�A + iB◦�B = IdA⊕B.Exerise 14.15. Show that A⊕B is de�ned by this property up to unique isomorphism ommuting withi's and �'s.One an emulate all natural onstrutions known for abelian groups in a ontext of an arbitrary additiveategory C . For example, de�ne a kernel of an arrow A '- B in C as an objet representing a funtorC 7−→ ker(Hom(C;A)  7→'◦ - Hom(C;B))from C to Ab. If exists, the representing objet ker(') omes with anonial map1 ker(') κ- Asatisfying '◦κ = 0 and the following universality: for any arrow C - A suh that '◦ = 0 thereexists a unique morphism C  - ker(') suh that κ◦ = . This property �xes the kernel up to uniqueisomorphism ommuting with κ. Reversing arrows, we de�ne a okernel of A '- B as a universalmorphism B �- oker (') suh that �◦' = 0 and for any arrow B - C suh that ◦' = 0 thereexists a unique morphism oker (')  - C suh that  ◦� = . Again, oker (') is uniquely de�ned bythis property (up to unique isomorphism ommuting with �).Exerise 14.16. Show that in the diret sum diagram (14-6) the arrow A iA- A ⊕ B gives the kernel of thearrow A⊕B �B- B and the arrow B iB- A⊕B gives the kernel of the arrow A⊕B �A- A.From the main theorem about homomorphisms of groups we expet two ways in whih an image of arrowA '- B ould be de�ned. Namely, im' should be isomorphi to both: the kernel of B �- oker (')and the okernel of ker(') κ- A.Exerise 14.17. Let C be an arbitrary additive ategory and A '- B be any arrow in C suh that both ker'and oker' exist. Show that there is a anonial arrow oker (ker(') κ- A) - ker(B �- oker (')) .14.9.Abelian ategories. An additive ategory C is alled abelian, if it satis�es
• eah arrow A '- B has kernel ker('), okernel oker (') and is deomposed asim (')A ' -

� - B�
-where im' ≃ oker (ker(') κ- A) ≃ ker(B �- oker (')).A morphism ' in abelian ategory is alled surjetive (or an epimorphism), if oker' = 0. If ker' = 0,then ' is alled injetive (or an monomorphism).Exerise 14.18. Show that in abelian ategory:a) ker(') κ- A is injetive and B �- oker (') is surjetive for any arrow A '- B;b) ' is an isomorphism i� it is simultaneously surjetive and injetive.Exerise 14.19. Chek that in any additive ategory all squaresA⊕B �B-�iB BAiA 6�A

? 0 -� 0 00 60
?1that is the image of Idker' under the anonial identi�ationHom(ker'; ker') ≃ ker“Hom(ker';A)  7→'◦- Hom(ker';B)”



§ 14. General nonsense appendix. 79(oming from (14-6)) are simultaneously Cartesian and o-Cartesian.14.9.1.CLAIM. In any abelian ategory there exist all �bered produts and amalgams.Proof. To omplete an arbitrary triple X �- B �� Y to Cartesian square, write K κ- X ⊕ Y for the kernelof morphism Æ = �◦�X − �◦�Y : X ⊕ Y - B. Then a squareKX �

' Y 
-

B �
�� -where ' = �X◦κ,  = �Y ◦κ is ommutative (beause �' − � = Æκ = 0) and universal (beause for any othertriple X �'′ Z  ′

- Y suh that �'′ = � ′ only the anonial map1 � = '′ ⊕  ′ : Z - X ⊕ Y satis�es�X� = '′, �Y � =  ′ and an be lifted to an arrow Z �′- K, sine of Æ� = �'′ − � ′ = 0). �Exerise 14.20. Show that a diagram X �� B �- Y is ompleted to o-Cartesian square by a okernelX ⊕ Y �- Q of a morphism Æ = iX◦� − iY ◦� : B - X ⊕ Y .Exerise 14.21. Show that for any �bered produt (14-5) in abelian ategory:a) � is surjetive ⇒  is surjetive;b) K κ- X ×B Y is the kernel of ' ⇒ K  ◦κ- Y is the kernel of �.

1predited by ex. 14.19
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§15.Vetor bundles.15.1.Fibered produts. Given two families Y1 �1- X, Y2 �2- X of algebrai manifolds over X(omp. with n◦ 12.6.3), then their �bered produt over X isY1×X Y2 def= {(y1; y2) ∈ Y1 × Y2 | '1(y1) = '2(y2)} :In fat, this produt omes with a natural struture of a geometri sheme. Namely, ifX = SpemK, Yi =SpemAi, where K, A1, A2 are (�nitely generated redued) k-algebras, then the pull-baks K �∗i- Aiequip Ai with K-algebra struture and Y1×X Y2 = SpemA1⊗K A2, where A1⊗K A2 is the tensor produtof K-algebras Ai over K, that is the quotient algebra of A1 ⊗ A2 by an ideal spanned by all di�erenes(κa1)⊗ a2 − a1 ⊗ (κa2), where κ ∈ K, ai ∈ Ai.Exerise 15.1. Write Ai �∗i- A1⊗K A2 for two K-algebra homomorphisms sending a1 ∈ A1 and a2 ∈ A2 to a1⊗1and 1⊗a2 respetively. Show that for anyK-algebraB and any two homomorphisms ofK-algebrasAi g∗i- Bthere exists a unique homomorphism of K-algebras A1⊗K A2 g∗1⊗g∗2- B suh that g∗i = (g∗1 ⊗ g∗2)◦�∗i for bothi = 1; 2. Show also that this universality determinate the triple (�∗1; �∗2; A1⊗K A2) uniquely up to uniqueisomorphism ommuting with �∗i 's.Hint. This is ompletely similar to ex. 11.3.So, Y1×X Y2 ⊂ Y1×Y2 is a losed submanifold equipped with two projetions Y1×X Y2 �i- Yi and satisfyingthe following universal property1: for any family Z f- X and any two morphisms ofX-families Z gi-there exists a unique morphism of X-families Z g1×g2 - Y1×X Y2 suh that gi = �i◦(g1 × g2), i = 1; 2.It is very important that k-algebra A1⊗K A2 an be non redued even if all three algebras in ques-tion are redued (see n◦ 15.1.2 below). In this ase Y1×X Y2 is always onsidered as geometri shemeanonially equipped with the struture algebra k[Y1℄ ⊗

k[X℄k[Y2℄.15.1.1.Example: base hange. Any family Y �- X an be lifted along any morphism2 X ′ f- X to thefamily Y ×X X ′ f∗(�)- X ′ �tting into ommutative diagramY ×X X ′ - YX ′f∗(�)
? f- X�?This proedure is alled a basis hange. Algebraially, it is known as extension of salars. For example, given

R-algebra (or just a vetor spae) V , then its omplexi�ation is nothing but C⊗
R

V .15.1.2.Example: sheme restritions and sheme preimages. Given a losed embedding Z ⊂
'- X and anarbitrary family (i. e. a regular map) Y f- X, then the basis hange Y ×X Z f∗(')- Z, of f along ', is alleda sheme restrition of the family Y onto the losed submanifold Z and the basis hange Z ×X Y ⊂
f∗(')- Y , off along ', is alled a sheme preimage of the losed submanifold Z ⊂ X under the morphism Y f- X. If Xis aÆne and Z is given by an ideal I ⊂ k[X℄, then geometrially Z ×X Y ⊂

f∗(')- Y is a losed embedding of1note that it is stronger than the set theoretial de�nition of Y1×X Y2 given before and obtained by the speialization ofthe universality in question to Z = �−11 (x)× �−12 (x) for x ∈ X2mathematially, �family� and �morphism� mean the same; we use di�erent words just to outline the di�erent roles ofthese maps but it is extremely important that these roles are ompletely symmetri



§ 15. Vetor bundles. 81Spem (k[X℄=I) ⊗
k[X℄ k[Y ℄)red into Y , whih identi�es f−1(Z) with the zero set of ideal (f∗)−1 (I). But in generalthe struture algebra k[X℄=I) ⊗

k[X℄ k[Y ℄ is non redued.For example, onsider a sheme preimage of uspidal ubi Z ⊂ A2 given by equation y2 = x3 along the map
A1 t7→(t;t2)- A2 whose image is the parabola y = x2. It onsists of two points t = 0 and t = 1 but is equippedwith non redued struture algebra1 k[t℄ ⊗

k[x;y℄(k[x; y℄=(y2−x3)) = k[t℄=(t4− t3) , whih keeps the loal intersetionmultipliities.15.2.Algebrai vetor bundle over an algebrai manifold X is an algebrai family of vetor spaesover X, i. e. a regular map of algebrai manifolds E �- X whose �ber �−1(x) over any x ∈ X has astruture of a vetor spae over k and this struture algebraially depends on x in a sense that �berwiseoperations2:
• pik up the zero: X x7→[0℄x - E
• add vetors: E×X E ([u℄x;[v℄x) 7→[u+v℄x - E
• multiply vetors by onstants (X × A1)×X E ([�℄x;[v℄x)7→[�v℄x - Eare the regular morphisms of algebrai manifolds and ommute with the projetions onto X.Two vetor bundles E1 �1- X, E2 �2- X are alled isomorphi, if there is an isomorphism ofalgebrai varieties E1 '- E2 suh that �2◦' = �1 and ∀x∈X the restrition �−11 (x) '|�−11 (x)- �−12 (x)is linear isomorphism of vetor spaes.A vetor bundle is alled trivial of rank d, if it is isomorphi to the diret produt X × Ad with thestandard vetor spae struture on Ad = k⊕d, whih does not depend on x ∈ X.A regular map X s- E is alled a setion, if �◦s = IdX , i. e. s(x) ∈ �−1(x) ∀x. Eah vetor bundlehas anonial zero setion, whih takes the zero at eah �ber. A vetor bundle E �- X is trivial ofrank d i� there are d regular setions X si- E suh that {s1(x); : : : ; sd(x)} form a basis of �−1(x)

∀x ∈X . Indeed, the �berwise oordinate funtions on E w. r. t. these basi vetors give the requiredisomorphism E ∼- X × Ad.15.3.Loally trivial vetor bundle of rank d is a vetor bundle E �- X suh that any x ∈ X has anopen neighborhood U suh that the restrited bundle �−1(U) - U is trivial of rank d, i. e. has d basisetions (s(U)1 ; s(U)2 ; : : : ; s(U)d ) : U - �−1(U). If there are two suh trivializations (s(U)1 ; s(U)2 ; : : : ; s(U)d )and (s(V )1 ; s(V )2 ; : : : ; s(V )d ) de�ned, respetively, over some open U , V , then over eah x ∈ U ∩ V these twobasises are expressed through eah other as3(s(U)1 ; s(U)2 ; : : : ; s(U)d ) = (s(V )1 ; s(V )2 ; : : : ; s(V )d ) · 'V U ;where 'V U = 'V U(x) is a non degenerate d×d - matrix whose entries are regular funtions on U ∩V . So,we get the regular maps U ∩V 'V U- GLd(k) alled transition funtions between two given trivializations.They learly satisfy the onditions 'UV = '−1V U ; 'V U'UW = 'VW (15-1)(the latter hold over any triple intersetion U ∩ V ∩W ). If we hange loal basis over eah open set Uby some other (s̃(U)1 ; s̃(U)2 ; : : : ; s̃(U)d ) = (s(U)1 ; s(U)2 ; : : : ; s(U)d ) ·  U ;1note that both x and y at on k[t℄ as t and t2 respetively2we write [v℄x for elements in the �ber �−1(x) over x ∈ X3i. e. i-th olumn of 'V U ontains the oordinates of s(U)i (x) w. r. t. the basis {s(V )1 (x); : : : ; s(V )d (x)}



82 Algebrai Geometry. Start Up Course.where  U =  U(x) is any non degenerate d× d matrix whose entries are regular funtions on the wholeof U , then the transition funtions also will be hanged by '̃V U =  −1V 'V U U .15.4.GLd(k)-valued �Cheh's 1-oyle on X assoiated with an open overing X = ∪U� is a seriesof regular maps U� ∩ U� '��- GLd(k) de�ned for any ordered pair of indexes (�; �) and suh that'�� = '−1�� over U� ∩ U� for all �, � and '��'� = '� over U� ∩ U� ∩ U for all �, �, . Anysuh oyle produes a oyle assoiated with any �ner1 overing insribed in the initial one (justrestrit '�� onto the smaller open sets). Two Cheh 1-oyles are alled equivalent or (o)homologous,if there exist some ommon re�nement X = ∪U� of their initial open overings and some regular mapsU�  �- GLd(k) suh that the funtions '�� , '̃�� , indued by these oyles on the re�nement, satisfythe equation '̃�� =  −1� '�� � over eah U� ∩ U�. An equivalene lass of �Cheh 1-oyles is alled a�rst �Ceh ohomology . The set of these ohomologies is denoted by H1(X;GLd(k)).15.4.1.CLAIM. Isomorphism lasses of loally trivial vetor bundles of rank d are in 1{1 orrespon-dene with the �rst �Ceh ohomologies {'��} ∈ H1(X;GLd(k)).Proof. Given a �Ceh oyle '�� , onstrut E as a manifold whose atlas onsists of aÆne harts are U�×Ad gluedalong (U� ∩ U�)× Ad by the ruleU� × Ad ∋ (x; v)←→ (x; '��(x) · v) ∈ U� × Ad ;where v ∈ Ad is a olumn vetor. The oyle onditions imply that these hard form an atlas and linearity of'(��)(x) for eah x implies that the vetor spae strutures of �bers are orretly glued together. Conversely, wehave seen in the previous setion that for a given vetor bundle the transition funtions between its trivializationsform a �Ceh oyle, whih is hanged by a homologous one under a hanging of the trivialization or (what is thesame) under a a �berwise linear isomorphism of the bundle. �15.4.2.Example: a tautologial vetor bundle S -- P(V ) is rank 1 vetor subbundle of the trivial bundle
P(V )×V suh that a �ber of S over v ∈ P(V ) is 1-dimensional subspae of V spanned by v. Over any aÆne hartU� = {v ∈ P(V ) | �(v) 6= 0}, where � ∈ V ∗, it an be trivialized by the setion s(�)(v) = (v; v=�(v)) ∈ P(V )× V ,whih is a well de�ned regular funtion U� s(�)- S ⊂ P(V ) × V . Sine s(�)(v) = s(�)(v) · (�(v)=�(v)) over eahv ∈ U� ∩U�, the transition funtions between these trivializations are '��(v) = �(v)=�(v), whih are well de�nedregular maps U� ∩ U� - GL1(k) = k∗.15.4.3.Example: a tautologial vetor bundle S -- Gr(m;V ) over the Grassmannian, whose points are m-dimensional subspaes W ⊂ V , is a rank m vetor subbundle S ⊂ Gr(m;V )× V whose �ber over W ∈ Gr(m;V )is the m-dimensional subspae W ⊂ V itself. If we �x a basis {e1; e2; : : : ; en} in V and for eahI = (i1 < i2 < · · · < im) ⊂ (1; 2; : : : ; n)onsider the standard aÆne hard UI ⊂ Gr(m;V ), whih onsists of allW projeted isomorphially onto the linearspan of {ei1; ei2; : : : ; eim}, then S is trivialized over UI by m setions s(I)� (W ) ⊂ W that form a unique basisof W suh that the oordinates of the basi vetors form m × n matrix MI(W ) ontaining the identity m × m- submatrix in the rows I. Sine for any W ∈ UI ∩ UJ we have MI(W ) = MJ(W ) · 'JI(W ), where 'JI(W ) isthe inverse matrix for the m ×m submatrix of MJ situated in the rows I, the transition funtions between twotrivializations s(I)� (W ) and s(J)� (W ) are given by the maps W 7−→ 'JI(W ) ∈ GLm(k). Clearly, these are regularmaps well de�ned everywhere in UI ∩ UJ .15.5.Linear onstrutions with vetor bundles. Given two loally trivial vetor bundles E, F ofranks r, s presented by �Ceh oyles '�� ,  �� over the same open overing X = ∪U� , one an formtheir �berwise diret sum E⊕F , whih has rank r+ s and �Ceh oyle '�� ⊕ �� (diret sum of linearoperators), and �berwise tensor produt E ⊗ F , whih has rank rs and �Ceh oyle '�� ⊗  �� (tensorprodut of linear operators). Similarly one an make other tensor onstrutions, say �berwise exterioror symmetri powers �mE, SmE of a given loally trivial vetor bundle E e. t. .15.6.Pull bak. Given a regular map X f- Y , then any vetor bundle E -- Y indues a vetorbundle f∗(E) def= X ×Y E -- X over X alled a pull bak of E along f . For loally trivial E presented1a overing X = ∪W� is alled �ner than a overing X = ∪U� , if ∀� ∃� : W� ⊂ U�)



§ 15. Vetor bundles. 83by �Ceh oyle '�� over some open overing Y = ∪U� , the pull bak f∗E is also loally trivial bundlepresented by f∗('��) = '��◦f over the indued open overing X = ∪f−1(U�).Exerise 15.2. Let Gr(m;V ) ⊂
p- P(�mV ) be the Pl�uker embedding. Chek that the pull bak p∗SP of thetautologial line bundle on P(�mV ) is the maximal exterior power �mSGr of the tautologial line bundle onGr(m;V ).15.7.Piard group. Isomorphism lasses of loally trivial algebrai vetor bundles of rank one onX arry a natural struture of abelian group w. r. t. the tensor multipliation. This group is alled thePiard group and is denoted Pi (X). Given two line bundles L, K with �Ceh oyles '�� ,  ��, whihare k∗ - valued funtions on U� ∩ U� in this ase, then their sum in Pi (X) equals to the line bundleE⊗K with the �Ceh oyle '�� · ��. The zero element of Pi (X) is the trivial line bundle I = X×A1.The opposite element for a line bundle L with �Ceh oyle 'ij is the dual bundle L∗ = Hom(L; I) wjth�Ceh oyle equals '∗ij = 1='ij.15.7.1.THEOREM. If X is aÆne and k[X℄ is fatorial, then Pi (X) = 0.Proof. Given line bundle L, we an always hose a trivializing overing X = ∪U� suh that U� = D(f�) for some�nite olletion f1; f2; : : : ; fn ∈ k[X℄. Let us �x a trivializing setion s� over eah U� and onsider orrespondingtransition funtions '�� = s�=s�, whih are nowhere vanishing elements of OX(U� ∩ U�) = k[X℄[1=(f�f�)℄,i. e. have a form fr�fs� for some r; s ∈ Z. Consider some irreduible element q ∈ k[X℄ and m�� ∈ Z for a powerof q in the prime deomposition of '��. If at least one of these powers is not zero, we an split all f�'s into twononempty subsets: '� 's, whih are divisible by q, and ' 's, whih are not. Then, for eah � the power m� doesnot depend on , beause q must disappear in '12 = '1�='2�. Let us write m� for this power and hange allsetions s� by s′� = qm� ·s� (this leads to a new basi setion, beause Zq ⊂ Zf� ). After that q, learly, disappearsin all '� as well as in all '�1�2 = '�2='�1 . Sine the set of all q's having some non zero m�� is exhaustedby a �nite number of irreduible divisors of f�'s, after a number of suh the replaements we ome to transitionfuntions that have no irreduible fators, i. e. are non zero onstants. Resaling all but one basi setions, weome to a global trivialization for L. �15.7.2.COROLLARY. Pi (An) = 0. �15.7.3.PROPOSITION. Pi (Pn) = Z is spanned by the tautologial vetor bundle S.Proof. By n◦ 15.7.2, any line bundle L an be trivialized over the standard aÆne hart Uxi by some loal nowherevanishing setion si. Let us write t(i)� , � 6= i, for the restritions of linear forms x� onto aÆne hyperplane xi = 0in An+1 and use them as aÆne oordinates on Uxi . The transition funtion 'ij = si=sj ∈ k(Uxi) is a rationalfuntion of t(i)� suh that its numerator and denominator do not vanish anywhere in Uxi exept for Zt(i)j . Hene,'ij = (t(i)j )dij . Sine t(j)k = xk=xj = (xk=xi) : (xj=xi) = t(i)k =t(i)j , the oyle onditions 'ij = 1='ji and'jk = 'ik='ij fore dij = −dji = d with the same d for all i, j. On the other side, for any d ∈ Z the funtions'ij = (t(i)j )d = (xj=xi)d form �Ceh 1-oyle, i. e. de�ne a line bundle, whih we will denote by O(−d).Exerise 15.3. Chek that O(−d) = S⊗d.So, it remains to show that all O(d) are pairwise non isomorphi. To this aim let us desribe spaes �(X;O(d)),of their regular global setions. A loal setion de�ned everywhere on Ux0 has a form s = f(t(0)1 ; t(0)2 ; : : : ; t(0)n ) · s0,where f is an arbitrary polynomial of n variables. Rewriting s in terms of hart Uxi we gets = f ( (t(i)1 =t(i)0 ) ; : : : ; (t(i)n =t(i)0 ) ) · (t(i)0 )d · si :So, s is extended onto Uxi i� deg f 6 d. Hene, dim�(X;O(d)) = 0 for d < 0 anddim�(X;O(d)) = (n+ dd ) for d > 0 :In partiular, all positive O(d) are mutually di�erent and non isomorphi to negative. Sine O(−d) = O(d)∗, thebundles O(d) with negative d are pairwise di�erent as well. �15.8. Sheaves of setions. Let E �-- X be a loally trivial vetor bundle. Then for any open U ⊂ Xall regular loal setions U ⊂

s- �−1(U) ⊂ E form a module over an algebra of loal regular funtions
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OX(U). This module is denoted by �(U;E) or E(U). The orrespondene U 7−→ �(U;E) is alled asheaf of loal setions of the vetor bundle E. Regardless of an evident ambiguity, it is usually denotedby the same letter E. Sine the bundle E is loally trivial, the sheaf E is loally free, i. e. eah pointx ∈ X has an open neighborhood U ∋ x suh that �(U;E) is �nitely generated free OX(U) - module ofrank rkE. Indeed, any olletion of trivializing setions for E over U gives a free basis for �(U;E) over
OX(U).15.8.1.LEMMA. Let E be a vetor bundle over an aÆne irreduible variety X and PE = �(E;X) be
k[X℄-module of its global setions. Then PE is �nitely generated and torsion free1. For any g ∈ k[X℄module of loal setions �(D(g); E) oinides with k[X℄[g−1℄ ⊗

k[X℄PE, whih is the module of frations2s=gm, where s ∈ PE, m ∈ Z.Proof. Let E be trivialized over some prinipal open overing X = ∪D(f�) by loal setionss(�)1 ; s(�)2 ; : : : ; s(�)r ∈ �(D(f�); E) :Then the restrition of any setion s ∈ �(D(g); E) onto D(g) ∩D(f�) = D(gf�) an be written ass|D(gf� ) = r∑i=1 hi(gf�)m� · s(�)i |D(gf� )So, s̃ = gmaxm� · s is extended onto eah D(f�), that is to a global setion of E, and s = s̃=gm as required inthe last assertion. To prove the �rst assertion, write s(�)i as s(�)i = s̃(�)i =fmi�� , where s̃(�)i ∈ PE are global setions.Then s̃(�)i generate PE over k[X℄. Indeed, for any s ∈ PE and any � we an write: s|D(f� = 1fm� ∑i g(�)i · s̃(�)i forsome g(�)i ∈ k[X℄ and m ∈ N. Hene, fm� · s = ∑i g(�)i · s̃(�)i is a k[X℄-linear ombination of s̃(�)i 's. On the otherhand, we an write 1 = ∑� h�fm� , beause f� 's have no ommon zeros. So, s = ∑� h�fm� · s = ∑�i h�g(�)i · s̃(�)i .Absene of torsion is evident. �15.8.2.COROLLARY. Under the previous laim onditions, E is trivial i� PE is free.Proof. If s1; s2; : : : ; sr form the basis of PE, then, by the laim, their restritions onto eah D(f) form the basis of�(D(f); E) over OX(D(f)). In partiular, r oinides with the number of loal trivializing setions, i. e. with therank of E. Moreover, s1; s2; : : : ; sr form a basis in eah �ber. Indeed, if some �ber ontains a vetor lying outsidea linear span of si's, then a loal setion drawn through this vetor an not be expressed as OX-linear ombinationof si's. �15.8.3.COROLLARY. Eah algebrai loally trivial vetor bundle over A1 is trivial.Proof. PE is free, beause any �nitely generated torsion free k[t℄-module is free3. �Exerise 15.4. Show that any nowhere vanishing regular setion of an algebrai vetor bundle over A1 an beinluded in some system of global regular setions forming a basis in eah �ber.15.8.4.THEOREM (BIRKHOFF{GROTHENDIECK). Eah loally trivial algebrai vetor bundle ofrank r over P1 is a diret sum of line bundles OP1(di) for appropriate d1; d2; : : : ; dr ∈ Z.Proof. Write t for aÆne oordinate on A1 = P1 \ {∞} and onsider two trivializations for a given vetor bundle E(e01; e02; : : : ; e0r) ; (e∞1 ; e∞2 ; : : : ; e∞r )1A-module M is alled torsion free, if am = 0 ⇒ a = 0 or m = 0 for a ∈ A, m ∈ M2also alled a loalization of PE w. r. t. multipliative set {fk}3The same is true for any prinipal ideal domain. For proof, present the moduleM in question as F=K, where F = k[t℄⊕nand K ⊂ F is the kernel of surjetion F -- M sending basi vetors of F to generators of M . The result follows atone from the elementary divisors theorem: eah submodule K ⊂ F is free and there exist some bases {e1; e2; : : : ; en} ⊂ F ,
{u1; u2; : : : ; um} ⊂ K and f1; f2; : : : ; fm ∈ k[t℄ suh that ui = fi · ei for 1 6 i 6 m (moreover, fi divides fj for i < j andthe set of those elementary divisors does not depend on a hoie of bases). Indeed, theorem fores F=K = k[t℄⊕(n−m) ⊕ T ,where T = ⊕i (k[t℄=(fi)) is torsion submodule. The elementary divisors theorem also holds over any prinipal ideal domain(see Artin's or Van der Warden's � Algebra� textbook; speial proof for either Z or k[t℄ is extremely fruitful exerise on theGauss diagonalization and Eulid's division algorithms).



§ 15. Vetor bundles. 85whih are de�ned over A1 and over U∞ = {∞}∪ (A1 \ {0}). These trivialization are expressed through eah otherover A1 \ {0} as (e∞1 ; e∞2 ; : : : ; e∞r ) = (e01; e02; : : : ; e0r) · ' ; (15-2)where ' is the transition matrix whose entries are rational funtions of t without zeros and poles in A1 \ {0},i. e. some polynomials in t, t−1. Replaing E by E(m) def= E ⊗ O(m) , we multiply all entries of ' by tm. We anhose m suh that the �rst olumn of ' has no negative powers of t but does not vanish at t = 0. This means thate∞1 beomes nowhere vanishing global setion of E over P1.Exerise 15.5. Show that �(P1; E(m)) = 0 for m≪ 0.Let us �x the minimal m suh that E(m) admits some nowhere vanishing global setion e and replae E by E(m)for this m. Thus, we will assume that �(P1; E(d)) = 0 for all d < 0.Using indution over r, we an suppose that the fator bundle Q = E=e · O splits asQ = O(d2)⊕ O(d3)⊕ · · · ⊕O(dr) ; where d2 6 d3 6 · · · 6 drBy ex. 15.4, we an hose trivializations (15-2) suh that e01 = e∞1 = e. Then the transition rule takes a form(e∞1 ; e∞2 ; : : : ; e∞r ) = (e01; e02; : : : ; e0r) ·1 f2 f3 f4 : : : fr0 td2 0 0 : : : 00 0 td3 0 : : : 00 0 0 td4 : : : 0... ... ... . . . ...0 0 0 0 : : : tdr

where f� = f�(t; t−1) are some polynomials in t, t−1. Moreover, by appropriate hange of e∞� with � > 2 we anput all f� into ideal (t) ⊂ k[t℄. Indeed, it is enough to add the �rst olumn multiplied by appropriate polynomialsin t−1 to the other olumns.As soon all f� ∈ (t) ⊂ k[t℄, we should have all d� 6 0. Indeed, if d� > 0 for some �, then e∞� is extended tonowhere vanishing setion of E(−d) with d = gd(td� ; f�) > 0. But this ontradits to the assumption made before.Now we an annihilate all f� by adding to the �rst row with other rows multiplied by appropriate polynomials int (this orresponds to an invertible hange of e01). The resulting transition matrix beomes diagonal as required.

�



86 Algebrai Geometry Start Up. Home tasks.Task 1. Projetive spaes.Problem 1.1. Let SdV ∗ be the spae of all homogeneous degree d polynomials on n-dimensional vetorspae V . Find dimSdV ∗.Problem 1.2 (Veronese map). Under the previous problem onditions, let V ∗ vd - SdV ∗ take a linearform  ∈ V ∗ to its d-th power  d ∈ SdV ∗. Does the image of vd lie in a hyperplane or its linearspan is the whole of SdV ∗ ?Problem 1.3. Consider the projetive losures of aÆne urvesa) y = x2 b) y = x3 ) y2 + (x− 1)2 = 1 d) y2 = x2(x+ 1)Write down their homogeneous equations and their aÆne equations in two other standard aÆneharts on P2. Try to draw all these aÆne urves.Problem 1.4. Let the real Eulidian plane R2 be inluded in CP2 as the real part of the standard aÆne hartU0. Find two points of CP2 suh that any Eulidean irle will ontain them after omlexi�ationand projetive losuring.Problem 1.5 (Pythagorean triples). Consider P2 with homogeneous oordinates (t0 : t1 : t2). Let ` ⊂ P2 bethe line t2 = 0, Q ⊂ P2 be the oni t20+ t21 = t22, and O = (1 : 0 : 1) ∈ Q. For eah P = (p : q : 0) ∈ `�nd oordinates of the intersetion point Q ∩ (OP ) di�erent from O and show that the projetionfrom O maps Q bijetively onto `. Find some polynomials a(p; q), b(p; q), (p; q) whose values on
Z× Z give, up to a ommon fator, all integer Pythagorian triples a2 + b2 = 2 (and only suh thetriples).Problem 1.6 (projeting twisted ubi). Let P1 = P(U∗) be the spae of linear forms (up to proportionality)in two variables (t0; t1) and P3 = P(S3V ∗) be the spae of ubi forms (up to proportionality) in(t0; t1). An image of the Veronese map P1 ⊂ v3- P3 is alled a twisted ubi and is denoted byC3 ⊂ P3 (omp. with Problem 1.5). Desribe a projetion of C3:a) from the point t30 to the plane spanned by 3 t20t1, 3 t0t21, and t31b) from the point 3 t20t1 to the plane spanned by t30, 3 t0t21, and t31) from the point t30 + t31 to the plane spanned by t30, 3 t20t1, and 3 t0t21More preisely, write an expliit parametri representation for the projetion in appropriate oor-dinates, then �nd its aÆne and homogeneous equation. Do that for several aÆne harts on theprojetion target plane. In eah ase, �nd degree of the the urve and try to draw it. Has itsel�ntersetions and/or usps?Problem 1.7. Let V be an n-dimensional vetor spae over a �nite �eld Fq of q elements. How manya) basises b) k-dimensional subspaes are there in V ? ) How many points are there in P(V )?Problem 1.8∗. Let Gkn(q) be a number of k-dimensional vetor subspaes in n-dimensional vetor spaeover a �nite �eld of q elements. Compute limq→1Gkn(q).Problem 1.9. Let f : P(V ) - P(V ) be a projetive linear isomorphism indued by some linear isomor-phism f̂ : V - V , dimV = n + 1. Assume that all �xed points of f are isolated. Estimate anumber of them.



Task 2. Quadris and onis 87Task 2. Quadris and onis.Problem 2.1. Consider the quadrati form q(A) = detA on the spae of square 2 × 2-matries Mat2(k).Desribe its polarization, i. e. what is the bilinear form of two 2 × 2-matries1 q̃(A;B) suh thatq̃(A;A) = det(A)?Problem 2.2 (ontinuation of Problem 1.5). Under the onditions of Problem 1.5, show that any oni on
CP2, whih pass through two points you have found in Problem 1.5 and has at least 3 points insidethe initial real Eulidian plane, looks there as a irle.Problem 2.3 (Eulidean polarities). Consider a irle in the real Eulidean aÆne plane. How to draw2:a) the polar of a given point (espeially, when the point is inside the irle)b) the pole of a given line (espeially, when the line does not interset the irle)Desribe geometrially a polarity w. r. t. an `imaginary irle' x2 + y2 = −1.Problem 2.4. Show that all onis passing through the points a = (1 : 0 : 0), b = (0 : 1 : 0),  = (0 : 0 : 1),d = (1 : 1 : 1) form a line in the spae of all onis. Write an expliit equation3 for these onifamily and �nd all singular onis inside it.Problem 2.5 (1 { 1 orrespondene on a oni). Let Q ⊂ P2 be a smooth oni onsidered together with some�xed rational parameterization P1 ∼−−→ Q. Show that for any bijetion Q −−→ Q indued by alinear automorphism of P1 there exist two points p1; p2 ∈ Q and a line ` ⊂ P2 suh that x 7−→ yi� �p1` x = �p2` y. Were are the �xed points of this map? Is it possible, using only the ruler, to �nd(some) p1; p2; ` for  given by its ation on 3 points a; b; ;∈ Q?Problem 2.6∗. Using only the ruler, draw a triangle insribed in a given non singular oni Q and suhthat his sides a, b,  pass through 3 given points A, B, C. How many solutions may have thisproblem?Hint. Start `naive' drawing from any p∈Q and denote by (p) your return point after passing trough A;B;C.Is p 7−→ (p) a projetive isomorphism of kind desribed in Problem 2.5?Problem 2.7∗. Formulate and solve projetively dual problem to the previous one.Problem 2.8∗. Desribe a general algorithm for reduing a trigonometri equation f(sin(x); os(x)) = 0,where f is an arbitrary quadrati polynomial in two variables, to a simple equation os(x) = �,where � ontains at most ubi irrationalities.Hint. The problem is how to ompute expliitly 4 intersetion points of 2 quadris f(x; y) = 0 and x2+y2 = 1;but the same intersetion points an be produed by any two quadris from the same penil. A goodidea is to interset two singular onis of this penil.Problem 2.9. Consider two lines `1; `2 ⊂ P3 and denote by `×1 ; `×2 ⊂ P×3 two penils of planes passingthrough these lines. Take any 3 non ollinear points a, b,  suh that no two of them are oplanarwith either `1 or `2. Write `×1 ab−−−−→ `×2 for a linear projetive isomorphism that sends 3 planespassing through a, b,  in `×1 to the similar planes in `×2 . Desribe the inidene graph�ab def= ⋃�∈`×1 (� ∩ ab(�))ruled by the intersetion lines of ab-inident planes, if: a) `1 ∩ `2 = ∅ b) `1 ∩ `2 6= ∅Problem 2.10. How many lines ross eah of 4 given pairwise skew lines in: a) CP3 b) RP3 *) C3 d*) R3?Find all possible answers and indiate those are stable under small perturbations of 4 given lines.

1for example, the standard Eulidean norm || (aij) || def= P a2ij is polarized to (A;B) = tr `A · tB´; one ould expet thatpolarization of det(A) should look quite similarly with something else instead of tB . . .2using ruler and ompasses3it should be a quadrati form whose oeÆients depend linearly on two homogeneous parameters



88 Algebrai Geometry Start Up. Home tasks.Task 3. Some multilinear algebra.Problem 3.1. Is it true that any rank 1 matrix of size m× n an be written as a produt of some m× 1and 1× n matries?Problem 3.2. Let {e1; e2; : : : ; ed} ⊂ V and {x1; x2; : : : ; xd} ⊂ V ∗ be dual bases. Does the tensor∑� x�⊗e� ∈V ∗ ⊗ V depend on a hoie of the dual bases?Problem 3.3. Let A ∈ Hom(U; V ) ≃ U∗ ⊗ V , B ∈ Hom(V;W ) ≃ V ∗ ⊗W be two linear maps deomposedas A =∑�� ⊗ a� , B =∑�� ⊗ b� with �� ∈ U∗, a� ∈ V , �� ∈ V ∗, b� ∈ W . Deompose similarlytheir produt B◦A ∈ Hom(U;W ) ≃ U∗ ⊗W .Problem 3.4. Chek for any vetor spae V a series of anonial isomorphisms:Hom(V; V ) ≃ V ∗ ⊗ V �- (V ⊗ V ∗)∗ ≃ Hom(V; V )∗where � takes �⊗v to a linear form that sends v′⊗�′ to the full ontration �(v′)�′(v). The resultingorrelation Hom(V; V ) ∼- Hom(V; V )∗ orresponds to some bilinear form t(A;B) def= �A(B) onHom(V; V ). Is this form symmetri? How it looks in terms of matries? What is the orrespondingquadrati form?Problem 3.5. Let A = (aij) be n× n - matrix whose entries are onsidered as independent variables. Fixa olletion of m matrix elements ai�j� , where 1 6 � 6 m. Compute �m detA�ai1j1 �ai2j2 ··· �aimjm for:a) m = 1; b) m = 2; *) any m. d*) Is the Taylor expansion (15-1), written below, orret?det(�A+ �B) = ∑p+q=n�p�q · ∑IJ:#I=#J=p(−1)|I|+|J |aIJbbI bJ : (15-1)Here I = (i1; i2; : : : ; ip), J = (j1; j2; : : : ; jp), Î = {1; : : : ; n} \ I, Ĵ = {1; : : : ; n} \ J , (aIJ) isp×p-minor of A situated in I-rows and J-olumns, and (b
bI bJ) is the omplementary q×q-minorof B = (bij).Hint. Use the Sylvester relations relations: let Am be `nm´

×
`nm´ matrix whose entries arem×m-minors of A andwrite bAm for a matrix of algebrai omplements to the entries of Am; then detA = `nm´−1tr “Am · tbAm”and the rightmost sum in (15-1) equals tr “Ap · tbBq”.Problem 3.6. Is there a 2×4 - matrix whose 2×2 - minors are: a) {2; 3; 4; 5; 6; 7} b) {3; 4; 5; 6; 7; 8}(If no, explain why, if yes, give an expliit example.)Problem 3.7. Are the following deompositions valid for any vetor spae V over a �eld of zero hara-teristi: a) V ⊗2 ≃ S2V ⊕ �2V b) V ⊗3 ≃ S3V ⊕ �3V ? If yes, give a proof, if no, give anexpliit example of a tensor that an not be deomposed in this way.Problem 3.8 (spinor deomposition). Let V = Hom(U−; U+), where dimU± = 2. Show thatV ⊗2 = ( (S2U∗− ⊗ S2U+)⊕ (�2U∗− ⊗ �2U+) )︸ ︷︷ ︸S2V ⊕((S2U∗− ⊗ �2U+)⊕ (�2U∗− ⊗ S2U+) )︸ ︷︷ ︸�2V :Hint. Write V = U∗− ⊗ U+ and use the deomposition U⊗2± = S2U± ⊕ �2U±.



Task 4. More quadris and other hypersurfaes 89Task 4. More quadris and other hypersurfaes.Problem 4.1. Let G ⊂ P3 = P(V ) be a non singular quadri given by a quadrati form g whose polarizationis g̃. Show that bilinear form �2g̃ on �2V , whih ats on deomposable bivetors as�2g̃( v1 ∧ v2 ; w1 ∧ w2 ) def= det(g̃(v1; w1) g̃(v1; w2)g̃(v2; w1) g̃(v2; w2)) ;is symmetri and non degenerate, and write its expliit Gram matrix in a onvenient base (say,oming from an orthonormal base for g in V ). Show that the intersetion of the orrespondingquadri �2G ⊂ P5 = P(�2V ) with the Pl�uker quadri onsists of all tangent lines to G ⊂ P3.Problem 4.2. Under the previous problem notations, let Gr(2; V ) be the Grassmannian variety, of lines in
P3 = P(V ). Show that the Pl�uker embedding Gr(2; V ) ⊂ - P(�2V ) sends two line families livingon the Segre quadri G ⊂ P(V ) = P(Hom(U−; U+)) to a pair of non singular plane onis that areut out the Pl�uker quadri P ⊂ P(�2V ) by two omplementary planes �− = P (S2U∗− ⊗ �2U+) and�+ = P (�2U∗− ⊗ S2U+) laying in P(�2Hom(U−; U+)) via Problem 3.5. Moreover, the both onisare embedded into these planes via Veronese, that is, we have the following ommutative diagram(Pl�uker is dotted, beause it maps lines into points):

P(U+) ⊂ Veronese - P(S2U+) ≃ �+
P+1 × P−1�+ 66 Segre

∼
- G ⊂ PHom(U−; U+) Pl�uker - P ⊂ P0

@

�2U∗− ⊗ S2U+
⊕S2U∗− ⊗ �2U+1

A

?
∩

P(U∗−)�− ??
⊂ Veronese - P(S2U∗−) ≃ �−∪

6Problem 4.3. Let us �x a 2-dimensional plane � ⊂ Pn and a pair of odimension 2 subspaes L1; L2 ⊂ Pnsuh that p1 = L1 ∩ � and p2 = L2 ∩ � are two distint points on �. Write `1 = L×1 ⊂ P×n ,`2 = L×2 ⊂ P×n for two penils of hyperplanes passing through L1, L2 respetively and take anya; b;  ∈ � suh that any 3 of 5 points p1; p2; a; b;  are non-ollinear. Then we get a projetive linearisomorphism ab : `1 ∼- `2 de�ned by a; b;  like in Problem 2.5. Show that its inidene graph
⋃H∈`1 (H ∩ ab (H)) ⊂ Pnis a quadri, �nd its rank, and desribe its singular points in both possible ases:a) dim(L1 ∩ L2) = (n− 3) b) dim(L1 ∩ L2) = (n− 4).Problem 4.4. Let S ⊂ P5 = P(S2V ∗) be the spae of singular onis on P2 = P(V ). Show that singularpoints of S orrespond to double lines in P(V ) and Sing (S) oinides with an image of the Veroneseembedding P(V ∗) ⊂ v2- P5. For non singular q ∈ S, whih orresponds to splitted oni `1 ∪ `2 ⊂

P(V ), prove that the tangent spae TqS, for S at q, onsits of all onis passing through `1 ∩ `2.Problem 4.5. Let S ⊂ P3 be a surfae ruled by all lines tangent to the twisted ubi C3 ⊂ P3. Write downan expliit equation for S, �nd its degree and all singular points.Problem 4.6. Find all lines on a singular projetive ubi surfae with aÆne equation xyz = 1.Hint. Show that there are no lines in the initial aÆne hart



90 Algebrai Geometry Start Up. Home tasks.Task 5. Plane urves.Problem 5.1 (plane ubis).a) How many singular points may have a plane ubi urve and what ould be their multipliities?b) Classify all reduible ubis up to a projetive linear isomorphism.) Show that irreduible singular ubis are rational and (up to a projetive linear isomorphism)are exhausted by y2 = x3 (nodal ubi) and y2 = x2(x+ 1) (uspidal ubi).Hint. Rationality may be proved via projetion from a singular point.d) How many tangent lines ome to a smooth ubi urve from a generi point on P2?e) How many inetion points are there on a smooth ubi?f*) Show that any non singular ubi may be presented in appropriate aÆne oordinates by equa-tion y2 = x3 + px+ q.Hint. See: C. H. Clemens. A srapbook of omplex urve theory . Plenum Press. But try to simplify (or tomodify) the arguments by your own geometri and/or multilinear argumentsg*) Show that 3 non-inetion tangents whih are drown from an inetion point on a smoothubi meet this ubi in 3 ollinear points.Hint. Look at the Clemens book (lo. it.) but make his arguments more solid by adding your own detailsProblem 5.2. Let a urve C ⊂ A2 be given by by equation x2y + x y2 = x4 + y4.a) What kind of singularity has C at the origin?b) Has the projetive losure of C any other singularities (say, at the in�nity) ?) Find a loal intersetion multipliity at the origin between C and a urve with a simple uspwhose uspidal tangent is x = y.Problem 5.3. For plane urves a) (x0 + x1 + x2)3 = 27x0x1x2 b) (x2 − y + 1)2 = y2(x2 + 1)�nd all1 singular points, ompute their multipliities, look how many branhes ome to eah singu-larity and what are their geometri tangents.Hint. To analyze loal geometry, blow up the singularity, i. e. take aÆne oordinates (x; y) entered at thesingularity and substitute x = � t, y = � t in the equation of urve; then the geometri tangent lineshave slopes (� : �) for whih a multipliity of the zero root t = 0 jumps.Problem 5.4. Using the Pl�uker relations, list all omplex plane quartis with the simplest singularities(i. e. ordinary double nodes and usps only) w. r. t. how many usps, nodes, double tangents andinexion points may they have. Whih of them have to be reduible?Problem 5.5. Desribe all omplex plane projetive quintis that have singularities of multipliity 4 at twogiven distint points a; b ∈ P2.Hint. They have to ontain a (multiple) line (a; b) and form 3-dimensional projetive spae.Problem 5.6. For a urve C ⊂ P2 of degree d urve let us �x some point q 6∈ C that does not lie eitheron an inetion tangent or on a geometri tangent through a singular point of C. Write C(d−1)q for(d − 1)-th degree polar of q w. r. t. C. Compute a loal intersetion index (C;C(d−1)q )p at a pointp ∈ C whena) p is smooth; b) p is an ordinary usp; ) p is an ordinary m-typle node m(m− 1).Hint. In (a), (b) p is smooth on C(d−1)q as well and TpC(d−1)q 6= TpC in (a) but TpC(d−1)q oinides with theuspidal tangent in (b). In () p is an (m− 1)-typle point on C(d−1)q but eah geometrial tangeny ofC at p is transversal to C(d−1)q and hene intersets it with multipliity (m− 1).Problem 5.7. Show that smooth plane quarti urve either has a tangent line interseting the urve justones with multipliity 4 or has 28 bitangent lines (touhing the urve in two distint points).
1inluding possible singularities at the in�nity in (b)



Task 6. Polynomial ideals 91Task 6. Polynomial ideals.Problem 6.1. Give an example of proper non-prinipal ideal in a) C[x; y℄ b) Z[x℄.Problem 6.2. Let a polynomial f vanish along a hypersurfae given in Cn by a polynomial equation g = 0.Prove that eah irreduible fator of g divides f .Problem 6.3. Prove that any algebrai set in C2 is a �nite union of points and urves (reall that a urveis a zero set of one polynomial).Problem 6.4. Let J = (xy; yz; zx) ⊂ C[x; y; z℄. Desribe V (J) ⊂ A3 and I(V (J)) ⊂ C[x; y; z℄. Is it possibleto de�ne the same variety by 2 polynomial equations?Problem 6.5. Find f ∈ I(V (J)) \ J for J = (x2 + y2 − 1; y − 1) ⊂ C[x; y℄.Problem 6.6. Desribe V (J) ⊂ A3 and I(V (J)) ⊂ C[x; y; z℄ for:a) J = (xy; (x − y)z) b) J = (xy + yz + zx; x2 + y2 + z2)Problem 6.7. Whih of the following three fats about ideals in k[x1; x2; : : : ; xn℄ (where k is an arbitrary�eld) are true? (Prove the true ones and give ounter-examples for the other.)a) √IJ = √I ∩ Jb) √IJ = √I√J) (I = √I & J = √J) ⇒ IJ = √IJProblem 6.8. Let B ⊃ A be an extension of ommutative rings suh that B is �nitely generated asA-module. Prove that mB 6= B for any maximal ideal m ⊂ A.Problem 6.9. Whih of the following three rings are Noetherian?a) {f(z) = p(z)q(z) ∈ C(z) ∣∣∣∣ q(z) 6= 0 for |z| 6 1};b) power series f(z) ∈ C[[z℄℄ onverging everywhere on C;) {f(x; y) ∈ C[x; y℄ ∣∣∣∣ �i+jf�xi�yj = 0 ∀ 0 6 i+ j 6 n}, where n ∈ N is �xed.Problem 6.10∗. Show that any �nitely generated1 �eld is �nite as a set.Problem 6.11∗. Show that an ideal I(C3), whih is generated by all homogeneous f ∈ C[x0; x1; x2; x3℄vanishing along the twisted ubi C3 ⊂ P3a) is generated by 3 quadrati polynomials b) an't be generated by 2 polynomials

1in absolute sense, i. e. as Z-algebra w. r. t. the ation m · a def= a+ a+ · · · + a
| {z }m times



92 Algebrai Geometry Start Up. Home tasks.Task 7. Algebrai manifolds.Problem 7.1 (Zariski topology). Let X = SpemA be aÆne algebrai set. Chek that the setsV (I) = {x ∈ X | f(x) = 0 ∀ f ∈I }produed by all ideals I ⊂ A satisfy the losed sets axioms of the topology.Problem 7.2. Prove that any open overing of aÆne algebrai variety ontains a �nite sub-overing.Problem 7.3. Give an example if aÆne algebrai set X and open U ⊂ X suh that OX(U) is not �nitelygenerated as k-algebra.Problem 7.4. Let X ⊂ An, Y ⊂ Am be aÆne algebrai sets.a) Show that X × Y is aÆne algebrai subset in An+m.b) Give X × Y ⊂ An+m by expliit equations (assuming that the equations for X, Y are known).) Show that X × Y is irreduible as soon both X, Y are.Problem 7.5. Prove that the maximal spetrum of a �nite dimensional1 k-algebra is a �nite set and deduefrom this that any �nite morphism has only �nite (or empty) �bers.Problem 7.6. Give an example of regular morphism of aÆne algebrai sets X '- Y suh that all �bersof ' are �nite (or empty) but ' is not a �nite morphism.Problem 7.7. Prove that a projetion of aÆne hypersurfae V (f) ⊂ An from any point p 6∈ V (f) onto anyhyperplane H 6∋ p is dominant.Problem 7.8 (Noether's normalization). Show that any aÆne hypersurfae V (f) ⊂ An admits a �nitesurjetion onto some hyperplane An−1 ⊂ An.Problem 7.9. Prove that dim(X × Y ) = dimX + dimYProblem 7.10. Let X '- Y be a regular morphism of algebrai manifolds. Show that isolated2 points of�bers '−1(y) draw an open subset of X when y runs through Y .Hint. Use Chevalley's theorem on semi-ontinuity (leture 13).Problem 7.11. Show that an image of a regular dominant morphism ontains an open dense subset.Problem 7.12∗ (Chevalley's onstrutivity theorem). Prove that an image of any regular morphism of algebraivarieties is onstrutive, i. e. an be onstruted from a �nite number of open and losed subsets bya �nite number of unions, intersetions, and taking omplements.Problem 7.13 (quadrati transformation). Show that the presription (t0 : t1 : t2) 7−→ (t−10 : t−11 : t−12 ) isextended to a rational map P2 q- P2 de�ned everywhere exept for 3 points; �nd these points;larify how does q at on a triangle (triple of lines) with the vertexes at these 3 points; �nd im q.Problem 7.14 (graph of rational map). Let X  - Y be a rational map de�ned on open dense U ⊂ X. Bythe de�nition, its graph � ⊂ X × Y is the Zariski losure of {(x;  (x)) ∈ X × Y | x ∈ U}.a) Show that a graph of the natural rational map An+1 - Pn, whih sends P ∈ An+1 to(OP ) ∈ Pn, is isomorphi to the blow up of the origin.b*) Try to desribe a graph of the quadrati transformation from Problem 7.5, in partiular,desribe the �bers of its projetions onto the both, soure and target, P2's.
1as a vetor spae over k2a point p ∈ M is alled isolated point of a subset M ⊂ X in a topologial spae X, if it has an open neighborhoodU ∋ p suh that U ∩M = {p}



Task 8. 27 lines 93Task 8. 27 lines.Problem 8.1 (Shl�aishe Doppelsehs). The `double six line on�guration' is onstruted as follows. Let[0℄; [1℄; : : : ; [5℄ ⊂ P3be six lines suh that [1℄; : : : ; [5℄ are mutually skew, [0℄ intersets all of them, and eah of [1℄; : : : ; [5℄does not either touh or lay on the quadri drown through any 3 other. Show that: a) ∀ i =1; : : : ; 5 ∃ unique line [i′℄ 6= [0℄ suh that [i′℄ ∩ [j℄ 6= ∅ ∀ j 6= i;b) [i′℄ ∩ [i℄ = [i′℄ ∩ [j′℄ = ∅ for all i = 1; : : : ; 5 and for all j 6= i;) eah of [1′℄; : : : ; [5′℄ does not either touh or lay on the quadri drown through any 3 other;d) there exists a unique line [0′℄ that intersets eah of [1′℄; : : : ; [5′℄Hint. Let [0′1℄ 6= [1℄ and [0′2℄ 6= [2℄ be the lines, whih interset all [1′℄; : : : ; [5′℄ exept for [1′℄ and [2′℄respetively; show that they have the same intersetion points p3, p4, p5 with [3′℄, [4′℄, [5′℄, whih maybe reovered geometrially using only the lines [3℄, [4℄, [5℄, [3′℄, [4′℄, [5′℄, and [0℄.Problem 8.2. Show that eah double six line on�guration lies on a smooth ubi surfae and explain howto �nd the other 15 lines laying on it.Problem 8.3. Can a smooth ubi surfae S ⊂ P3 have a plane setion that splits into a smooth oni andits tangent line?Problem 8.4 (projeting a smooth ubi). Let S ⊂ P3 be a smooth ubi surfae, p ∈ S be outside the lineslaying on S, � 6∋ p be any plane, and Q = {q ∈ � | (pq) touhes S outside p} be the apparent ontourof S visible from p and projeted from p onto �. Show that:a) eah plane setion passing through p and any line ` ⊂ S ontains preisely 2 distint tangentlines oming from p onto S;Hint. Look at the (smooth!) residue oni `S ∩ (p`)´ \ `.b) Q ⊂ � is a smooth quarti;Hint. Look at the disriminant of S|(pq) \ {p}.) Q has preisely 28 distint double tangents, whih are exhausted by TpS ∩ � and projetions(from p onto �) of lines laying on S;Hint. Use the Pl�uker relation to ompute the number of bitangents.d) dedue from the previous assertions a new proof of the existene of preisely 27 lines on asmooth ubi surfae are projetions of 27 lines laying on S.Problem 8.5∗. Show that any smooth ubi S ⊂ P3 an be given in appropriate oordinate system byequation '1'2'3 +  1 2 3 = 0, where all 'i,  j are linear homogeneous forms.Hint. Use a line ` ⊂ S and 5 planes passing through it and interseting S in a triple of distint linesProblem 8.6. Let `1; `2 ⊂ S be two skew lines on a smooth ubi surfae S ⊂ P3. Show that thepresription: p 7−→ (` ∩ `1; ` ∩ `2)where p ∈ S \ (`1 ∪ `2) and ` is a unique line through p meeting the both lines `i, an be extendedto a regular morphism S %- P1 × P1 = `1 × `2. Show also that:a) % ontrats 5 lines on S to some points on P1 × P1;b) % is rational isomorphism1, i. e. there is a rational map U %−1- S de�ned on some open denseU ⊂ P1 × P1 suh that %◦%−1 = IdU and %−1◦% = IdW for some open dense W ⊂ S.Problem 8.7. Let p ∈ S be a singular point of a (singular) ubi surfae in P3. Show that there is at leastone (but in general 6) lines laying on S and passing through p.
1this means, in partiular, that S is rational, i. e. admits a rational parameterization



94 Algebrai Geometry Start Up. Tests & Exams.Test 1 (elementary geometry).Problem 1.1. Find a ondition on 5 lines in P2 neessary and suÆient for the existene of a uniquenon-singular oni touhing all these lines.Problem 1.2. Consider the omplex plane quarti1(x20 + x21)2 + 3x20x1x2 + x31x2 = 0 (∗)a) Find all its singular points over C.b) Desribe a loal struture of eah singularity (i. e. geometrial tangents and their intersetionmultipliities with the urve).) Find a rational parameterization for C.Hint. Use a projetion from a singular point onto a line.Problem 1.3. Show that any irreduible plain quarti with a singularity of multipliity 3 is rational.Problem 1.4. Consider projetive plane P2 with homogeneous oordinates (t0 : t1 : t2).a) Show that all plane quintis2 that have an ordinary usp (of multipliity 2) at (0 : 0 : 1) withthe uspidal tangent t1 = 0 form a projetive subspae in the spae of all plane quintis.b) Find the dimension of this subspae.) Compute loal intersetion multipliity between suh a quinti and quarti (∗) at (0 : 0 : 1).Problem 1.5. Prove that a spae of homogeneous degree d polynomials (in several variables) over a �eldof zero harateristi is linearly generated by pure d-th powers of linear forms3.Problem 1.6. Let A be a �nitely generated k-algebra. Show that if A is �nite dimensional as a vetorspae over k, then SpemA is a �nite set.

1i. e. a plain urve of degree 42i. e. plane urves of degree 53this implies that any linear assertion about polynomials, e. g. the Taylor formula, is true as soon it holds for d-thpowers of all linear forms



Test 2 (advaned geometry) 95Test 2 (advaned geometry).Problem 2.1. Prove that any hypersurfae in An admits a �nite surjetive morphism onto An−1.Hint. Use appropriate projetion.Problem 2.2. Write PN = P(S4V ∗) for the spae of quarti hypersurfaes in P3 = P(V ) (where dimV = 4).Show that all quartis ontaining a line form a hypersurfae1 in PN .Problem 2.3. Show that any nowhere vanishing regular setion of the trivial rank r vetor bundle over A1an inluded in some system of r regular setions that form a base in eah �ber2.Problem 2.4. Consider the standard overing of the Grassmannian Gr(m;n), ofm-dimensional subspaes inkn, by aÆne harts UI onsisting ofW ⊂ kn whih are isomorphially projeted onto m-dimensionalsubspae spanned by i1-th, i2-th, : : :, im-th basi vetors of kn along all the other (n − m) basivetors3. Let us present a point W ∈ UI by n × m - matrix MI(W ), whose olumns are theoordinates of vetors forming a unique base of W suh that k × k - submatrix situated in i1-th,i2-th, : : :, im-th rows is the identity matrix. We onsider other (n−m) ·m matrix elements (stayingoutside I-rows) as aÆne oordinates of W in the hart UI . Let S -- Gr(m;n) be the tautologialvetor subbundle of kn ×Gr(m;n) whose �ber over a point W ∈ Gr(m;n) is the subspae W ⊂ kn.a) Construt some trivializing basi setions s(I)1 ; s(I)2 ; : : : ; s(I)m for S over eah UI and desribeorresponding transition matries æIJ = æIJ(W ), whih satisfy(s(I)1 ; s(I)2 ; : : : ; s(I)m ) ·æIJ = (s(J)1 ; s(J)2 ; : : : ; s(J)m )everywhere in UI ∩ UJ ⊂ UI .Hint. Write MIJ for the m×m - submatrix of MI situated in J-rows; then MJ is easily expressed throughMI and MIJ .b) Do the same for the line bundle D = �mS and for eah its tensor power D⊗d.) Prove that any line bundle L over Gr(m;n) is isomorphi to some D⊗d.Hint. Write DIJ for determinant detMIJ of the matrix introdued in the previous hint. The transitionfuntion 'IJ , of L, is a rational funtion in matrix elements of MI regular and non-vanishing everywhereon UI exept for the zero set of DIJ .Problem 2.5∗. How many triple intersetion points4 have 27 lines on a smooth ubi surfae?

1in other words, there is a polynomial æ in the oeÆients of variable quarti form F (x0 : x1 : x2 : x3) suh thatæ (F ) = 0 i� the quarti F = 0 ontains a line2more honorary (and not obligatory, ertainly!) problem is to do the same over An3as usually, I = (i1; i2; : : : ; im) runs through all inreasing olletions of m elements of {1; 2; : : : ; n}4that is, the points where some 3 out of 27 lines are interseting simultaneously



96 Algebrai Geometry Start Up. Tests & Exams.Atual middle term test, April 04, 2006.Problem 1. Let U; V be 2-dimensional vetor spaes andQ ≃ P(U∗)× P(V ) ⊂ P(U∗ ⊗ V )be the Segre quadri formed by rank 1 linear operators U �⊗v- V onsidered up to proportionality.Show that the tangent plane T�⊗vQ to Q at a point � ⊗ v ∈ Q is formed by all linear operatorsU - V that send 1-dimensional subspae Ann (�) = {u ∈ U | �(u) = 0} into 1-dimensionalsubspae spanned by v.Problem 2. Let S ⊂ P5 = P(S2V ∗) be the spae of all singular onis on P2 = P(V ).a) Show that the set of its singular points Sing (S) ⊂ S oinides with the image of Veroneseembedding P(V ∗) ⊂  7→ 2 - P(S2V ∗) (i. e. with the set of all double lines in P2).b) For any non-singular point q = {`1 ∪ `2} ∈ S show that the tangent spae TqS to S at q in P5is formed by all onis passing through `1 ∩ `2 in P2.Problem 3. Let two plane urves of the same degree d have d2 distint intersetion points. Show that ifsome dm of these intersetion points lay on a urve of degree m < d, then the rest d (d−m) pointshave to lay on a urve of degree (d−m).Hint. This generalizes Pasal's theorem obtained as d = 3, m = 2. Use a penil of urves spanned by twogiven urves and the properties of penils of plane urves.Problem 4. Find the enter1 of the grassmannian algebra in m variables over a �eld of har 6= 2.Problem 5. Is there a 2× 4 matrix whose (non ordered) set of 2× 2 - minors isa) { 2; 3; 4; 5; 6; 7 }b) { 3; 4; 5; 6; 7; 8 }If suh a matrix exists, write down some expliit example; if not, explain why.Hint. Use the Pl�uker quadrati equation for Gr(2; 4) ⊂ P5 and some ongruene reasons (instead of diret�ngering 720 possible permutations).Problem 6. Show that any �nite dimensional (as a vetor spae) algebra over an arbitrary �eld has onlya �nite set of prime2 ideals and all these ideals are maximal.Hint. Use properties of integer ring extensions when one of two rings is a �eld.

1i. e. all elements that ommute with eah element of the algebra2reall that an ideal p ⊂ A is alled prime if A=p has no zero divisors



Atual �nal written exam, May 22, 2006 97Atual �nal written exam, May 22, 2006.Notes on marks. Some problems are subdivided into several questions. Complete answer on eah questiongives you 5 points. Problems and questions an be solved in any order. Total sum > 35 points is suÆientfor getting the maximal examination mark �A�.Problem 1 (10 points). Let A and B be two matries with m rows and n > m olumns. Prove that det(A ·Bt) =∑I detAI detBI , where the sum is running over all inreasing sequenes I = (i1; i2; : : : ; im) ⊂
{1; 2; : : : ; n} and AI , BI mean m×m-submatries formed by I-olumns.Problem 2. Let PN = P(S2V ∗) be the spae of quadris on Pn = P(V ) and X ⊂ PN be the set of allsingular quadris. Show thata) (5 points) X is an algebrai variety and q ∈ X is smooth i� the orresponding singular quadriQ ⊂ Pn has just one singular point;b) (5 points) for any smooth q ∈ X the tangent spae TqX ⊂ PN onsists of all quadris passingthrough the singularity of Q ⊂ Pn.Problem 3. Show that there exists a unique homogeneous polynomial P on the spae of homogeneousforms of degree 4 in 4 variables suh that P vanishes at f i� the surfae f = 0 in P3 ontains a line.To this aim:a) (5 points) Show that all pairs ` ⊂ S, where ` ⊂ P3 is a line, S ⊂ P3 is a quarti surfae, form aprojetive variety � ⊂ P(�2C4)× P(S4(C4)∗).b) (5 points) Show that � is irreduible and �nd its dimension.) (5 points) Show that an image of projetion of � on P(S4(C4)∗) is an irreduible hypersurfae.Problem 4. Fix 6 points {p1; p2; : : : ; p6} ⊂ P2 = P(V ) suh that any 3 are not ollinear and all 6 do notlay on the same oni. Let W = {F ∈ S3V ∗ | F (pi) = 0 for eah i = 1; 2; : : : ; 6} be the spae ofubi forms on V that vanish at these 6 points. A map

P2 \ {p1; p2; : : : ; p6}  - P(W ∗)takes p 6∈ {p1; p2; : : : ; p6} to a linear form evp : F 7−→ F (p) on W (when p is multiplied by � thisform is multiplied by �3, so the map between the projetivizations is well de�ned). Geometrially,
P(W ) is the spae of ubi urves passing through {p1; p2; : : : ; p6} and  sends p to a hyperplaneHp ⊂ P(W ) formed by all suh ubis passing also through p. Show that:a) (5 points) dimW = 4;b) (5 points) S =  (P2 \ {p1; p2; : : : ; p6}) ⊂ P3 = P(W ∗) is a ubi surfae;) (5 points) �nd 27 lines in P(W ) (i. e. 27 penils of ubis passing through {p1; p2; : : : ; p6}) whosedual lines in P(W ∗) lay on S.Problem 5 (5 points). Let a Noetherian ring A have a unique proper maximal ideal 0 6= m ⊂ A. Showthat mM 6=M for any non zero �nitely generated A-module M .



98 Algebrai Geometry Start Up. Tests & Exams.Atual �nal written exam, May 20, 2008.Notes on marks. The problems are subdivided into several questions. Complete answer on eah questiongives you 5 points. Problems and questions an be solved in any order. Total sum > 35 points is suÆientfor getting the maximal examination mark �A�.Problem 1. Let us �x (n + 1) degrees d0; d1; : : : ; dn and write PNi = PSdiV ∗ for the spae of degree dihypersurfaes in Pn = P(V ).a) (5 points) Show that � = {(S0; S1; : : : ; Sn; p) ∈ PN0×· · ·PNn×Pn | p ∈ n
∩�=0S�} is an irreduibleprojetive variety.b) (5 points) Find dim�.) (5 points) Show that there exists a polynomial R in the oeÆients of homogeneous formsF0; F1; : : : ; Fn of degrees d0; d1; : : : ; dn in variables (x0; x1; : : : ; xn) suh that R = 0 i� thesystem of equations F�(x0; x1; : : : ; xn) = 0 (0 6 � 6 n) has a non zero solution. How does Rlook like for a system of linear forms?Problem 2. Write M for the projetive spae of m × n matries onsidered up to proportionality. Useappropriate inidene variety {(L;F ) | L ⊂ kerF} (where L is a subspae and F is a matrix)a) (5 points) to show that the matries of rank 6 k form an irreduible projetive subvarietyMk ⊂M ,b) (5 points) to �nd dimMk.Problem 3. Use the laim that an algebra A equipped with an ation of a �nite group G is integer overthe subalgebra of G-invariants AG ⊂ A to solve the following problems:a) (5 points) Let a �nite group G at on an aÆne algebrai variety X by regular automorphisms.Construt an aÆne algebrai variety X=G and a �nite regular surjetion X -- X=G whose�bers are exatly G-orbits.b) (5 points) Show that X=G is universal in the following sense: for any regular morphism of aÆnealgebrai varieties X '- Y suh that '(gx) = '(x) for all g ∈ G and all x ∈ X there exists aunique regular morphism G=X  - Y suh that  � = '.) (5 points) Let the symmetri group Sn at on the aÆne spae An by the permutations ofoordinates. Desribe An=Sn.Problem 4. Let P = Gr(2; 4) ⊂ P5 = P(�2V ) be the grassmannian of lines in P3 = P(V ). Show thata) (5 points) P does not ontain 3-dimensional projetive subspaes;b) (5 points) 2-dimensional planes on P are exhausted by two families parameterized by P(V ) and

P(V ∗) respetively: a plane of the �rst family �p ⊂ P , p ∈ P(V ), onsists of all lines passingthrough the point p; a plane of the seond family �� ⊂ P , � ∈ P(V ∗), onsists of all lines lyinginside the plane � ⊂ P(V ); moreover, any two planes of the same family are interseting in onepoint and any two planes from divers families either have empty intersetion or are intersetedalong some line lying on P ;) (5 points) for any line L ⊂ P there exist a unique pair (p; �) ∈ P(V ) × P(V ∗) suh thatL = �p ∩��.


