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§1.Proje
tive Spa
es.1.1.Polynomials. Let V be n-dimensional ve
tor spa
e over an arbitrary �eld k. Its dual spa
e V ∗ isthe spa
e of all k-linear maps V - k. Given a basis e1; e2; : : : ; en for V , its dual basis for V ∗ 
onsistsof the 
oordinate forms x1; x2; : : : ; xn de�ned by pres
riptionsxi(ej) = { 1 , if i = j0 , otherwise .One 
an treat ea
h polynomial f ∈ k[x1; x2; : : : ; xn℄ as a fun
tion on V whose value at a ve
tor v ∈ Vwith 
oordinates (v1; v2; : : : ; vn) w. r. t. the basis (e1; e2; : : : ; en) is equal to f(v1; v2; : : : ; vn), i. e. to theresult of substitution of values vi ∈ k instead of the variables xi. This gives k-algebra homomorphism' : k[x1; x2; : : : ; xn℄ - {k-valued fun
tions on V } : (1-1)1.1.1.LEMMA. The homomorphism (1-1) is inje
tive1 i� k is in�nite.Proof. If k is �nite and 
onsists of q elements, then the spa
e of k-valued fun
tions on V 
onsists of qqn elements andis �nite as well. Sin
e the polynomial algebra is in�nite, ker' 6= 0. The inverse argumentation uses the indu
tionon n = dimV . When n = 1, any non zero polynomial f(x) has no more than deg f roots. Thus, f(x) ≡ 0 assoon f(v) = 0 for in�nitely many v∈V ≃ k. For n > 1 we 
an write a polynomial f as a polynomial in xn withthe 
oeÆ
ients in k[x1; x2; : : : ; xn−1℄ : f(x1; x2; : : : ; xn) = ∑� f�(x1; x2; : : : ; xn−1) · x�n . Evaluating all f� at anarbitrary point (v1; v2; : : : ; vn−1) ∈ kn−1, we get a polynomial in xn with 
onstant 
oeÆ
ients and identi
ally zerovalues. It should be the zero polynomial by the above reason. Hen
e, ea
h f� gives the zero fun
tion on kn−1. Bythe indu
tive assumption, all f� = 0 as the polynomials. �1.2.AÆne spa
e An = A(V ), of dimension n, is asso
iated with n-dimensional ve
tor spa
e V . Thepoints of A(V ) are the ve
tors of V . The point 
orresponding to the zero ve
tor is 
alled the origin andis denoted it by O. All other points 
an be imagined as �the ends� of non zero ve
tors �drawn� from theorigin. The homomorphism (1-1) allows to treat the polynomials as the fun
tions on A(V ). Althoughthis 
onstru
tion does depend on the 
hoi
e of a basis in V , the resulting spa
e of fun
tions on A(V ),i. e. the image of homomorphism (1-1), does not. It is 
alled an algebra of polynomial (or algebrai
)fun
tions on A(V ). A subset X ⊂ A(V ) is 
alled an aÆne algebrai
 variety , if it 
an be de�ned by some(maybe in�nite) system of polynomial equations.1.3.Proje
tive spa
e Pn = P(V ), of dimension n, is asso
iated with a ve
tor spa
e V of dimension
Othe in�nity U∞

an aÆne 
hart U
•

•

•

•

Fig 1⋄1. The proje
tive world.

(n+ 1). By the de�nition, the points of P(V ) are 1-dimensional ve
tor subspa
es in V or, equivalently,the lines in An+1 = A(V ) passing through the origin. To seethem as �the usual points� one should use a s
reen, i. e. someaÆne hyperplane of 
odimension one U ⊂ A(V ), whi
h does not
ontain the origin like on �g 1⋄1. Su
h a s
reen is 
alled an aÆne
hart on P(V ). Of 
ourse, no aÆne 
hart does 
over the whole of
P(V ). The di�eren
e U∞ def= Pn \ U 
onsists of all lines lying ina parallel 
opy of U drawn through O. It is naturally identi�edwith Pn−1 = P(U). Thus, Pn = U ⊔ U∞ = An ⊔ Pn−1. Iteratingthis de
omposition, one 
an split Pn into disjoint union of aÆnespa
es: Pn = An ⊔ An−1 ⊔ Pn−2 = · · · = An ⊔ An−1 ⊔ : : : ⊔ A0.1.4.Global homogeneous 
oordinates. Let us �x a basisfor V and use it to write ve
tors x ∈ V as the 
oordinate rowsx = (x0; x1; : : : ; xn). Two ve
tors x; y ∈ V represent the samepoint p ∈ P(V ) i� they are proportional, i. e. x� = � y� for all � = 0; 1; : : : ; n and some non zero �∈k.1i. e. di�erent polynomials always give the di�erent polynomial fun
tions on V



4 Algebrai
 Geometry. Start Up Course.Thus, the point p ∈ P(V ) 
an be 
oordinated by the 
olle
tion of ratios (x0 : x1 : : : : : xn). This ratiosare 
alled homogeneous 
oordinates on P(V ) w. r. t. the 
hosen basis of V .Sin
e we have usually f(x) 6= f(�x) for a non zero polynomial f ∈ k[x0; x1; : : : ; xn℄, the polynomialsdo not produ
e the fun
tions on P(V ) any more. But if f is a homogeneous polynomial, say of degreed > 0, then its zero set (f)0 def= { v ∈ V | f(v) = 0 } is well de�ned in P(V ), be
ause f(x) = 0 ⇐⇒f(�x) = �d f(x) = 0. This zero set is 
alled a proje
tive hypersurfa
e of degree d. The interse
tions ofsu
h hypersurfa
es1 are 
alled proje
tive algebrai
 varieties.For example, the equation x20 + x21 = x22 de�nes a 
urve C ⊂ P2. When 
har (k) 6= 2, this 
urve is
alled non degenerate plane 
oni
.We write Sd(V ∗) ⊂ k[x0; x1; : : : ; xn℄ for the subspa
e of all homogeneous polynomials of degree d.Note that as a ve
tor spa
e over k the polynomial algebra splits into the dire
t sum
k[x0; x1; : : : ; xn℄ = ⊕d>0Sd(V ∗) ; and Sk(V ∗) · S`(V ∗) ⊂ Sk+`(V ∗) ;i. e. k[x0; x1; : : : ; xn℄ is a graded algebra with graded 
omponents Sd(V ∗). Sin
e proportional equationsde�ne the same hypersurfa
es, the hypersurfa
es S ⊂ P(V ) of degree d 
orrespond to the points of theproje
tive spa
e P(Sd(V ∗)).1.5.Lo
al aÆne 
oordinates. Any aÆne 
hart U ⊂ A(V ) 
an by uniquely given by the equationx2

x0 x1
•

Fig 1⋄2. The 
one.

�(x) = 1, where �∈V ∗. We will write U� for this 
hart. One dimensional subspa
e spanned by v ∈ V isvisible in 
hart U� i� �(v) 6= 0. A point that represents this subspa
ein U� is v=�(v) ∈ U . If �x some n linear forms �1; �2; : : : ; �n ∈ V ∗su
h that n + 1 forms �;�1; �2; : : : ; �n form a basis of V ∗, we 
an usetheir restri
tions onto U as lo
al aÆne 
oordinates inside U� ⊂ Pn. Interms of these 
oordinates, a point p ∈ Pn 
orresponding to v ∈ V is
oordinated by n numbers �i(v=�(v)), 1 6 i 6 n. These 
oordinatesdepend on � and the 
hoi
e of �i's. Note that they are rational linearfra
tional fun
tions of the homogeneous 
oordinates and a senten
e �pis running away from U� to in�nity� means nothing but ��(p) → 0�,whi
h leads to unbounded in
reasing of the lo
al aÆne 
oordinates.1.5.1.Example: aÆne 
oni
s. Let us 
onsider lo
al equations for the plane
oni
 x20 + x21 = x22 (1-2)in some aÆne 
harts. In the 
hart Ux0 , given by the equation {x0 = 1}, we 
an 
hose lo
al aÆne 
oordinatest1 = x1|U0 = x1=x0 and t2 = x2|Ux0 = x2=x0. Dividing the both sides of (1-2) by x22, we get for C ∩ U0 theequation t22− t21 = 1, i. e. C ∩Ux0 is a hyperbola. Similarly, in a 
hart Ux2 = {x0 = 1} with lo
al aÆne 
oordinatest0 = x0=x2, t1 = x1=x2 we get the equation t20 + t21 = 1, i. e. C ∩ Ux2 is a 
ir
le. Finally, 
onsider a 
hart Ux2−x1given by x2 − x1 = 1 with lo
al aÆne 
oordinates t0 = x0|Ux2−x1 = x0x2 − x1 , t1 = (x2 + x1)|Ux2−x1 = x2 + x1x2 − x1 .After dividing by (x2 − x1)2 and some eliminations, we see that C ∩ Ux2−x1 is the parabola t1 = t20.Exer
ise 1.1. The aÆne 
one x20 + x21 = x22 in A3 is drawn on �g 1⋄2. Pi
ture there ea
h of 3 previous aÆne
harts and outline their interse
tions with the 
one.1.6.Proje
tive 
losure. Any aÆne algebrai
 variety X ⊂ An is always an aÆne pie
e of proje
tivealgebrai
 variety X̃ ⊂ Pn 
alled a proje
tive 
losure of X. Indeed, if X is given by polynomial equations
{ f�(t1; t2; : : : ; tn) = 0 }, we substitute ti = xi=x0 and multiply the �-th equation by xdeg f�0 . Then theresulting equations f̃�(x0; x1; : : : ; xn) = 0 be
ome homogeneous and de�ne a proje
tive algebrai
 varietyX̃ ⊂ Pn su
h that X̃ ∩ Ux0 = X, where Ux0 is the aÆne 
hart x0 = 1. Geometri
ally, X̃ is the union ofX with all its asymptoti
 dire
tions. Thus, the proje
tive langauge allows to treat the aÆne asymptoti
dire
tions as ordinary points lying at in�nity.1.7. Standard aÆne 
overing and gluing rules. Clearly, the whole of Pn is 
overed by (n+1) aÆne
harts U� def= Ux� given in An+1 by equations x� = 1. This 
overing is 
alled the standard aÆne 
overing .1maybe in�nite families of hypersurfa
es of di�erent degrees



§ 1. Proje
tive Spa
es. 5For ea
h � = 0; 1; : : : ; n we take n formst(�)i = xi|U� = xix� ; where 0 6 i 6 n ; i 6= �as the standard lo
al aÆne 
oordinates on U� . Topologi
ally, this means that Pn is 
onstru
ted from (n+1) distin
t 
opies of An denoted as U0; U1; : : : ; Un by gluing them together along the a
tual interse
tionsU�∩U� ⊂ Pn (i. e. a point of U� is identi�ed with a point of U� under this gluing rules i� they 
orrespondto the same point of Pn). In term of the homogeneous 
oordinates, the interse
tion U� ∩ U� 
onsists ofall x su
h that both x� and x� are non zero. This lo
us is presented inside U� and U� by inequalitiest(�)� 6= 0 and t(�)� 6= 0 respe
tively. Thus a point t(�) ∈ U� is glued with a point t(�) ∈ U� i�t(�)� = 1=t(�)� and t(�)i = t(�)i =t(�)� for i 6= �; � :The right hand sides of these equations are 
alled the transition fun
tions from t(�) to t(�) over U� ∩U� .For example, P1 
an be produ
ed from two 
opies of A1 by identifying the point t in one of themwith the point 1=t in the other for all t 6= 0.Exer
ise 1.2∗. If you have some experien
e in smooth topology, prove that real and 
omplex proje
tive linesare analyti
 manifolds isomorphi
 to the 
ir
le S1 (in real 
ase) and to the Riemann sphere S2 (in 
omplex
ase).1.8.Proje
tive subspa
es. A 
losed proje
tive algebrai
 subset is 
alled a proje
tive subspa
e if it
an be given by a system of linear homogeneous equations. Any proje
tive subspa
e L ⊂ P(V ) has aform L = P(W ), where W ⊂ V is a ve
tor subspa
e. Note that 0-dimensional proje
tive subspa
es1
oin
ide with the points. Sin
e 
odimP(V )P(W ) = 
odimVW , we have L1∩L2 6= ∅ for any two proje
tivesubspa
es L1 and L2 su
h that 
odimL1 + 
odimL2 6 n. For example, any two lines on P2 have nonempty interse
tion2.Two proje
tive subspa
es L1 and L2 in Pn are 
alled 
omplementary to ea
h other, if
• p = (1: 0 : 1)(0 : 0 : 1)Q

q(t′) x0t′
x1 q(t)t

` • •

•

•

•

Fig 1⋄3. Proje
ting a 
oni
.

L1 ∩ L2 = ∅ and dimL1 + dimL2 = n− 1 :For example, any two skew lines in 3-dimensional spa
e are
omplementary.Exer
ise 1.3. Show that P(U) and P(W ) are 
omplementary in
P(V ) i� V = U ⊕W .1.8.1.LEMMA. If L1; L2 ⊂ P(V ) are two 
omplementarylinear subspa
es, then any point p ∈ P(V ) \ (L1 ∪ L2) lies ona unique line 
rossing the both subspa
es.Proof. We have V = U1⊕U2, where P(Ui) = Li. So, any v∈V has aunique de
omposition v = u1+u2 with ui∈Ui. If v 6∈ U1 ∪U2, thenboth ui, u2 are non zero and span a unique 2-dimensional subspa
ethat 
ontains v and has non zero interse
tions with both Ui. �1.9.Proje
tions. For any two 
omplementary proje
tivesubspa
es L1; L2 ⊂ Pn, a proje
tion from L1 onto L2 is a map �L1L2 : (Pn \ L1) - L2 that sendsany point q ∈ L2 to itself and any point p ∈ Pn \ (L1 ⊔ L2) to ` ∩ L2, where ` is the unique linepassing through p and 
rossing both L1 and L2 in a

ordan
e with n◦ 1.8.1. In homogeneous 
oordi-nates (x0 : x1 : : : : : xn) su
h that L1 is 
oordinated by (x0 : x1 : : : : : xm) and L2 is 
oordinated by(xm+1 : xm+2 : : : : : xn), the proje
tion �L1L2 is nothing but taking x� = 0 for 0 6 � 6 (m+ 1).1.9.1.Example: proje
ting a 
oni
 onto a line. Consider the proje
tion �p̀ : Q - ` of the plane 
oni
 (1-2)onto the line ` = {x0 = 0} from the point p = (1 : 0 : 1) ∈ Q. Inside the standard aÆne 
hart U2, where x2 = 1,it looks like on �g 1⋄3. It is bije
tive, be
ause the pen
il of all lines passing through p is bije
tively parameterized1that is, P0 = P(k1)2in terms of A3 this means that any two planes 
ontaining the origin are interse
ted along a line



6 Algebrai
 Geometry. Start Up Course.by the points t ∈ ` and any su
h a line (pt) interse
ts Q exa
tly in one more point q = q(t) in addition to pex
ept for the the tangent line at p, whi
h is given by x0 = x2 and 
rosses ` at the point1 t = (0 : 1 : 0)
orresponding to q(t) = p itself. Moreover, this bije
tion is birational , i. e. the 
orresponding (q0 : q1 : q2) ∈ Qand (0 : t1 : t2) ∈ L are rational algebrai
 fun
tions of ea
h other. Namely, (t1 : t2) = ( q1 : (q2 − q0) ) and(q0 : q1 : q2) = ( (t21 − t22) : 2 t1t2 : (t21 + t22) ).Exer
ise 1.4. Che
k these formulas and note that while (t1; t2) runs through Z × Z the se
ond formula givesthe full list of the pythagorian triples (q0 : q1 : q2) (i. e. all the right triangles with integer side lengths).1.10.Matrix notations for linear maps. Let Hom(U;W ) be the spa
e of all k-linear maps fromn-dimensional ve
tor spa
e U to m-dimensional ve
tor spa
e W . Denote by Matm×n(k) the spa
e ofmatri
es with m rows, n 
olumns, and entries in the �eld k. Any pair of basises {u1; u2; : : : ; un} ⊂ U and
{w1; w2; : : : ; wm} ⊂ W presents an isomorphism Hom(U;W ) ∼- Matm×n(k) that sends an operatorU �- W to a matrix A = (aij) whose j-th 
olumn 
onsists of m 
oordinates of the ve
tor �(uj) ∈ Ww. r. t. the basis {w1; w2; : : : ; wm}, i. e. �(uj) = m∑�=1 a�j w� or, using the matrix multipli
ation,(�(u1); �(u2); : : : ; �(un)) = (w1; w2; : : : ; wm) ·A :Let us write tx and ty for the 
olumns obtained by transposing 
oordinate rows of x = (x1; x2; : : : ; xm) ∈ Uand y = (y1; y2; : : : ; yn) = �(x) ∈W . Then(w1; w2; : : : ; wm) · ty = �(x) = �((u1; u2; : : : ; un) · tx) == (�(u1); �(u2); : : : ; �(un)) · tx = (w1; w2; : : : ; wm) ·A · tximplies that ty = A · tx.1.11.Linear proje
tive transformations. If dimU = dimW = (n+1), then any linear isomorphismU �- W indu
es the bije
tion P(U) �- P(W ), whi
h is 
alled the proje
tive linear transformationor the linear isomorphism. A point set {p1; p2; : : : ; pm} ⊂ Pn is 
alled linearly general , if any (n+ 1) ofpi don't lay together in any hyperplane Pn−1 ⊂ Pn. Equivalently, the points {pi} are linearly general in
Pn = P(V ) i� (n+ 1) ve
tors representing any (n+ 1) of them always form a basis of V .1.11.1.LEMMA. For any two linearly general 
olle
tions of (n+2) points {p0; p1; : : : ; pn+1} ∈ P(U) and
{q0; q1; : : : ; qn+1} ∈ P(V ), where dimU = dimV = (n + 1), there exists a unique up to proportionalitylinear isomorphism V �- W su
h that �(pi) = qi ∀i. In parti
ular, two matri
es give the sameproje
tive linear transformation i� they are proportional.Proof. Fix some ve
tors ui and wi representing the points pi and qi. By the linear generality, we 
an take
{u1; u2; : : : ; un+1} and {w1; w2; : : : ; wn+1} as the basises in U and W and identify a map � ∈ Hom(U;W ) bythe square matrix in these basises. Then, �(pi) = qi for 1 6 i 6 (n + 1) i� the matrix A of � is diagonal, saywith (d1; d2; : : : ; dn+1) on the main diagonal. Now 
onsider the �rst ve
tors u0 and w0. Again by the lineargenerality, all the 
oordinates of u0 = (x1; x2; : : : ; xn+1) w. r. t. the basis {ui}16i6(n+1) and all the 
oordinates ofw0 = (y1; y2; : : : ; yn+1) w. r. t. the basis {wi}16i6(n+1) are non zero. Sin
e the 
oordinates of �(u0) are proportionalto the ones of w0, we have yi : yj = (dixi) : (djxj) ∀ i; j. Hen
e, all di are uniquely re
overed from just one ofthem, say d1, as di = d1 · (yix1) : (xiy1). �Exer
ise 1.5. Let `1 and `2 be two lines on P2. Fix any point p outside `1 ∪ `2 and 
onsider proje
tivelinear isomorphism `1 
p- `2 that sends t∈ `1 to the interse
tion point (tp) ∩ `2. Che
k that 
p is a linearisomorphism.1.12.Linear proje
tive group. All linear isomorphisms V - V form a group denoted by GL(V ).It a
ts on P(V ). By n◦ 1.11.1, the kernel of this a
tion 
oin
ides with the subgroup of all s
alar di-latations H ⊂ GL(V ). Hen
e, the group of all proje
tive linear automorphisms of P(V ) is equal to thefa
tor group GL(V )=H, whi
h is denoted by PGL(V ) and 
alled the proje
tive linear group. Fixing abasis {e0; e1; : : : ; en} ⊂ V , we 
an identify GL(V ) with the group GLn+1(k) ⊂ Matn+1(k) of all non1this interse
tion point lies at the in�nity on �g 1⋄3
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tive Spa
es. 7degenerated square matri
es. Under this identi�
ation the dilatations go to the s
alar diagonal matri
esand PGL(V ) turns into the group PGLn+1(k) def= GLn+1(k)={s
alar diagonal matri
es �E} , of all nondegenerate square matri
es 
onsidered up to proportionality.1.12.1.Example: linear fra
tional group and 
ross-ratio. PGL2(k) 
onsists of all 2× 2 - matri
es (a b
 d) withad − b
 6= 0 
onsidered up to proportionality. It a
ts on P1 via (x0 : x1) 7−→ ( (ax0 + bx1) : (
x0 + dx1) ) . Inthe standard aÆne 
hart U0 ≃ A1 with aÆne 
oordinate t = x1=x0 this a
tion looks like the linear fra
tionaltransformation t 7−→ (
t+ d)=(at+ b) .Exer
ise 1.6. Verify by the straightforward 
omputation that (AB)(t) = A(B(t)).Theorem n◦ 1.11.1 says that for any 3 di�erent points p, q, r there exists a unique linear fra
tional transformation �su
h that �(p) = 0, �(q) = 1, and �(r) =∞. This is 
lear, be
ause p 7→ 0 and r 7→ ∞ for
e su
h a transformationto take t �7−→ # · (t − p)=(t − r), where # ∈ k. Substituting t = q, we get # = (q − r)=(q − p), i. e. the requiredtransformation is t 7−→ q − rq − p · t− pt− r :The right hand site is 
alled the 
ross-ratio of 4 points t, p, q, r on P1.Exer
ise 1.7. Show that the 
ross-ratio does not depend on 
hoi
e of 
oordinates and is invariant under thea
tion of PGL2 on the quadruples of points.1.12.2.PROPOSITION. If a bije
tive mapping
P1 \ {�nite 
olle
tion of points} '- P1 \ {�nite 
olle
tion of points}
an be given by a formula '(x0 : x1) = (f0(x0; x1) : f1(x0; x1)), where fi are rational algebrai
 fun
tions,then ' has to be a linear fra
tional transformation.Proof. Multiplying (f0 : f1) by the 
ommon denominator and eliminating 
ommon fa
tors we 
an assume thatfi are 
oprime polynomials. To produ
e a well de�ned map, they have to be homogeneous of the same positivedegree d. Sin
e ' is bije
tive, ea
h # = (#0 : #1) ∈ P1 \ {�nite 
olle
tion of points} has pre
isely one preimage. Thismeans that for in�nitely many values of # the homogeneous equation#1 · f0(x0; x1)− #0 · f1(x0; x1) = 0 (1-3)has just one root up to proportionality, i. e. its left hand side is a pure d-th power of some linear form in (x0 : x1).All homogeneous polynomials of degree d in (x0 : x1) 
onsidered up to a s
alar fa
tor form the proje
tive spa
e

Pd = P(SdU∗), where U is the 2-dimensional ve
tor subspa
e underlying P1 in question. When # varies through
P1, the equations (1-3) draw a straight line (f0f1) inside this Pd whereas pure d-th powers of linear forms formthere some twisted 
urve, whi
h is 
alled the Veronese 
urve of degree d. Lemma n◦ 1.12.3 below implies that ford > 2 any 3 points on the Veronese 
urve are non 
ollinear. Sin
e in our 
ase an in�nite set of points on the line(1-3) lies on the Veronese 
urve, we 
on
lude that d = 1, i. e. ' is a proje
tive linear isomorphism. �1.12.3.LEMMA. Let us de�ne the Veronese 
urve of degree d as an image of the Veronese map

P1 = P (U∗) vd- Pd = P(Sd(U∗)) (1-4)that takes a linear form  ∈ U∗ to its d-th power  d ∈ Sd(U∗). If the ground �eld k 
ontains morethan d elements, then for ea
h k = 2; 3; : : : ; d any (k+1) distin
t points of the Veronese 
urve 
an notbelong to the same (k − 1)-dimensional proje
tive subspa
e.Proof. Let us write  ∈ U∗ and f ∈ Sd(U∗) as  = �0x0 + �1x1 , f = d∑�=0 a� · (d�)xd−�0 x�1 and use (�0 : �1),(a0 : a1 : : : : : ad) as homogeneous 
oordinates on P1 and Pd respe
tively. It is enough to verify the 
ase k = d,whi
h implies all the other 
ases. Consider the interse
tion of the Veronese 
urve with (d−1)-dimensional proje
tivehyperplane given by a linear equation ∑A�a� = 0. Its preimage under the Veronese map (1-4) 
onsists of all(�0 : �1) ∈ P1 satisfying non trivial homogeneous equation∑A� ·�d−�0 ��1 = 0 of degree d. Up to proportionality,it has at most d+ 1 distin
t roots. �
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§2.Proje
tive quadri
s.In §2 we will assume that 
hark 6= 2 .2.1.Quadrati
 and bilinear forms. A zero set Q ⊂ P(V ) of non zero quadrati
 form q ∈ S2V ∗ is
alled a proje
tive quadri
. If 2 6= 0 in k, then the expli
it expression for q in homogeneous 
oordinates
an be written as q(x) =∑i;j aij xixj = x ·A · tx ;where x = (x0; x1; : : : ; xn) is the 
oordinate row, tx is its transposed 
olumn version, and A = (aij) is asymmetri
 matrix over k, whose non-diagonal element aij = aji equals one half of the 
oeÆ
ient at xixjin q. This matrix is 
alled the Gram matrix of q. In other words, there exists a unique bilinear formq̃(u;w) on V × V su
h that q(x) = q̃(x; x). This form is 
alled the polarization of q. It 
an be expressedthrough q in the following pairwise equivalent ways:q̃(x; y) =∑ij aij xiyj = x ·A · ty = 12 ∑i yi �q(x)�xi = q(x+ y)− q(x) − q(y)2 = q(x+ y)− q(x− y)4Note that q̃ 
an be treated as a kind of s
alar produ
t on V . Then the elements of the Gram matrixbe
ome the s
alar produ
ts of basi
 ve
tors: aij = q̃(ei; ej). Thus, ta
king another basis(e′0; e′1; : : : ; e′n) = (e0; e1; : : : ; en) · C ;we 
hange the Gram matrix by the rule A 7−→ A′ = tC ·A · C .Note that under 
hanges of basis the determinant of the Gram matrix the Gram determinant det q def=detA is multiplied by non zero square from k∗. Thus, its 
lass modulo multipli
ation by non zero squares[det q℄ ∈ k=k2 does not depend on a 
hoi
e of basis. Two quadri
s are 
alled isomorphi
 or proje
tivelyequivalent , if their equations 
an be transformed to ea
h other by a linear 
hange of basis. A quadri
 is
alled smooth, if det q 6= 0. Otherwise, it is 
alled singular . We see that proje
tive equivalen
e preservessmoothness and the 
lass of det q in k∗=k∗2, where k∗ is the multipli
ative group of k.2.1.1.PROPOSITION (LAGRANGE THEOREM). The Gram matrix of any quadrati
 form q on V 
anbe diagonalized by appropriate 
hange of basis in V .Proof. If q ≡ 0, its Gram matrix is already diagonal. If not, then q(v) = q̃(v; v) 6= 0 for some v∈V . Take this v asthe �rst ve
tor of the basis being 
onstru
ted. Note that any u∈V is uniquely de
omposed as u = �v+w with � ∈ kand w ∈ v⊥ = {w ∈ V | q̃(v; w) = 0 }. Indeed, the only possibility is � = q̃(v; u)=q̃(v; v) , w = u−(q̃(v; u)=q̃(v; v))·vand it works. Thus, V = k · v ⊕ v⊥ and we 
an repeat the arguments to v⊥ * V instead of V e. t. 
. �2.1.2.COROLLARY. If k is algebrai
ally 
losed, then any quadri
 
an be de�ned in appropriate
oordinates by an equation of the form∑x2i = 0. In parti
ular, all non singular quadri
s are proje
tivelyequivalent.Proof. Diagonal elements of the Gram matrix be
ome units after the 
hange ei 7−→ ei=√q(ei). �2.1.3.Example: quadri
s on P1 in appropriate 
oordinates are given either by an equation a x20+ b x21 = 0 or byan equation a x20 = 0. The se
ond quadri
 is 
alled a double point , be
ause it 
onsists of just one point (0 : 1), whi
hhas �multipli
ity 2� in any reasonable sense. Clearly, it is singular (i. e. det q = 0). The �rst quadri
 is smooth(i. e. det q ∈ k∗) and either 
onsists of two distin
t points or is empty. More pre
isely, if −det q = −ab = Æ2 isa square in k∗, then Q = { (−Æ : a) ; (Æ : a) }. But if −b=a ≡ −det q (mod k∗2) is not a square, then evidentlyQ = ∅. Note that the latter 
ase is impossible when k is algebrai
ally 
losed.2.2.Quadri
 and line. It follows from the above example that there are pre
isely four positionalrelationships of a quadri
 Q with a line ` : either ` ⊂ Q, or ` ∩Q 
onsists of 2 distin
t points, or ` ∩Qis a double point, or ` ∩Q = ∅. Moreover, the latter 
ase is impossible when k is algebrai
ally 
losed.A line ` is 
alled a tangent line to a quadri
 Q, if ` either lies on Q or 
rosses Q via a double point.



§ 2. Proje
tive quadri
s. 92.3.Correlations. Any quadrati
 form q on V indu
es the linear map V bq- V ∗ that sends a ve
torv∈V to the linear form q̂(v) : w 7−→ q̃(w; v)The map q̂ is 
alled the 
orrelation (or the polarity) of the quadrati
 form q. The matrix of q̂ written indual bases {ei} ⊂ V , {xi} ⊂ V ∗ 
oin
ides with the Gram matrix A. In parti
ular, q is smooth i� q̂ is anisomorphism. The spa
e ker(q) def= ker q̂ = { v∈V | q̃(w; v) = 0 ∀w∈V }is 
alled the kernel of q. Its proje
tivization SingQ def= P(ker q) ⊂ P(V ) is 
alled a vertex spa
e of Q and
odimP(V )SingQ is 
alled a 
orank of Q.2.3.1.THEOREM. The interse
tion Q′ = L∩Q is non singular for any proje
tive subspa
e L ⊂ P(V )
omplementary to SingQ; moreover, Q is the 
one over Q′ with the vertex spa
e SingQ, i. e. Q is theunion of all lines 
rossing both Q′ and SingQ.Proof. Take any dire
t de
omposition V = ker q⊕U and let L = P(U). If u∈U satisfy q̃(u; u′) = 0 ∀u′∈U , thenautomati
ally q̃(u; v) = 0 ∀ v∈V and u = 0, be
ause of ker q∩U = 0. Sin
e Q′ = Q∩L is given by the restri
tionq|U , it is non singular. Further, for any line ` = P(W ) su
h that dim W ∩ kerQ = 1 we have dim W ∩ U = 1 and
ork q|U > 1. So, if `∩ SingQ = {p} is just one point, then `∩L 6= ∅ and either ` ⊂ Q or `∩Q{p}. That's all weneed. �2.3.2.COROLLARY. A quadri
 Q ⊂ Pn over an algebrai
ally 
losed �eld is uniquely up to anisomorphism de�ned by its 
orank, whi
h 
an be equal to 0; 1; : : : ; n.Proof. Corank is the number of diagonal zeros in the diagonal Gram matrix. �2.4.Tangent spa
e TpQ to a quadri
 Q at a point p ∈Q is de�ned as the union of all tangent linespassing through p.2.4.1.LEMMA. Let p and p′ be distin
t points and p∈Q = (q)0. The line ` = (p p′) is tangent to Qi� q̃(p; p′) = 0, i. e. i� p and p′ are orthogonal with respe
t to polarization of q.Proof. Take some ve
tors u; u′ representing p and p′. Then ` = P(U). The restri
tion q|U has the Gram matrix
( q̃(u; u) q̃(u; u′)q̃(u′; u) q̃(u′; u′)) :It is singular i� q̃(u; u′) = 0, be
ause of q̃(u; u) = 0 by the lemma assumption. �2.4.2.COROLLARY. p ∈ SingQ ⇐⇒ TpQ is the whole spa
e ⇐⇒ �q�xi (p) = 0 ∀i. �2.4.3.COROLLARY. If p ∈ (Q \ SingQ), then TpQ = {x ∈ Pn | q̃(p; x) = 0} is a hyperplane of
odimension one. �2.4.4.COROLLARY. Let p 6∈ Q and a hyperplane C ⊂ Pn be given by the equation q̃(p; x) = 0 in x.Then Q ∩ L 
onsists of all points where Q is tou
hed by the tangent lines 
oming from p. �2.5.Polar mappings. The spa
es P(V ) and P(V ∗) are 
alled dual and denoted by Pn and P×n when anature of V is not essential. Sin
e any 
odimension 1 subspa
e U ⊂ V is de�ned by linear form �∈V ∗,whi
h is unique up to proportionality, P×n is nothing but the spa
e of hyperplanes in Pn and vi
e versa.If Q = (q)0 ⊂ P(V ) is non singular, then the linear isomorphism P(V ) ∼- P(V ∗) indu
ed by the
orrelation q̂ is 
alled a polarity of Q. It sends a point p∈ Pn to the hyperplane L ⊂ Pn given by theequation q̃(p; x) = 0 like in the previous Corollary. L is 
alled a polar of p and p is 
alled a pole of L withrespe
t to q. So, Q is just the set of all points lying on their own polars. Note that some non singularquadrati
 forms q 
an produ
e empty quadri
s Q over non 
losed �elds but their polar mappings q̂ arealways visible.
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 Geometry. Start Up Course.Exer
ise 2.1. Show that p lies on the polar of q i� q lies on the polar of p (for any pair of distin
t points andany polarity).Exer
ise 2.2. Consider a 
ir
le in the real Eu
lidean aÆne plane R2. How to draw the polar of a point thatlies: a) outside b) inside this 
ir
le? Des
ribe geometri
ally the polarity de�ned by the �imaginary� 
ir
le�given� in R2 by the equation x2 + y2 = −1.2.5.1.PROPOSITION. Two polarities 
oin
ide i� the 
orresponding quadrati
 forms are proportional.Proof. This follows from n◦ 1.11.1 �2.5.2.COROLLARY. Over an algebrai
ally 
losed �eld two quadri
s 
oin
ide i� their quadrati
 equa-tions are proportional.Proof. Let Q = Q′. We 
an suppose that the quadri
s are non singular, be
ause their equations are not 
hangedunder dire
t summation with the kernel ker q = ker q′. Non singular 
ase is 
overed by the above proposition. �2.6.The spa
e of quadri
s. All the polarities on Pn = P(V ) are one-to-one parameterized by thepoints of the proje
tive spa
e
Pn(n+3)2 = P(S2V ∗) ;whi
h will be referred as a spa
e of quadri
s. Given a point p ∈ P(V ), the 
ondition q(p) = 0 is a linear
ondition on q ∈ P(S2V ∗), i. e. all quadri
s passing through a given point p form a proje
tive hyperplanein the spa
e of quadri
s. Sin
e any n(n+3)=2 hyperplanes in Pn(n+3)=2 have non empty interse
tion, we
ome to the following quite helpful 
on
lusion2.6.1.CLAIM. Any 
olle
tion of n(n+ 3)=2 points in Pn lies on some quadri
. �2.7.Complex proje
tive 
oni
s. A quadri
 on the proje
tive plane is 
alled a proje
tive 
oni
. Aproje
tive 
oni
 over C, up to an isomorphism, 
oin
ides either with a double line x0 = 0, whi
h has
orank 2, or with a redu
ible 
oni
1 x20 + x21 = 0, whi
h has 
orank 1, or with the non singular 
oni
x20 + x21 + x22 = 0. The spa
e of all 
oni
s in P2 = P(V ) is P5 = P(S2V ∗).2.7.1.Example: standard model for non singular 
oni
. Let U be 2-dimensional ve
tor spa
e. Re
all that thequadrati
 Veronese map

P(U∗) = P1 ⊂
v- P2 = P(S2U∗) (2-1)sends a linear form � to its square �2 (
omp. with (n◦ 5.4.1)). If we think of P(S2U∗) as the spa
e of quadri
s on

P(U), then the Veronese embedding is a bije
tion between the points of P1 and the singular quadri
s on P1, whi
hare the double points. Thus, the image of (2-1) is the proje
tive 
oni
QV = { q ∈ S2U∗ | det q = 0 } ; (2-2)
onsisting of singular quadri
s on P1. It is 
alled the Veronese 
oni
.Let us �x a basis (x0; x1) for U∗ , indu
ed basis {x20; 2x0x1; x21} for S2U∗ , and write � ∈ U∗ , q ∈ S2U∗ as�(x) = t0x0 + t1x1 , q(x) = q0 x20 + 2 q1 x0x1 + q2 x21. Using (t0 : t1) and (q0 : q1 : q2) as homogeneous 
oordinateson P(U∗) and P(S2(U∗)), we 
an des
ribe the 
oni
 (2-3) by equationq0q2 − q21 = 0 (2-3)and write the Veronese embedding (2-1) as(t0 : t1) 7−→ (q0 : q1 : q2) = (t20 : t0t1 : t21) : (2-4)This gives pre
ise homogeneous quadrati
 parameterization for non singular 
oni
 (2-3). If k is algebrai
ally 
losed,then any non singular 
oni
 Q ⊂ P2 
an be identi�ed with QV by an appropriate basis 
hoi
e. This gives anotherway to produ
e a quadrati
 parameterization for a smooth plane 
oni
 besides one des
ribed in n◦ 1.9.1, where weused a proje
tion of the 
oni
 onto a line from a point lying on the 
oni
.2.7.2.PROPOSITION. Two distin
t non singular 
oni
s have at most 4 interse
tion points.Proof. Taking appropriate 
oordinates, we 
an identify the �rst 
oni
 with the Veronese 
oni
, whi
h has quadrati
parameterization x = v(t0; t1). If the se
ond 
oni
 is given by an equation q(x) = 0, then the t-parameters of theinterse
tion points satisfy the 4-th degree equation q(v(t)) = 0. �1i. e. a pair of 
rossing lines



§ 2. Proje
tive quadri
s. 112.7.3.COROLLARY. Any 5 points in P2 lay on some 
oni
. It is unique i� no 4 of the points are
ollinear. If no 3 of the points are 
ollinear, then this 
oni
 is non singular.Proof. The existen
e of a 
oni
 follows from n◦ 2.6.1. Sin
e a singular 
oni
 is either a pair of 
rossing lines or adouble line, any quintuple of its points 
ontains a triple of 
ollinear points. Thus, if no 3 of 5 points are 
ollinear,a 
oni
 is smooth and unique by the previous proposition. If the quintuple 
ontains a triple of 
ollinear points,then the line passing through this triple has to be a 
omponent of any 
oni
 
ontaining the quintuple. This for
esthe 
oni
 to split into the union of this line and the line joining two remaining points. �2.8.Complex proje
tive quadri
s on P3, up to isomorphism, are: a double plane x20 = 0; a redu
iblequadri
 x20+x21 = 0, whi
h is a pair of 
rossing planes (or a 
one with a line vertex over a pair of distin
tpoints on an 
omplementary line); a simple 
one x20+x21+x22 = 0, whi
h is a 
one with one point vertexover a non singular plane 
oni
; and a non singular quadri
 x20 + x21 + x22 + x23 = 0. The non singularquadri
 also has mu
h more 
onvenient determinantal model 
alled the Segre quadri
 and des
ribed asfollows.Let us �x a pair of 2-dimensional ve
tor spa
es U−, U+ and write W = Hom(U−; U+) for the spa
eof all linear maps U− - U+. Then P3 = P(W ) 
onsists of non zero linear maps 
onsidered up toproportionality and 
an be identi�ed with the spa
e of non zero 2 × 2 - matri
es (�00 �01�10 �11) up to as
alar fa
tor. By the de�nition, the Segre quadri
QS = {U− F- U+ ∣∣∣ rkF = 1} = {A = (�00 �01�10 �11) ∣∣∣∣ det(A) = �00�11 − �01�10 = 0} (2-5)
onsists of all non zero but degenerate linear maps. It 
oin
ides with the image of the Segre embedding
P1 × P1 = P(U∗−)× P(U+) ⊂ s- P(Hom(U−; U+)) = P3that sends (�; v) ∈ U∗− × U+ to the rank 1 operator � ⊗ v : U− u 7→�(u)·v - U+ , whose image isspanned by v and the kernel is given by the linear equation � = 0.Indeed, any rank one operator U− F- U+ has 1-dimensional kernel, say, spanned by some v ∈ U+.Then F has to take any u ∈ U− to F (u) = �(u) ·v, where the 
oeÆ
ient �(u) is k-linear in u, i. e. � ∈ U∗−.Thus, F = � ⊗ v and both �, v are unique up to proportionality.Exer
ise 2.3. Show that any m × n matrix A of rank one 
an be obtained as a matrix produ
t of m-
olumnand n-row: A = t� · v for appropriate � = (�1; �2; : : : ; �m) ∈ km , v = (x1; x2; : : : ; xn) ∈ kn, whi
h are uniqueup to proportionality.Fixing some 
oordinates (�0 : �1) in U∗− and (t0 : t1) in U+, we 
an write the operator �⊗v by the matrix� ⊗ v = (�0t0 �1t0�0t1 �1t1) :So, the Segre embedding gives a rational parametrization�00 = �0t0 ; �01 = �1t0 ; �10 = �0t1 ; �11 = �1t1 : (2-6)for the quadri
 (2-5), where the parameter ( (�0 : �1) ; (t0 : t1) ) ∈ P1×P1. Note that P1×P1 is ruled bytwo families of �
oordinate� lines � × P1 and P1 × t. Let us 
all them the �rst and the se
ond ruling linefamilies. Sin
e the parameterization (2-6) takes lines to lines, we get2.8.1.LEMMA. The Segre embedding sends ea
h 
oordinate line family to the ruling of QS by afamily of pairwise skew lines. These two line families exhaust all the lines on QS. Any two lines fromdi�erent families are interse
ting and ea
h point of QS is the interse
tion point of two lines from di�erentfamilies.Proof. A line � × P1, where � = (�0 : �1) ∈ P(U∗−), goes to the set of all rank 1 matri
es with the ratio(1-st 
olumn) : (2-nd 
olumn) = �0 : �1 :
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 Geometry. Start Up Course.They form a line in P3 given by two linear equations a00 : a01 = a10 : a11 = �0 : �1. Analogously, s(P1 × t), wheret = (t0 : t1) ∈ P(U+), goes to the line given in P3 by a00 : a10 = a01 : a11 = t0 : t1 and formed by all rank 1matri
es with the ratio (1-st row) : (2-nd row) = t0 : t1 :Sin
e the Segre embedding is bije
tive, ea
h line family 
onsists of pairwise skew lines, any two lines from thedi�erent families are interse
ting, and for any x ∈ QS there is a pair of from the di�erent families that areinterse
ting at x. This for
es QS ∩ TxQS to be a split 
oni
 and implies that there are no other lines on QS. �2.8.2.COROLLARY. Any 3 lines on P3 lie on some quadri
. If the lines are mutually skew, then thisquadri
 is unique, non singular, and is ruled by all lines in P3 interse
ting all 3 given lines.Proof. The spa
e of quadri
s in P3 has dimension 3 · 6 : 2 = 9. Thus, any 9 points in P3 lay on some quadri
. If wepi
k up a triple of distin
t points on ea
h line and draw a quadri
 through these 9 points, then this quadri
 will
ontain all 3 lines (
omp. with n◦ 2.2). Sin
e a singular quadri
 does not 
ontain a triple of mutually skew lines,any quadri
 passing through 3 pairwise skew lines is non singular and is ruled by two families of lines. Clearly,the triple of given lines lies in the same family. Then the se
ond family 
an be des
ribed geometri
ally as the setof lines in P3 interse
ting all 3 given lines. Thus the quadri
 is unique. �Exer
ise 2.4. How many lines interse
t 4 given pairwise skew lines in P3?Exer
ise 2.5∗. How will the answer be 
hanged, if we repla
e a) P3 by A3 b) C by R ? Find all possiblesolutions and indi
ate those that are stable under small perturbations of the initial 
on�guration of 4 lines.2.9.Linear subspa
es lying on a non singular quadri
. The line rulings from n◦ 2.8.1 have higherdimensional versions as well. Let Qn ⊂ Pn = P(V ) be non singular quadri
 and L = P(W ) be a proje
tivesubspa
e lying on Qn.2.9.1.THEOREM. dimL 6

[n− 12 ], where [ ∗ ℄ means the integer part.Proof. Let Qn be given by a quadrati
 form q with the polarization q̃. ThenL ⊂ Qn ⇐⇒ q̃(w1; w2) = 0 ∀w1; w2 ∈W ⇐⇒ q̂(W ) ⊂ Ann (W ) = { �∈V ∗ | �(w) = 0 ∀w∈W } ;where q̂ : v 7−→ q̃(v; ∗) is the 
orrelation asso
iated with Qn. Sin
e Qn smooth, this 
orrelation is inje
tive. Thus,dimW 6 dimAnnW = dimV − dimW and dimL = dimW − 1 6 (dim V )=2− 1 = [(n− 1)=2℄. �2.9.2.LEMMA. 
ork (H ∩Qn) 6 1 for any 
odimension 1 hyperplane H ⊂ Pn.Proof. If H = P(W ), then dimker (q|W ) 6 dim(W ∩ q̂−1(AnnW ) ) 6 dim q̂−1(AnnW ) = dimAnnW = 1. �2.9.3.LEMMA. For any x∈Qn the interse
tion Qn ∩ TxQn is a simple 
one with the vertex x over anon singular quadri
 Qn−2 in an (n− 2)-dimensional proje
tive subspa
e in TxQn \ {x}.Proof. Sin
e TxQ = P(ker q̃(x; ∗)) and q̃(x; x) = q(x) = 0, the restri
tion of q onto TxQ has at least 1-dimensionalkernel presented by x itself. By the previous lemma this kernel is spaned by x. �2.9.4.THEOREM. Let dn = [(n−1)=2℄ be the upper bound from n◦ 2.9.1 and x ∈ Qn be an arbitrarypoint. Then dn-dimensional subspa
es L ⊂ Qn passing through x stay in 1{1 
orresponden
e with(dn − 1)-dimensional subspa
es lying on Qn−2.Proof. Fix some (n− 1)-dimensional proje
tive subspa
e H ⊂ TxQ \ {x} and present Qn ∩ TxQn as a simple 
oneruled by lines passing through x and some Qn−2 ⊂ H. Sin
e any L ⊂ Qn whi
h pass through x is 
ontained insideQn ∩ TxQn, it has to be the linear span of x and some (dn − 1)-dimensional subspa
e L′ ⊂ Qn−2. �For example, there are only 0-dimensional subspa
es on Q1 and Q2. Next two quadri
s, Q3 and Q4,do not 
ontain planes. But any point x ∈ Q3 lies on two lines passing through x and 2 points ofQ1 ⊂ TxQ3 \ {x} and any point of Q4 belongs to 1-dimensional family of lines parameterized by thepoints of a non singular 
oni
 Q2 ⊂ TxQ4 \ {x}. Further, non singular quadri
 Q5 ⊂ P5 does not 
ontain3-dimensional subspa
es but for any point x∈Q5 there are two 1-dimensional families of planes passingthrough x. Ea
h family is parameterized by the 
orresponding family of lines on Q3 ⊂ TxQ5\{x}, i. e. by
P1 a
tually.
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§3.Working examples: 
oni
s, pen
ils of lines, and plane drawings.During this se
tion we 
ontinue to assume that 
hark 6= 2.3.1.Proje
tive duality. For any 0 6 m 6 (n − 1) there is a 
anoni
al bije
tion between the m-dimensional proje
tive subspa
es in Pn = P(V ) and the (n − 1−m)-dimensional ones in P×n def= P(V ∗).It sends a subspa
e L = P(U) to the subspa
e L× def= P(Ann (U)), whereAnn (U) def= { �∈V ∗ | �(u) = 0 ∀u∈U }is an annihilator of U . Note that L×× = L, sin
e AnnAnnU = { v ∈V | �(v) = 0 ∀ � ∈AnnU } = Uunder the natural identi�
ation V ∗∗ ≃ V . The 
orresponden
e L↔ L× is 
alled a proje
tive duality . Itinverts in
lusions1 and linear in
iden
es2. The proje
tive duality translates the geometry on Pn to theone on P×n and ba
k. For example, in P2-
ase we have the following di
tionary:a line ` ⊂ P2 ←→ a point `×∈P×2the points p of the above line ` ←→ the lines p× passing through the above point `×the line passing through two points p1; p2 ∈ P2 ←→ the interse
tion point for two lines p×1 ; p×2 ⊂ P×2the points p of some 
oni
 Q ←→ the tangent lines p× of some 
oni
 Q×the tangent lines ` to Q ←→ the points `× of Q×Exer
ise 3.1. Explain the last two items by proving that the tangent spa
es of a non singular quadri
 Q ⊂ Pn
orrespond to the points of some non singular quadri
 Q× ⊂ P×n . Show also that Q and Q× have inverseGram matri
es in dual bases of V and V ∗.Hint. If � = (�0; �1; : : : ; �n) ∈ V ∗ and x = (x0; x1; : : : ; xn) ∈ V in dual 
oordinate systems, then �(x) = � · tx.Let Q ⊂ P(V ), Q× ⊂ P(V ∗) have inverse Gram matri
es A, A−1. Sin
e TxQ = P(Ann �) ⇐⇒ � = x·A⇐⇒x = � ·A−1, we have x∈Q⇐⇒ x ·A · tx = 0 ⇐⇒

`� ·A−1´

·A · t`� ·A−1´ = 0 ⇐⇒ � ·A−1t� = 0 ⇐⇒ �∈Q×.3.1.1.COROLLARY. Any 5 lines on P2 without triple interse
tions are tangent to unique smooth
oni
.Proof. This assertion is proje
tively dual to n◦ 2.7.3. Namely, let `i ∈ P2 be 5 given lines. There exists a unique
oni
 Q× passing through 5 points `×i ∈P×2 . Then `i = `××i are tangent to the dual 
oni
 Q×× = Q ⊂ P2. �3.2. Proje
tive linear isomorphisms P1 - P1 via 
oni
s. Consider a non singular 
oni
 Q anda line ` and write Q �p̀- ` for the bije
tive map given by proje
tion from a point p∈Q extended into pby sending p 7−→ ` ∩ TpQ.Exer
ise 3.2. Show that this bije
tion is given by some rational algebrai
 fun
tions, whi
h express 
oordinatesof the 
orresponding points through ea
h other.Hint. To express the 
oordinates of t = �p̀(x) through x, you take spe
ial 
oordinates where ` is given byx0 = 0 and p = (1 : 0 : 0); then t = (0 : x1 : x2). In order to get the inverse expression, only two skills arequite enough: linear equations solving and �nding the se
ond root for a quadrati
 equation with the �rstroot known. The both pro
edures have a rational output.So, if `1; `2 are two lines and p1; p2 are two distin
t points on some non singular 
oni
 Q, then the
omposition 
p2p1Q def= �p2`2 ◦(�p1`1 )−1 gives a proje
tive linear isomorphism `1 ∼- `2 (see �g. �g 3⋄1). Infa
t, any proje
tive linear isomorphism `1 
- `2 
an be presented3 as 
p2p1Q for some Q and p1; p2 ∈ Q.Indeed, if 
 sends, say a1; b1; 
1 ∈ `1 to a2; b2; 
2 ∈ `2, we pi
k any p1, p2 su
h that no 3 out of 5 pointsp1, p2, (a1 p1) ∩ (a2 p2), (b1 p1) ∩ (b2 p2), (
1 p1) ∩ (
2 p2) are 
ollinear (see �g 3⋄2) and draw Q throughthese 5 points. Then 
 = 
p2p1Q , be
ause both have the same a
tion on 3 points a1; b1; 
1.1i. e. L1 ⊂ L2 ⇐⇒ L×1 ⊃ L×22i. e. L1; L2; : : : ; Lr are 
ontained in some m-dimensional subspa
e L i� L×1 ; L×2 ; : : : ; L×r 
ontain some (n − m − 1)-dimensional subspa
e L×; for example: 3 points are 
ollinear i� their dual 3 hyperplanes have 
ommon subspa
e of
odimension 23in in�nitely many di�erent ways
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p2p1 
p2p1Q (x)x `1 `2

Q
•

•

• •

Q
`2`1

p2
p1


2 b2 a2
1b1a1• •

•

•

•

•

•

•

•

•

•

Fig. 3⋄1. Composing proje
tions. Fig. 3⋄2. How to �nd p1, p2.3.3.Drawing a 
oni
 by the ruler. Let 5 distin
t points p1, p2, a, b, 
 lay on a non singular 
oni
Q. Denote the line (a 
) by `1, the line (b 
) by `2, and the interse
tion point (a p2) ∩ (b p1) by O(see �g 3⋄3). Then the proje
tive linear isomorphism `1 
p2p1Q - `2 
oin
ides with the simple proje
tivelinear isomorphism `1 
O- `2, whi
h takes x∈ `1 to 
O(x) = (xO) ∩ `2 (indeed, the both send 
 7−→ 
,a 7−→ d, e 7−→ b, where d = (a p2) ∩ `2 and e = (b p1) ∩ `1 | see �g 3⋄3).
• •

•

•

`1`2 p2p1
de ab 


•

O•• •

x3 x2
x1 p5p4p3 p2 p1L3L2L1 O `2`1 •

•

•

•

•
•

•

•

•

•

••

•

•

•

Fig. 3⋄3. Remarkable 
oin
iden
e. Fig. 3⋄4. Tra
ing a 
oni
.This simple remark allows us to tra
e, using only the ruler, a dense point set on the 
oni
 passingthrough 5 given points p1; p2; : : : ; p5 (see �g 3⋄4). Namely, let `1 = (p3p4), `2 = (p4p5), O = (p1p6) ∩(p2p3). Then any line L ∋ O gives two interse
tion points `1 ∩ L and `2 ∩ L. These points are sent toea
h other by the proje
tive linear isomorphism 
O = 
p2p1Q . So, if we draw lines through p1 and `1 ∩L,and trough p2 and `2∩L, then the interse
tion point x of these two lines has to lay on Q. On the �g 3⋄4the points x1, x2, x3 are 
onstru
ted by this way starting from the lines L1, L2, L3 passing through O.

zyx p6p5 p4 p3 p2
p1
•

•

•

•

••

Fig. 3⋄5. Ins
ribed hexagon. Fig. 3⋄6. Cir
ums
ribed hexagon.



§ 3. Working examples: 
oni
s, pen
ils of lines, and plane drawings. 153.3.1.PROPOSITION (PASCAL'S THEOREM). A hexagon p1; p2; : : : ; p6 is ins
ribed into a non singular
oni
 i� the points1 (p1p2) ∩ (p4p5), (p2p3) ∩ (p5p6), (p3p4) ∩ (p6p1) are 
ollinear (see �g 3⋄5).Proof. Draw the 
oni
 Q through 5 of pi ex
ept for p4 and put `1 = (p1p6), `2 = (p1p2), y = (p5p6) ∩ (p2p3),x = (p3p4) ∩ `1, z = (xy) ∩ `2. Then z ∈ `2 is the image of x ∈ `1 under the proje
tive linear isomorphism
y =
p5p3 : `1 ∼- `2 like before. In parti
ular, the interse
tion point (p3p4) ∩ (p5z) lays on Q. Hen
e, p4 ∈Q i�p4 = (p3p4) ∩ (p5z). �3.3.2.COROLLARY (BRIANCHON'S THEOREM). A hexagon p1; p2; : : : ; p6 is 
ir
ums
ribed arounda non singular 
oni
 i� its main diagonals (p1p4), (p2p5), (p3p6) are interse
ting at one point (see �g.�g 3⋄6).Proof. This is just the proje
tively dual version of the Pas
al theorem. �3.4.Linear isomorphisms of pen
ils. A family of geometri
al �gures is referred as a pen
il , if it isnaturally parameterized by the proje
tive line. For example, all lines passing through a given point p∈P2form a pen
il, be
ause their equations run trough the line p×∈P×2 by proje
tive duality. More generally,there is a pen
il of hyperplanes H ⊂ Pn passing through a given subspa
e L ⊂ Pn of 
odimension 2.Su
h a pen
il is denoted by |h − L| (read: �all hyperplanes 
ontaining L�) or by L× ∈ P×n . Given twosu
h pen
ils, say L×1 , L×2 and 3 points a; b; 
 ∈ Pn \ (L1 ∪ L2) su
h that 3 hyperplanes from L×i passingthrough them are distin
t in the both pen
ils, then these 3 points de�ne a proje
tive linear isomorphismL×1 
ab
- L×2 that sends 3 hyperplanes of the �rst pen
il passing through a; b; 
 to the 
orresponding onesfrom the se
ond pen
il.3.4.1.Example: linear identi�
ation of two pen
ils p×1 and p×2 on P2 is given by any 3 points a; b; 
 su
h that any2 of them are not 
ollinear with p1 or p2. It sends (p1a) 7−→ (p2a), (p1b) 7−→ (p2b), (p1
) 7−→ (p2
). Let Q be the(unique!) 
oni
 passing trough 5 points p1, p2, a, b, 
. There are two di�erent 
ases (see �g 3⋄7{�g 3⋄8).x ∈ Q

ab
(`x) `xO


 ba
p2 p1

•

•

•

•

•

•

••

bxa

ab
(`x) `xp2 
 p1

`•

•

•

•••Fig. 3⋄7. Ellipti
 isomorphism of pen
ils. Fig. 3⋄8. Paraboli
 isomorphism of pen
ils.(A) Ellipti
 
ase: Q is non singular, i. e. all 5 points are linearly general. In this 
ase the in
iden
e graph2 of
ab
 
oin
ides with Q, be
ause the points of Q give the proje
tive linear isomorphism p×1 - p×2 that has thesame a
tion on a, b, 
. Moreover, the above dis
ussions let us draw the line 
ab
(`x) for a given (`x∈p×1 ) by theruler as follows (see �g 3⋄7). First mark the point O = (p1b) ∩ (p2
); then �nd the interse
tion point `x ∩ (a 
),join it with O by a line, and mark the point where this line 
rosses (b 
); then the line 
ab
(`x) goes through thismarked point.(B) Paraboli
 
ase: Q is redu
ible, i. e. splits in two lines: (p1p2) and, say, ` = (a b). This happens when
 ∈ (p1p2) (re
all that no 2 points from a; b; 
 are 
ollinear with any of pi). In this 
ase the in
iden
e graph for
ab
 
oin
ides with the line ` (see �g 3⋄8).Dualizing these examples, we get geometri
al 
lassi�
ation of proje
tive linear isomorphisms `1 ∼- `2between two given lines on P2.3.4.2.COROLLARY. There are exa
tly two types of proje
tive linear isomorphisms `1 ∼- `2. Ellipti
isomorphisms 
Q 
orrespond bije
tively to the non singular 
oni
s Q tou
hing both `1 and `2. Su
h 
Qsends x 7−→ y i� the line (x y) is tangent to Q (see �g 3⋄9). Paraboli
 isomorphisms 
L are parameterizedby the points L ∈ P2 \ (`1 ∪ `2). Su
h 
L sends x 7−→ y i� the line (x y) pass through L (see �g 3⋄10). �1i. e. 3 interse
tion points of the line pairs passing through the opposite sides of the hexagon2i. e. a 
urve tra
ed by the interse
tion points ` ∩ 
ab
(`) while ` runs through p×1
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a1b1
1

b2a2
2
`2`1 `2 = p×2`1 = p×1

•

b1x1a1 a2x2a2
1 = 
2 L
•

•

•

•

•

•

•

Fig. 3⋄9. Ellipti
 isomorphism of lines. Fig. 3⋄10. Paraboli
 isomorphism of lines.3.5.Towards Pon
elet's porism. Given two non singular 
oni
s Q, Q′, we 
an try to draw an n-gonesimultaneously ins
ribed in Q′ and 
ir
ums
ribed about Q: starting from some point p1 ∈ Q′ draw atangent line from p1 to Q until it meets Q′ in p2, then draw a tangen
y from p2 e. t. 
. Pon
elet's theoremsays that if this pro
edure 
omes ba
k to pn = p1 after n steps, then the same holds for any 
hoi
e ofthe starting point p1 maybe ex
ept for some �nite set. The next two 
orollaries explain Pon
elet porismfor triangles (i. e. for n = 3)3.5.1.COROLLARY. Two triangles ABC and A′B′C ′ are both ins
ribed into the same 
oni
 Q i�they are both 
ir
ums
ribed around the same 
oni
 Q′.Proof. We 
he
k only �⇒� impli
ation, then the opposite impli
ation 
omes by proje
tive duality. Consider twolines ` = (AB), `′ = (A′B′) and ellipti
 proje
tive linear isomorphism ` 
- `′ 
omposed as the proje
tion of `onto Q from B′ followed by the proje
tion of Q onto `′ from B (see �g 3⋄11). Sin
e it takes A 7→ L′, C 7→ K ′,K 7→ C ′, L 7→ A′, all the sides of the both triangles should tou
h the 
oni
 asso
iated with 
 via n◦ 3.4.2. �`1
x 
1(b
)× b1 b× b2
× 
2
(x)a×a1 a2`2 (a
)×
•

•

•

•

•

•

•

•

•
•

Fig. 3⋄11. Ins
ribed-
ir
ums
ribed triangles. Fig. 3⋄12. Finding 
Q(x).3.5.2.COROLLARY. Given two 
oni
s Q, Q′ su
h that there exists a triangle ABC ins
ribed into Qand 
ir
ums
ribed around Q′, then any point A′ ∈ Q is a vertex of a triangle A′B′C ′ ins
ribed into Qand 
ir
ums
ribed around Q′.Proof. Take any A′ ∈ Q and pi
k B′; C ′ ∈ Q su
h that the lines (A′B′), (A′C ′) are tangent to Q′ (see �g 3⋄11again). By the previous 
orollary, both ABC and A′B′C ′ are 
ir
ums
ribed around some 
oni
, whi
h must
oin
ide with Q′, be
ause there exist a unique 
oni
 tou
hing 5 lines (AB), (BC), (CA), (A′B′), (A′C ′). �Exer
ise 3.3. Make n◦ 3.1.1 more pre
ise by �nding ne
essary and suÆ
ient 
ondition on 5 lines in P2 forexisten
e of a unique non singular 
oni
 tou
hing all of them.Hint. This is proje
tively dual to n◦ 2.7.33.6.Making a proje
tive isomorphism by the ruler. If an isomorphism `1 
- `2 is given by itsa
tion on some 3 points, say: a1 7−→ a2, b1 7−→ b2, 
1 7−→ 
2, then we 
an �nd the image 
(x) of any
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oni
s, pen
ils of lines, and plane drawings. 17x∈`1 by the ruler. In paraboli
 
ase this is trivial (see �g 3⋄10). In ellipti
 
ase the drawing algorithm isproje
tively dual to the one dis
ussed in n◦ 3.4.1 (A). Namely, draw the line O× = (b1a2); then pass theline through x and (a1a2)∩(
1
2) and mark its interse
tion point with O×; now 
(x) is the interse
tion of`2 with the line passing through the last marked point and (b1b2)∩ (
1
2) (
ompare �g 3⋄7 and �g 3⋄12).Exer
ise 3.4. Let Q ⊂ P2 be non singular 
oni
 
onsidered together with some rational parameterization
P1 ∼- Q. Show that for any two points p1; p2 ∈ Q and a line ` ⊂ P2 a map Q 
- Q given by pres
ription:x 
7−→ y ⇐⇒ �p1` x = �p2` y is indu
ed by some linear automorphism of P1 (i. e. by some linear fra
tionalreparameterization). Find the images of p1, p2 and the �xed points of the above map. Show that any bije
tionQ ∼- Q indu
ed by a linear automorphism of P1 
an be (not uniquely) realized geometri
ally by two pointsp1; p2 ∈ Q and a line ` ⊂ P2 in the way des
ribed above. Is it possible, using only the ruler, to �nd (some)p1; p2; ` for a bije
tion Q ∼- Q given by its a
tion on 3 points a; b; 
;∈ Q?Hint. Try p2 = a.Exer
ise 3.5∗. Given a non singular 
oni
 Q and three points A, B, C, draw (using only the ruler) a triangleins
ribed in Q with sides passing through A, B, C. How many solutions may have this problem?Hint. Start �naive� drawing from any p∈Q and denote by 
(p) your return point after passing trough A;B;C.Is p 7−→ 
(p) a proje
tive isomorphism of kind des
ribed in ex. 3.4?Exer
ise 3.6∗. Formulate and solve proje
tively dual problem to the previous one.
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§4.Tensor Guide.4.1.Multilinear maps. Let V1; V2; : : : ; Vn and W be ve
tor spa
es of dimensions d1; d2; : : : ; dn and mover an arbitrary �eld k. A map V1 × V2 × · · · × Vn '- W is 
alled multilinear , if in ea
h argument'( : : : ; �v′ + �v′′ ; : : : ) = �'( : : : ; v′ ; : : : ) + �'( : : : ; v′′ ; : : : )when all the other remain to be �xed. The multilinear maps V1 × V2 × · · · × Vn - W form ave
tor spa
e of dimension m ·∏ d� . Namely, if we �x a basis {e(i)1 ; e(i)2 ; : : : ; e(i)di } for ea
h Vi and a basis

{e1; e2; : : : ; em} for W , then any multilinear map ' is uniquely de�ned by its values at all 
ombinationsof the basi
 ve
tors: '( e(1)�1 ; e(2)�2 ; : : : ; e(n)�n ) =∑� a(�1;�2;:::;�n)� · e� ∈ WAs soon as m ·∏ d� numbers a(�1;�2;:::;�n)� ∈ k are given, the map ' is well de�ned by the multilinearity.It sends a 
olle
tion of ve
tors (v1; v2; : : : ; vn), where vi = di∑�i=1x(i)�i e(i)�i ∈ Vi for 1 6 i 6 n, to'(v1; v2; : : : ; vn) = m∑j=1( ∑�1;�2;:::;�n a(�1;�2;:::;�n)� · x(1)�1 · x(2)�2 · · · · · x(n)�n ) · e� ∈ Wthe numbers a(�1;�2;:::;�n)� 
an be 
onsidered as elements of some �(n + 1)-dimensional format matrix ofsize m× d1 × d2 × · · · × dn�, if you 
an imagine su
h a thing1.Exer
ise 4.1. Che
k that a 
olle
tion (v1; v2; : : : ; vn) ∈ V1 × V2 × · · · × Vn doesn't 
ontain zero ve
tor i� thereexists a multilinear map ' (to somewhere) su
h that '(v1; v2; : : : ; vn) 6= 0.Exer
ise 4.2. Che
k that a multilinear map V1 × V2 × · · · × Vn '- U 
omposed with a linear operatorU F- W is a multilinear map V1 × V2 × · · · × Vn F◦'- W as well.4.2.Tensor produ
t of ve
tor spa
es. Let V1 × V2 × · · · × Vn �- U be a �xed multilinear map.Then for any ve
tor spa
e W we have the 
omposition operator
( the spa
e Hom(U;W ) of alllinear operators U F- W ) F 7−→F◦� -

( the spa
e of all multilinear mapsV1 × V2 × · · · × Vn '- W ) (4-1)A multilinear map V1 × V2 × · · · × Vn �- U is 
alled universal if the 
omposition operator (4-1) is anisomorphism for any ve
tor spa
e W . In other words, the multilinear map � is universal, if for any Wand any multilinear map V1×V2× · · · ×Vn '- W there exist a unique linear operator U F- W su
hthat ' = F ◦� , i. e. the 
ommutative diagram UV1 × V2 × · · · × Vn� -

WF?' -
an be always 
losed by a unique linear dotted row.4.2.1.CLAIM. Let V1 × V2 × · · · × Vn �1- U1 É V1 × V2 × · · · × Vn �2- U2 be two universalmultilinear maps. Then there exists a unique linear isomorphism U1 �- U2 su
h that �2 = ��1.1a usual d×m - matrix, whi
h presents a linear map V - W , has just 2-dimensional format
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e both U1; U2 are universal, there are unique linear operators U1 F21- U2 and U2 F12- U1 mounted inthe diagrams U1 IdU1 U1V1 × V2 × · · · × Vn�1 -
� �1

U2F12
6

IdU2�
�2 U2F21?�2 -

=⇒ U2V1 × V2 × · · · × Vn �1-�2 -U1�...................F12 U2IdU2...................F21
-�2

-So, the 
omposition F21F12 = IdU2 , be
ause of the uniqueness property in the universality of U2. Similarly,F12F21 = IdU1 . �4.2.2.CLAIM. Let {e(i)1 ; e(i)2 ; : : : ; e(i)di } ∈ Vi be a basis (for 1 6 i 6 n). Denote by V1 ⊗ V2 ⊗ · · · ⊗ Vna (∏ di) - dimensional ve
tor spa
e whose basi
 ve
tors are the symbolse(1)�1 ⊗ e(2)�2 ⊗ : : : ⊗ e(n)�n ; 1 6 �i 6 di (4-2)(all possible formal �tensor produ
ts� of basi
 ve
tors e(�)� ). Then the multilinear mapV1 × V2 × · · · × Vn �- V1 ⊗ V2 ⊗ · · · ⊗ Vnwhi
h sends a basis ve
tor 
olle
tion (e�1 ; e�2 ; : : : ; e�n) ∈ V1 × V2 × · · · × Vn to the 
orresponding basisve
tor (4-2) is universal.Proof. Let V1 × V2 × · · · × Vn '- W be a multilinear map and V1 ⊗ V2 ⊗ · · · ⊗ Vn F- W be a linear operator.Comparing the values at the basi
 ve
tors, we see that' = F ◦� ⇐⇒ F ( e(1)�1 ⊗ e(2)�2 ⊗ : : : ⊗ e(n)�n ) = '(e(1)�1 ; e(2)�2 ; : : : ; e(n)�n ) :
�4.3.The Segre embedding. The ve
tor spa
e V1 ⊗ V2 ⊗ · · · ⊗ Vn is 
alled a tensor produ
t ofV1; V2; : : : ; Vn. The universal multilinear map V1 × V2 × · · · × Vn �- V1 ⊗ V2 ⊗ · · · ⊗ Vn is 
alleda tensor multipli
ation. For a 
olle
tion of ve
tors (v1; v2; : : : ; vn) ∈ V1 × V2 × · · · × Vn the image�(v1; v2; : : : ; vn) is denoted by v1 ⊗ v2 ⊗ · · · ⊗ vn and 
alled a tensor produ
t of these ve
tors. All su
hprodu
ts are 
alled de
omposable tensors. Of 
ourse, not all the ve
tors of V1 ⊗ V2 ⊗ · · · ⊗ Vn arede
omposable and im � is not a ve
tor subspa
e in V1 ⊗ V2 ⊗ · · · ⊗ Vn, be
ause � is multi linear but notlinear. However, the linear span of de
omposable tensors exhausts the whole of V1 ⊗ V2 ⊗ · · · ⊗ Vn.Geometri
ally, the tensor multipli
ation gives a map

P(V1)× P(V2)× · · · × P(Vn) ⊂ s- P(V1 ⊗ V2 ⊗ · · · ⊗ Vn)
alled a Segre embedding . If di = dimVi = mi + 1, then the Segre embedding is a bije
tion between
Pm1 × Pm2 × · · · × Pmn and a Segre variety formed by all de
omposable tensors 
onsidered up toproportionality. This variety lives in PN with N = −1+∏(1+mi) and has dimension (∑mi) but doesnot lie in a hyperplane. It is ruled by n families of linear subspa
es.4.3.1.Example: the Segre embedding Pm1 × Pm2 ⊂ - Pm1+m2+m1m2 sends x = (x0 : x1 : : : : : xm1) ∈ Pm1and y = (y0 : y1 : : : : : ym2) ∈ Pm2 to the point s(x; y) ∈ Pm1+m2+m1m2 whose (1 +m1)(1 +m2) homogeneous
oordinates are all possible produ
ts xiyj with 0 6 i 6 m1 and 0 6 j 6 m2. To visualize this thing, take
Pm1 = P(V ∗), Pm2 = P(W ), and Pm1+m2+m1m2 = P(Hom(V;W )), where Hom(V;W ) is the spa
e of all linearmaps. Then the Segre map sends a pair (�; w) ∈ V ∗ × W to the linear map � ⊗ w, whi
h a
ts by the rulev 7−→ �(v) · w.Exer
ise 4.3. Che
k that a map V ∗ ×W - Hom(V;W ) whi
h sends (�; w) to the operator v 7−→ �(v) · w isthe universal bilinear map (so, there is a 
anoni
al isomorphism V ∗ ⊗W ≃ Hom(V;W ))
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ise 4.4. Che
k that for � = (x0; x1; : : : ; xm1) ∈ V ∗ and w = (y0; y1; : : : ; ym2) ∈W operator �⊗w has thematrix aij = xjyi.Sin
e any operator � ⊗ w has 1-dimensional image, the 
orresponding matrix has rank 1. On the other side, anyrank 1 matrix has proportional 
olumns. Hen
e, the 
orresponding operator has 1-dimensional image, say spanedby w∈W , and takes v 7−→ �(v)w, where the 
oeÆ
ient �(v) ∈ k depends on v linearly. So, the image of the Segreembedding 
onsists of all rank 1 operators up to proportionality. In parti
ular, it 
an be de�ned by quadrati
equations det(aij aika`j a`k) = aija`k − aika`j = 0 saying that all 2× 2 - minors for the matrix (a��) vanish.4.4.Tensor algebra of a ve
tor spa
e. If V1 = V2 = · · · = Vn = V , then V ⊗n def= V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸nis 
alled an n-th tensor power of V . All tensor powers are 
ombined in the in�nite dimensional non
ommutative graded algebra T•V = ⊕n>0V ⊗n, where V ⊗0 def= k.Exer
ise 4.5. Using the universality, show that there are 
anoni
al isomorphisms
(V ⊗n1 ⊗ V ⊗n2)⊗ V ⊗n3 ≃ V ⊗n1 ⊗ (V ⊗n2 ⊗ V ⊗n3) ≃ V ⊗(n1+n2+n3)whi
h make the ve
tor's tensoring to be well de�ned asso
iative multipli
ation on T•V .Algebrai
ally, T•V is what is 
alled �a free asso
iative k-algebra generated1 by V �. Pra
ti
ally, thismeans that if we �x a basis {e1; e2; : : : ; ed} ⊂ V , then T•V turns into the spa
e of the formal �nite linear
ombinations of words 
onsisting of the letters ei separated by ⊗. These words are multiplied by writingafter one other 
onsequently and the multipli
ation is extended onto linear 
ombinations of words bythe usual distributivity rules.4.5.Duality. The spa
es V ⊗n = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸n and V ∗⊗n = V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸n are 
anoni
allydual to ea
h other. The pairing between v = v1⊗v2⊗ · · · ⊗vn ∈ V ⊗n and � = �1⊗ �2⊗ · · · ⊗ �n ∈ V ∗⊗nis given by a full 
ontra
tion

〈 v ; � 〉 def= n∏i=1 �i(vi) : (4-3)Let {e1; e2; : : : ; en} ⊂ V and {�1; �2; : : : ; �n} ⊂ V ∗ be some dual bases. Then the basi
 words { ei1 ⊗ei2 ⊗ · · · ⊗ eir } and { �j1 ⊗ �j2 ⊗ · · · ⊗ �js } form dual bases for T•V and T•V ∗ with respe
t to the full
ontra
tion. So, V ⊗n∗ ≃ V ∗⊗n. On the other side, the spa
e (V ⊗n)∗ is naturally identi�ed with the spa
eof all multilinear forms V × V × · · · × V︸ ︷︷ ︸n - k , be
ause V ⊗n is universal. So, there exists a 
anoni
alisomorphism between V ∗⊗n = V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸n and the spa
e of multilinear forms in n argumentsfrom V . It sends a tensor � = �1 ⊗ �2 ⊗ · · · ⊗ �n ∈ V ∗⊗n to the form (v1; v2; : : : ; vn) 7−→ n∏i=1 �i(vi).4.6.Partial 
ontra
tions. Let {1; 2; : : : ; p} �I
⊃ {1; 2; : : : ; m} ⊂ J- {1; 2; : : : ; q} be two inje
tive(not ne
essary monotonous) maps. We write i� and j� for I(�) and J(�) respe
tively and 
onsider I =(i1; i2; : : : ; im) and J = (j1; j2; : : : ; jm) as two ordered (but not ne
essary monotonous) index 
olle
tionsof the same 
ardinality. A linear operatorV ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸p ⊗V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸q 
IJ- V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸p−m ⊗V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸q−mwhi
h sends �1⊗ �2⊗ · · · ⊗ �p⊗ v1⊗ v2⊗ · · · ⊗ vq to m∏�=1 �i� (vj� ) · ⊗i6∈im (I) �i⊗ ⊗j 6∈im(J) vj is 
alled a partial
ontra
tion in the indexes I and J .1If you like it, make the following formal exer
ise: dedu
e from the universality that for any asso
iative k-algebra A andve
tor spa
e map V f- A there exists a unique algebra homomorphism T•V �- A su
h that �|V = f
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ontra
tion between a ve
tor and a multilinear form. Consider a multilinear form'(v1; v2; : : : ; vn)as a tensor from V ∗⊗n and 
onta
t it in the �rst index with a ve
tor v∈V . The result belongs to V ∗⊗(n−1) andgives a multilinear form in (n− 1) arguments. This form is denoted by iv' and 
alled an inner produ
t of v and'.Exer
ise 4.6. Che
k that iv'(w1; w2; : : : ; wn−1) = '(v;w1; w2; : : : ; wn−1), i. e. the inner multipli
ation by v isjust the �xation of v in the �rst argument.4.7.Linear span of a tensor. Let U;W ⊂ V be any two subspa
es. Writing down the standardmonomial bases, we see immediately that (U ∩W )⊗n = U⊗n∩W⊗n in V ⊗n. So, for any t ∈ V ⊗n there isa minimal subspa
e span(t) ⊂ V whose n-th tensor power 
ontains t. It is 
alled a linear span of t and
oin
ides with the interse
tion of allW ⊂ V su
h that t∈W⊗n. To des
ribe span(t) more 
onstru
tively,for any inje
tive (not ne
essary monotonous) mapJ = (j1; j2; : : : ; jn−1) : {1; 2; : : : ; (n− 1)} ⊂ - {1; 2; : : : ; n}
onsider a linear map V ∗⊗(n−1) 
Jt- V de�ned by 
omplete 
ontra
tion with t: it sends a de
omposabletensor ' = �1 ⊗ �2 ⊗ · · · ⊗ �n−1 to a ve
tor obtained by 
oupling �-th fa
tor �� , of ', with j�-th fa
torof t for all 1 6 � 6 (n− 1) , i. e. 
Jt (') = 
(1; 2; ::: ; (n−1))(j1;j2;:::;jn−1) ('⊗ t) :4.7.1.CLAIM. As a ve
tor spa
e, span(t) ⊂ V is linearly generated by the images 
Jt (V ∗⊗(n−1))taken for all possible J .Proof. Let span(t) = W ⊂ V . Then t∈W⊗n and im (
Jt ) ⊂ W ∀J . It remains to prove that W is annihilated byany linear form � ∈ V ∗ whi
h annihilate all the subspa
es im (
Jt ). Suppose the 
ontrary: let � ∈ V ∗ have nonzero restri
tion on W but annihilate all 
Jt (V ∗⊗(n−1)). Then there exist a basis {w1; w2; : : : ; wk} for W and abasis {�1; �2; : : : ; �d} for V ∗ su
h that: �1 = �, the restri
tions of �1; �2; : : : ; �k onto W form the basis of W ∗ dualto {w�}, and �k+1; : : : ; �d annihilate W . Now, for any J and �i1; �i2; : : : ; �in−1 we have0 = 〈 � ; 
Jt (�i1 ⊗ �i2 ⊗ · · · ⊗ �in−1) 〉 = 〈 �ij−11 ⊗ · · · ⊗ �ij−1s−1 ⊗ � ⊗ �ij−1s+1 ⊗ · · · ⊗ �ij−1n ; t 〉 (4-4)where s = {1; 2; : : : ; n}\im (J) and J−1 = (j−11 ; j−12 ; : : : ; j−1n ) is the inverse to J map from im (J) ⊂ {1; 2; : : : ; n}to {1; 2; : : : ; (n− 1)}. Note that ea
h basi
 monomial of V ∗(n−1) 
ontaining as a fa
tor �1 = � 
an appear as the�rst operand in the right side of (4-4). But if we expand t trough the basi
 monomials wi1 ⊗ wi2 ⊗ · · · ⊗ win,then the 
oeÆ
ients of this expansion 
an be 
omputed as full 
ontra
tions of t with the 
orresponding elements�i1 ⊗ �i2 ⊗ · · · ⊗ �in from the dual basis for W ∗⊗n. By (4-4), su
h a 
ontra
tion equals zero as soon one of �i�equals �1 = �, whi
h is dual to w1. So, span(t) is 
ontained in the linear span of w2; : : : ; wk but this 
ontradi
tsour assumption. �4.8. Symmetry properties. A multilinear map V × V × · · · × V︸ ︷︷ ︸n '- W is 
alled symmetri
 if itdoesn't 
hange its value under any permutations of the arguments. If the value of ' is stable underthe even permutations and 
hanges the sign under the odd ones, then ' is 
alled skew symmetri
.Sin
e the 
omposition operator (4-1) preserves the symmetry properties, for the (skew)symmetri
 ' the
omposition operator (4-1) turns into
( the spa
e Hom(U;W ) of alllinear operators U F- W ) F 7−→F◦'- 


the spa
e of all (skew)symmetri
multilinear maps V × V × · · · × V

| {z }n  - W 
 (4-5)A (skew)symmetri
 multilinear map V × V × · · · × V︸ ︷︷ ︸n '- U is 
alled universal if (4-5) is an isomor-phism for any W . In the symmetri
 
ase the universal target spa
e is denoted by SnV and 
alled n-th
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 power of V . In the skew symmetri
 
ase it is 
alled n-th exterior power of V and denoted by�nV .Exer
ise 4.7. Show that, if exist, SnV and �nV are unique up to unique isomorphism 
ommuting with theuniversal maps.4.9. Symmetri
 algebra S•V of V is a fa
tor algebra of the free asso
iative algebra T•V by a
ommutation relations vw = wv. More pre
isely, denote by Isym ⊂ T•V a linear span of all tensors
· · · ⊗ v ⊗ w ⊗ · · · − · · · ⊗ w ⊗ v ⊗ · · · ;where the both terms are de
omposable, have the same degree, and di�er only in order of v; w. Clearly,

Isym is a double-sided ideal in T•V generated by a linear span of all the di�eren
es v⊗w−w⊗v ∈ V ⊗V .The fa
tor algebra S•V def= T•V=Isym is 
alled a symmetri
 algebra of the ve
tor spa
e V . By the
onstru
tion, it is 
ommutative1. Sin
e Isym = ⊕n>0 (Isym ∩ V ⊗n) is the dire
t sum of its homogeneous
omponents, the symmetri
 algebra is graded: S•V = ⊕n>0SnV , where SnV def= V ⊗n=(Isym ∩ V ⊗n).4.9.1.CLAIM. The tensor multipli
ation followed by the fa
torization map:V × V × · · · × V︸ ︷︷ ︸n � - V ⊗n �-- Sn(V ) (4-6)gives the universal symmetri
 multilinear map.Proof. Any multilinear map V × V × · · · × V '- W is uniquely de
omposed as ' = F ◦� , where V ⊗n F- Wis linear. F is fa
tored through � i� F ( · · · ⊗ v ⊗ w ⊗ · · · ) = F ( · · · ⊗ w ⊗ v ⊗ · · · ), i. e. i� '( : : : ; v; w; : : : ) ='( : : : ; w; v; : : : ) �The graded 
omponents SnV are 
alled symmetri
 powers of V and the map (4-6) is 
alled a symmetri
multipli
ation. If a basis {e1; e2; : : : ; ed} ⊂ V is �xed, then SnV is naturally identi�ed with the spa
eof all homogeneous polynomials of degree n in ei. Namely, 
onsider the polynomial ring k[e1; e2; : : : ; ed℄(whose �variables� are the basi
 ve
tors ei) and identify V with the spa
e of all linear homogeneouspolynomials in ei.Exer
ise 4.8. Che
k that the multipli
ation mapV × V × · · · × V︸ ︷︷ ︸n (`1;`2;:::;`n) 7−→ n
Q�=1 `�- ( the homogeneous polynomialsof degree n in ei )is universal and show that dimSnV = (d+n−1n ).4.10.Exterior algebra �•V of V is a fa
tor algebra of the free asso
iative algebra T•V by a skew
ommutation relations vw = −wv. More pre
isely, 
onsider a double-sided ideal Iskew ⊂ T•V generatedby all sums v ⊗ w + w ⊗ v ∈ V ⊗ V and put �•V def= T•V=Iskew. Exa
tly as in the symmetri
 
ase, theideal Iskew is homogeneous: Iskew = ⊕n>0 (Iskew ∩ V ⊗n), where (Iskew ∩ V ⊗n) is the linear span of allsums

· · · ⊗ v ⊗ w ⊗ · · · + · · · ⊗ w ⊗ v ⊗ · · ·(the both items have degree n and di�er only in the order of v; w). So, the fa
tor algebra �•V is gradedby the subspa
es �nV def= V ⊗n=(Iskew ∩ V ⊗n).Exer
ise 4.9. Prove that the tensor multipli
ation followed by the fa
torizationV × V × · · · × V︸ ︷︷ ︸n ........�
- V ⊗n �-- �n(V ) (4-7)1Again, if you like it, prove that for any 
ommutative k-algebra A and a ve
tor spa
e map V f- A there exists aunique homomorphism of 
ommutative algebras S•V �- A su
h that �|V = f
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 multilinear map.The map (4-7) is 
alled an exterior or skew multipli
ation. The skew produ
t of ve
tors (v1; v2; : : : ; vn)is denoted by v1 ∧ v2 ∧ · · · ∧ vn. By the 
onstru
tion, it 
hanges the sign under the transposition of anytwo 
onsequent terms. So, under any permutation of terms the skew produ
t is multiplied by the signof the permutation.Exer
ise 4.10. For any U;W ⊂ V 
he
k that SnU ∩ SnW = Sn(U ∩ U) in SnV and �nU ∩ �nW = �n(U ∩ U)in �nV .4.11.Grassmannian polynomials. Let {e1; e2; : : : ; ed} ⊂ V be a basis . Then the exterior algebra�•V is identi�ed with a grassmannian polynomial ring k 〈e1; e2; : : : ; ed〉 whose �variables� are the basi
ve
tors ei whi
h skew 
ommute, that is, ei ∧ ej = −ej ∧ ei for all i; j. More pre
isely, it is linearlyspanned by the grassmannian monomials ei1 ∧ ei2 ∧ · · · ∧ ein . It follows from skew 
ommutativity thatei ∧ ei = 0 for all i, that is, a grassmannian monomial vanishes as soon as it be
omes of degree morethen 1 in some ei. So, any grassmannian monomial has a unique representation ei1 ∧ ei2 ∧ · · · ∧ ein with1 6 i1 < i2 < · · · < in 6 d.4.11.1.CLAIM. The monomials eI def= ei1 ∧ ei2 ∧ · · · ∧ ein , where I = (i1; i2; : : : ; in) runs throughthe in
reasing n-element subsets in {1; 2; : : : ; d}, form a basis for �nV . In parti
ular, �nV = 0 forn > dimV , dim�nV = (dn) , and dim k 〈e1; e2; : : : ; ed〉 = 2d.Proof. Consider (dn)-dimensional ve
tor spa
e U whose basis 
onsists of the symbols �I , where I = (i1; i2; : : : ; in)runs through the in
reasing n-element subsets in {1; 2; : : : ; d}. De�ne a skew symmetri
 multilinear mapV1 × V2 × · · · × Vn �- U : (ej1 ; ej2 ; : : : ; ejn) 7−→ sgn(�) · �I ;where I = (j�(1); j�(2); : : : ; j�(n); ) is an in
reasing 
olle
tion obtained from (j1; j2; : : : ; jn) by a (unique) permu-tation �. This map is universal. Indeed, for any skew symmetri
 multilinear map V × V × · · · × V︸ ︷︷ ︸n '- Wthere exists at most one linear operator U F- W su
h that ' = F ◦�, be
ause it has to a
t on the basis asF (�I ) = '(ei1 ; ei2 ; : : : ; ein)) for all in
reasing I = (i1; i2; : : : ; in). On the other side, su
h F really de
omposes', be
ause F (�(ej1 ; ej2 ; : : : ; ejn)) = '(ej1 ; ej2 ; : : : ; ejn)) for all not in
reasing basis 
olle
tions (ej1 ; ej2 ; : : : ; ejn) ⊂V × V × · · · × V︸ ︷︷ ︸n as well. By the universality, there exists a 
anoni
al isomorphism between U and �nV whi
hsends �I to ei1 ∧ ei2 ∧ · · · ∧ ein = eI . �Exer
ise 4.11. Che
k that f(e) ∧ g(e) = (−1)deg(f)·deg(g) g(e) ∧ f(e)for all homogeneous f(e); g(e) ∈ k 〈e1; e2; : : : ; ed〉. In parti
ular, ea
h even degree homogeneous polynomial
ommutes with any grassmannian polynomial.Exer
ise 4.12. Des
ribe the 
enter of k 〈e1; e2; : : : ; ed〉, i. e. all grassmannian polynomials whi
h 
ommute witheverything.4.11.2.Example: linear basis 
hange in grassmannian polynomial. Under the linear substitution ei = d∑j=1 aij �jthe basis monomials eI are 
hanged by the new basis monomials �I as follows:eI = ei1 ∧ ei2 ∧ · · · ∧ ein = (∑j1 ai1j1 �j) ∧ (∑j2 ai2j2 �j) ∧ · · · ∧(∑jn ainjn �j) == ∑16j1<j2<···<jn6n ∑�∈Sn sgn(�) ai1j�(1)ai2j�(2) · · · ainj�(n) �j1 ∧ �j2 ∧ · · · ∧ �jn =∑J aIJ �J ;where aIJ is (n× n)-minor of (aij) pla
ed at (i1; i2; : : : ; in) rows and (j1; j2; : : : ; jn) 
olumns, and J runs throughall in
reasing index 
olle
tions of the length #J = n.Exer
ise 4.13. Let |I| = ∑� i� denote a weight of the in
reasing index 
olle
tion I = (i1; i2; : : : ; in) of length#I = n. Che
k that eI ∧ ebI = (−1)|I|+ 12#I(1+#I) · e1 ∧ e2 ∧ · · · ∧ ed (4-8)
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omplementary index 
olle
tions I and Î def= {1; 2; : : : ; n} \ I.4.11.3.Example: the Sylvester relations via grassmannian polynomials. Let us take two 
omplementary index
olle
tions I and Î def= {1; 2; : : : ; n} \ I and do a basis 
hange ei = d∑j=1 aij �j in the identity (4-8). Its left sideeI ∧ ebI turns to
( ∑K:#K=#I aIK �K) ∧ ( ∑L:#L=(d−#I)aLbI �L) = (−1) 12#I(1+#I) ∑K:#K=#I(−1)|K|aIKabI bK �1 ∧ �2 ∧ · · · ∧ �d ;where K̂ = {1; 2; : : : ; d} \K. The right side of (4-8) gives (−1) 12#I(1+#I)(−1)|I| det(aij)�1 ∧ �2 ∧ · · · ∧ �d. So, forany any 
olle
tion I of rows in any square matrix (aij) the following relation holds:

∑K:#K=#I(−1)|K|+|I|aIK âIK = det(aij) ; (4-9)where âIK def= a
bI bK denotes the (d−n)× (d−n) - minor whi
h is 
omplementary1 to aIK and the summation runsover all (n× n) - minors aIK 
ontained in the rows (i1; i2; : : : ; in).If we take I∩J 6= ∅, then starting from eI ∧eJ = 0 instead of (4-8) we get by the same 
al
ulation the relation

∑K:#K=#I(−1)|K|+|I|aIK âJK = 0 ; (4-10)The identities (4-9) and (4-10) are known as Sylvester relations. Let us �x, say lexi
ographi
al, order on theset of indi
es I and arrange all (n × n)-minors aIJ as (dn) × (dn) - matrix A(n) def= (aIJ ). If we denote by Â(n) amatrix whose (IJ)-entry equals ((−1)|I|+|J|âJI), then all the Sylvester relations are expressed by the single matrixequality A(n) · Â(n) = det(aij) · E.4.11.4.Example: redu
tion of grassmannian quadrati
 forms. Any homogeneous grassmannian polynomial ofdegree 2 
an be written as �1 ∧ �2 + �3 ∧ �4 + · · · + �r−1 ∧ �r (4-11)in some basis (over any �eld k). Namely, we 
an suppose2 that our grassmannian quadrati
 form isq(e) = e1 ∧ (�2e2 + · · · + �nen) + (terms without e1)where �2 6= 0 and �2 def= �2e2 + · · · + �nen does not 
ontain e1, that is it 
an be in
luded in the new basis
{�1; �2; : : : ; �n} with �i = ei for i 6= 2. After the substitution e2 = �−12 (�2 − �3�3 − · · · − �n�n), ei = �i for i 6= 2,we 
an write q as q(�) = �1 ∧ �2 + �2 ∧ (�3�3 + · · · + �n�n) + (terms without �1 and �2). So, in the next new base:
{�1; �2; : : : ; �n} with �1 = �1 − �3�3 − · · · − �n�n , �i = �i for i 6= 1 our q turns toq(�) = �1 ∧ �2 + (terms without �1 and �2)and this pro
edure 
an be repeated indu
tively for the remaining terms.Exer
ise 4.14. Let A = (aij) be a skew symmetri
 matrix (i. e. aij = −aji) and q(e) = ∑ij aij ei ∧ ej be agrassmannian quadrati
 form. Show that in the representation (4-11) the number r doesn't depend on thebasis 
hoi
e and equals rkA. (In parti
ular, rkA is always even.)

1i. e. sitting in the 
omplementary rows and 
olumns2may be after appropriate renumbering of the basi
 ve
tors
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§5.Polarizations and 
ontra
tions.In this se
tion we always assume that k is algebrai
ally 
losed and 
hark 6= 2.5.1. (Skew) symmetri
 tensors. A symmetri
 group Sn a
ts on V ⊗n permuting fa
tors in the de-
omposable tensors: �(v1 ⊗ v2 ⊗ · · · ⊗ vn) def= v�(1) ⊗ v�(2) ⊗ · · · ⊗ v�(n) ∀�∈Sn . Subspa
esATnV = { t ∈ V ⊗n | �(t) = sgn(�) · t ∀�∈Sn }STnV = { t ∈ V ⊗n | �(t) = t ∀�∈Sn }are 
alled the spa
es of skew symmetri
 and symmetri
 tensors.5.1.1.CLAIM. Let 
har (k) = 0. Restri
ting the 
anoni
al fa
torization mapsV ⊗n �skew - �nV ; V ⊗n �sym - SnV ;onto the spa
es of (skew) symmetri
 tensors, we get the isomorphismsATnV �skew - �nV and STnV �sym - SnV : (5-1)Proof. In the skew symmetri
 
ase, a basis of ATnV is formed by the tensorse〈i1;i2;:::;in〉 def= ∑�∈Sn sgn(�) · ei�(1) ⊗ ei�(2) ⊗ · · · ⊗ ei�(n)(sum of all the tensor monomials sent to the basi
 Grassmannian monomial eI = ei1 ∧ei2 ∧ · · · ∧ein by �skew). So,�skew (e〈i1;i2;:::;in〉) = n! eI . In the symmetri
 
ase, let us write e[m1;m2;:::;md℄ for the sum of all tensor monomials
ontainingm1 fa
tors e1, m2 fa
tors e2, : : : , md fa
tors ed, where∑� m� = n. These monomials form one Sn-orbit,whi
h 
onsists of n!m1!m2! ···md! elements and 
olle
ts all the de
omposable tensors sent to em11 em22 · · · emdd by �sym.As above, the tensors e[m1;m2;:::;md℄ form a basis for STnV and �sym (e[i1;i2;:::;in℄) = n!m1!m2! ···md! em11 em22 · · · emdd .

� Exer
ise 5.1. Verify that the above sums e〈i1;i2;:::;in〉 and e[m1;m2;:::;md℄ really give the bases for STnV (overany �eld of an arbitrary 
hara
teristi
). Also note that if 
har (k) > 0 divides n, then all these basi
(skew) symmetri
 tensors are annihilated by fa
torization through (skew) symmetri
 relations.Exer
ise 5.2. Verify that if 
har (k) = 0, then V ⊗n = I
(n)skew ⊕ ATnV = STnV ⊕ I

(n)sym , where the proje
tionV ⊗n -- STnV along I
(n)sym is given by the symmetrization mapsymn : � 7−→ 1n! ∑�∈Sn �(�)and the proje
tion V ⊗n -- ATnV along I

(n)skew given by the alternation mapaltn : � 7−→ 1n! ∑�∈Sn sgn(�) · �(�) :5.2.Polarization of (skew) polynomials. The inverse maps to the isomorphisms (5-1) takeei1 ∧ ei2 ∧ · · · ∧ ein 7−→ 1n! · e〈i1;i2;:::;in〉em11 em22 · · · emdd 7−→ m1!m2! · · · md!n! · e[m1;m2;:::;md℄ : (5-2)The both maps are 
alled 
omplete polarizations of (skew) polynomials and are denoted by f 7−→ pl(f).5.2.1.Example: (skew) polynomials and (skew) symmetri
 multilinear forms. Full polarization pl(f) of a (skew)homogeneous degree n polynomial f of one argument on V 
an be 
onsidered as a multilinear form of n arguments
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 Geometry. Start Up Course.on V . It sends (v1; v2; : : : ; vn) to the full 
ontra
tion f̃(v1; v2; : : : ; vn) def= 〈 v1 ⊗ v2 ⊗ · · · ⊗ vn ; pl(f) 〉 and has thesame symmetry properties as f , be
ause for all �∈Sn, t∈V ⊗n, �∈V ∗⊗n we have 〈�(t) ; �(�) 〉 = 〈 t ; � 〉, whi
himplies 〈�(t) ; � 〉 = 〈 t ; �−1(�) 〉.Exer
ise 5.3. Che
k that for a symmetri
 quadrati
 form q(x) ∈ S2V ∗ we haveq̃(x; y) = q(x+ y)− q(x− y)4 = q(x+ y)− q(x) − q(y)2 = 12 dimV∑�=1 y� �q�x� :Sin
e any multilinear form ' may be presented via full 
ontra
tion'(v1; v2; : : : ; vn) = 〈 v1 ⊗ v2 ⊗ · · · ⊗ vn ; � 〉with some � ∈ V ∗⊗n, the 
omplete polarization identi�es SnV ∗ and �nV ∗ with the spa
es of all symmetri
 andskew symmetri
 multilinear forms V × V × · · · × V︸ ︷︷ ︸n - k, in n arguments on V .Exer
ise 5.4. In symmetri
 
ase, show that a homogeneous degree n polynomial f(x) (in one argumentx ∈ V ) 
oin
ides with the restri
tion of the 
orresponding symmetri
 multilinear form f̃(x1; x2; : : : ; xn) (in narguments x� ∈ V ) onto the diagonal: f(x) = f̃(x; x; : : : ; x).5.2.2.Example: duality on polynomials. Using the 
omplete polarization and the full 
ontra
tion between V ⊗nand V ∗⊗n we obtain (over a �eld of zero 
hara
teristi
) a natural non degenerate pairing between �n(V ) and�n (V ∗) as well as between Sn(V ) and Sn (V ∗). Namely, for two (skew) polynomials f , in ei∈V , and �, in xi∈V ∗,we put 〈 f ; � 〉 def= 〈 pl(f) ; pl(�) 〉.Exer
ise 5.5. Let {e1; e2; : : : ; en} ⊂ V and {x1; x2; : : : ; xn} ⊂ V ∗ be dual bases. Che
k that:
〈 eI ; xJ 〉 = {1=n! ; for I = J0 ; for I 6= J (5-3)

〈em11 em22 · · · emdd ; x`11 x`22 · · · x`dd 〉 = {m1!m2! ···md!n! ; if m� = `� ∀�0 ; otherwise (5-4)5.3.Partial derivatives (symmetri
 
ase). For any ve
tor v ∈ V and any polynomial f ∈ SnV ∗ the
ontra
tion 
i1(pl(f)⊗ v) ∈ V ∗n−1 does not depend on the 
hoi
e of 
ontra
ted index i in pl(f), be
ausepl(f) ∈ STnV ∗ is symmetri
. Its proje
tion to Sn−1V ∗ is 
alled a polar of v w. r. t. f and is denoted byplvf .Exer
ise 5.6. Show that deg(f)·plvf = �vf , where �v is the derivative in v-dire
tion, whi
h takes f to dimV∑i=1 vi �f�xi(here v =∑ viei, {ei} is a basis for V and {xi} is a dual basis for V ∗).Exer
ise 5.7. Show that n! · f̃(v1; v2; : : : ; vn) = �v1�v2 · · · �vn f for any f ∈ SnV ∗, v1; v2; : : : ; vn ∈ V .It follows that �vf does not depend on a 
hoi
e of basis, is bilinear in v, f , and satis�esm2! �m1v1 f(v2) = (m1 +m2)! f̃(v1; v1; : : : ; v1︸ ︷︷ ︸m1 ; v2; v2; : : : ; v2︸ ︷︷ ︸m2 ) = m1! �m2v2 f(v1) ; (5-5)where (m1 + m2) = n = deg f . In parti
ular, the left and right sides are bihomogeneous of bidegree(m1;m2) in (v1; v2).Exer
ise 5.8. Show that multiple polars: plv1;v2;:::;vmf def= plv1plv2 · · · plv1f are symmetri
 and multilinear in viand linear in f , that is 
ome from a linear map SmV ⊗ SnV ∗ - Sn−mV ∗, whi
h sends v1v2 · · · vm ⊗ f toplv1;v2;:::;vmf(w) = f̃(v1; v2; : : : ; vm; w; w; : : : ; w).5.3.1.Example: the Taylor formula. For f ∈SnV ∗ the value f(v + w) 
an be 
omputed as the full 
ontra
tionof f with (v + w)m =∑m (nm) vmwn−m ∈ SnV . This 
an be arranged as the Taylor formula:f(v + w) = n∑�=0 1�! ��wf(v) : (5-6)



§ 5. Polarizations and 
ontra
tions. 275.3.2.Example: span(f) for f ∈ SnV ∗, that is a minimal subspa
e W ⊂ V ∗ su
h that f ∈ SnW , 
oin
ideswith span(pl(f)) des
ribed in n◦ 4.7.1 as an image of the 
ontra
tion map Sn−1V ⊗ SnV ∗ - V ∗. So, in termsof partial derivatives, span(f) is generated by the linear forms��xi1 ��xi2 · · · ��xin−1 f(x) (5-7)obtained from f by all possible (n− 1)-fold di�erentiations.5.4.Veronese variety in PN = P(SnV ∗), where dimV = d + 1, N = (nd) − 1, 
onsists of pure n-thpowers of linear forms � ∈ P(V ∗). It has a rational parameterization given by the Veronese map
P(V ∗) ⊂ � 7−→�n - P(SnV ∗) :The result of n◦ 5.3.2 allows to present the Veronese variety by a system of quadrati
 equations. Namely,f ∈ SnV ∗ equals �n(x) for some � ∈ V ∗ i� span(f̃) ⊂ V ∗ 
oin
ides with the 1-dimensional subspa
egenerated by �. So, f is pure n-th power i� all the linear forms (5-7) are proportional to ea
h other. Ifwe arrange the 
oeÆ
ients of these forms in the rows of some 2×(d+1)-matrix, then their proportionalitymeans that all 2× 2-minors of this matrix vanish.5.4.1.Example: Veronese's 
urve. Let dimU = 2, P1 = P(U∗), Pn = P(SnU∗), {t0; t1} be a basis of U∗, and(ni) ti0tn−i1 for 0 6 i 6 n be the 
orresponding basis of SnV ∗. Then the Veronese embedding P1 ⊂ - Pn sends alinear form (�0t0 + �1t1) to (�0t0 + �1t1)n =∑i �i0�n−i1 ·

(ni) ti0tn−i1Its image is a rational 
urve Cn ⊂ Pn 
alled Veronese 
urve or rational normal 
urve of degree n. If we use the
oeÆ
ients (a0 : a1 : : : : : an) and (�0 : �1) as homogeneous 
oordinates for a polynomial∑i ai ·(ni) ti0tn−i1 ∈ SnU∗and for a linear form �0t0 + �1t1 ∈ P(U∗), then Cn will be presented parametri
ally as ai = �i0�n−i1 .On the other hand, for f(t) =∑i ai · (ni) ti0tn−i1 the linear forms (5-7) are exhausted by�i�ti0 �n−1−i�ti−1−n1 f(t) = ait0 + ai+1t1 ; where 0 6 i 6 (n− 1) :So, f ∈ Cn ⇐⇒ rk (a0 a1 : : : an−1a1 a2 : : : an ) = 1 ⇐⇒ aiaj − ai+1aj−1 = 0 for all 0 6 i < j 6 n.In parti
ular, for n = 2 we get the Veronese quadri
 a0a2 = a21 in P2. For n = 3 we have a rational 
ubi

urve, whi
h is 
alled a twisted 
ubi
, given as an interse
tion of 3 quadri
s a0a2 = a21, a1a3 = a22, a0a3 = a1a2.Exer
ise 5.9. Draw the pi
ture and dis
over that the �rst two quadri
s are simple 
ones with verti
es at(0 : 0 : 0 : 1) and at (1 : 0 : 0 : 0); the third quadri
 is Segre's one and is ruled by two line families; two 
oneshave a 
ommon line element a1 = a2 = 0, whi
h joins the verti
es but does not lie on the Segre quadri
; theline element a0 = a1 = 0 of the �rst 
one and the one a2 = a3 = 0 of the se
ond do lie on the Segre quadri
in the same ruling family. So, any two of 3 quadri
s are interse
ted along the twisted 
ubi
 and one moreline, that is, the Veronese 
urve 
an not be given by use of 2 equations only!5.5.Partial derivatives (skew-symmetri
 
ase). The 
ontra
tion 
i1(pl(f) ⊗ v) ∈ V ∗n−1 betweena ve
tor v ∈ V and a skew polynomial f ∈ �nV ∗ slightly depends on a 
hoi
e of the 
ontra
ted indexi: it 
hanges the sign when i is in
remented or de
remented by one, be
ause pl(f) ∈ ATnV ∗ is skewsymmetri
. Let us 
hoose i = 1 and write plvf for the proje
tion of 
11(pl(f)⊗ v) into �n−1V ∗.Sin
e the 
onse
utive polarizations de�ned by this rule do anti
ommute: plvplwf = −plwplvf , themultilinear map V × V × · · · × V︸ ︷︷ ︸m ×�nV ∗ (v1;v2;:::;vm; f)7→plv1plv2 :::plvmf - �n−mV ∗
omes from the linear map �mV ⊗ �nV ∗ - �n−mV ∗.
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 Geometry. Start Up Course.Exer
ise 5.10. Show that deg f · plvf = �vf , where �v = ∑ vi ��xi , as in ex. 5.6, and verify the followingproperties of skew partial derivatives: a) �v�w = −�w�v (in parti
ular, �2v = 0 ∀ v∈V );b) f̃(v1; v2; : : : ; vn) = 1n! �v1�v2 · · · �vn f for any f ∈ �nV ∗, v1; v2; : : : ; vn ∈ V .
) �v(f1 ∧ f2) = (�vf1) ∧ f2 − (−1)deg f1f1 ∧ (�vf2), in parti
ular,�ei� xi1 ∧ xi2 ∧ · · · ∧ xin = (−1)�−1xi1 ∧ · · · ∧ xi�−1 ∧ xi�+1 ∧ · · · ∧ xin :5.5.1.Example: span(f) for grassmannian polynomial f ∈ �nV is linearly generated by partial derivatives�Jf = �xjn−1�xjn−2 : : : �xj1 f = n! 〈xj1 ⊗ xj2 ⊗ · · · ⊗ xjn−1 ; pl(f) 〉where J = (j1; j2; : : : ; jn−1) ⊂ {1; 2; : : : ; d} runs through all ( dn−1) in
reasing ordered 
olle
tions of (n−1) indexesand {xi} ∈ V ∗ form a dual basis to some basis {ei} ∈ V . If f =∑I �I eI w. r. t. the last base, then�Jf = n! ·∑i 6∈J (−1)n−p(i;J) �J⊔{i} ei (5-8)where p(i; J) is the number of pla
e where i stays in the in
reasing permutation I of J ⊔ {i} (be
ause xI is theonly monomial in �nV ∗ whose 
omplete 
ontra
tion with eI is non zero, see (5-3)).5.5.2.Example: Pl�u
ker relations. A skew polynomial f ∈ �nV is 
alled 
ompletely de
omposable, if f =v1 ∧ v2 ∧ · · · ∧ vn is a produ
t of n linear fa
tors, or equivalently, if dim span(f) = n is minimal possible.Exer
ise 5.11. Show that f is 
ompletely de
omposable i� f ∧ v = 0 ∀ v ∈ span(f).So, like in n◦ 5.3.2 | n◦ 5.4.1, the set of 
ompletely de
omposable polynomials f ∈ �nV is des
ribed by a systemof quadrati
 equations (�Jf) ∧ f = 0. By (5-8), a basi
 monomial eK ∈ �n+1V appears in(�Jf) ∧ f = n! ·∑i 6∈J (−1)p(i;J) �J⊔{i} ei ∧(∑I aIeI)as n! · n+1∑�=1(−1)n−p(k�;J) · �J⊔{k�}�K\{k�} · ek� ∧ eK\{k�}, i. e. with the 
oeÆ
ient, whi
h up to a 
onstant fa
torequals PJK(f) def= ∑i∈K\(K∩J)(−1)p(i;J;K) �J⊔i �K\i ; (5-9)where p(i; J;K) is the sum of the pla
e numbers where i stays in the in
reasing version of J ⊔ {i} and in K.Exer
ise 5.12. Show that this 
oeÆ
ient vanishes, if J ⊂ KSystem of quadrati
 equations PJK(f) = 0, whi
h de�nes the variety of 
ompletely de
omposable Grassmannianpolynomials, is known as the Pl�u
ker relations. Note that these quadrati
 equations are not �independent�, evennot pairwise di�erent (see n◦ 6.6.2 below).
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§6.Working example: grassmannians.6.1.Pl�u
ker quadri
 in P5. Let V be a 4-dimensional ve
tor spa
e and P5 = P(�2V ). Then thePl�u
ker quadri
 QP def= {! ∈ �2V | ! ∧ ! = 0 }is a non singular quadri
 in P5. Fixing a base {e0; e1; e2; e3} for V and indu
ed base eij = ei∧ej for �2Vand writing xij for the homogeneous 
oordinate along eij, we have (∑i<j xij ·ei∧ej) ∧ (∑i<j xij ·ei∧ej) =2 (x01x23 − x02x13 + x03x12) · e0 ∧ e1 ∧ e2 ∧ e3 , i. e. QP has the equationx02x13 = x01x23 + x03x12 :In 
oordinateless terms, QP is given by quadrati
 form q(!) = q̃(!; !) whose polarization q̃(!1; !2) is abilinear form on �2V de�ned up to a s
alar fa
tor by the pres
ription!1 ∧ !2 = q̃(!1; !2) · 
 ;where 
 ∈ �4V ≃ k is any �xed non-zero ve
tor. This form is symmetri
, be
ause even degree Grass-mannian polynomials 
ommute: !1 ∧ !2 = !2 ∧ !1.6.2.Pl�u
ker embedding. By the de�nition, a grassmannian Gr(2; 4) is a set of all lines ` ⊂ P3 = P(V ),or equivalently, a set of all 2-dimensional ve
tor subspa
es U ⊂ V . A Pl�u
ker mapGr(2; 4) ⊂ u- P(�2V )sends a 2-dimensional subspa
e U ⊂ V to the 1-dimensional subspa
e �2U ⊂ �2V . If U is spaned bya pair of ve
tors u1; u2 (i. e. ` = P(U) pass trough u1; u2 ∈ P(V )), then u(`) = u(U) = u1 ∧ u2 up toproportionality.6.2.1.LEMMA. Two lines `1; `2 ⊂ P3 are interse
ting i� q̃(u(`1); u(`2)) = u(`1) ∧ u(`2) = 0.Proof. Let `1 = P(U1), `2 = P(U2). If U1 ∩ U2 = 0, then V = U1 ⊕ U2 and there exist a base {ei} ⊂ V su
hthat U1 is spaned by e0; e1 and U2 is spaned by e2; e3. So, u(U1) = e0 ∧ e1, u(U2) = e2 ∧ e3 and u(U1) ∧ u(U2) =e0 ∧ e1 ∧ e2 ∧ e3 6= 0. If U1 ∩ U2 6= 0, then taking u0 ⊂ U1 ∩ U2 we 
an write u(U1) = u0 ∧ u1, u(U2) = u0 ∧ u2 forsome u1; u2. So, u(U1) ∧ u(U2) = u0 ∧ u1 ∧ u0 ∧ u2 = 0. �6.2.2.LEMMA. If dimV = 4, then ! ∈ �2V is de
omposable1 i� ! ∧ ! = 0.Proof. If ! is de
omposable, say ! = u1 ∧ u2, then ! ∧ ! = u1 ∧ u2 ∧ u1 ∧ u2 = 0, be
ause of skew symmetry. Toget the inverse, take a base {�i} su
h that ! turns into either ! = �0 ∧ �1 + �2 ∧ �3 or ! = �0 ∧ �1. In the �rst 
ase! ∧ ! = 2 �0 ∧ �1 ∧ �2 ∧ �3 6= 0, i. e. ! is inde
omposable. �6.2.3.COROLLARY. The Pl�u
ker map is a bije
tion between the grassmannian Gr(2; 4) and thePl�u
ker quadri
 QP ⊂ P5.Proof. For any two lines `1 6= `2 on P3 there exists a third line ` whi
h interse
t `1 and doesn't interse
t `2. Then

u(`1) ∧ u(`) = 0 and u(`2) ∧ u(`) 6= 0 imply u(`1) 6= u(`2), i. e. u is inje
tive. Surje
tivity follows from n◦ 6.2.2. �6.2.4.COROLLARY. For any point p = u(`) ∈ QP the interse
tion QP ∩ TpQP 
onsists of all u(`′)su
h that ` ∩ `′ 6= ∅.Proof. TpQP is a zero set of the linear form q̃(u(`); ∗ ). By n◦ 6.2.1, q̃(u(`); u(`′)) = 0 ⇐⇒ ` ∩ `′ 6= ∅. �6.3.Line nets and line pen
ils in P3. A set of lines on P3 is 
alled a net if it is represented by aplane � ⊂ QP ⊂ P5. If � ⊂ QP is spaned by 3 non 
ollinear points pi = u(`i), i = 1; 2; 3, then� = QP ∩ Tp1QP ∩ Tp2QP ∩ Tp3QP :1re
all that homogeneous polynomial is 
alled de
omposable if it is fa
torized into a produ
t of linear forms



30 Algebrai
 Geometry. Start Up Course.So, by n◦ 6.2.1 and n◦ 6.2.4 the 
orresponding line net 
onsist of all lines whi
h interse
t 3 given pairwiseinterse
ting lines. Hen
e, there are exa
tly two geometri
ally di�erent line nets on P3:�-net is a set of all lines passing through a given point O ∈ P3; the 
orresponding plain ��(O) ⊂ QP is
alled �-plane. It is spanned by the Pl�u
ker images of any 3 non 
oplanar lines passing through O.�-net is a set of all lines laying on a given plane � ∈ P3; the 
orresponding plain ��(�) ⊂ QP is 
alled�-plane. It is spanned by the Pl�u
ker images of any 3 lines whi
h lay on � and don't have a 
ommoninterse
tion.Note that any two planes of the same type have
����

p 6∈ H
H ≃ P3p′ G ⊂ H•

Fig 6⋄1. The 
one C = QP ∩ TpQP .

exa
tly 1-point interse
tion, namely:��(�1) ∩ ��(�2) = u(�1 ∩�2 )��(O1) ∩ ��(O2) = u( (O1O2) )Two planes of di�erent types ��(�) , ��(O) do notinterse
t ea
h other, if O 6∈ �. If O∈�, then ��(�)∩��(O) is a pen
il of lines ` ⊂ P3 su
h that O ∈ ` ⊂ �.Exer
ise 6.1. Show that there are no other line pen
ilsin P3, i. e. ea
h line on QP ⊂ P5 has the form ��(�)∩��(O) for some O and �.Hint. Consider the 
one C = QP ∩TpQP . It has averti
e at p and 
onsists of all lines whi
h passthrough p and lay on Qp. Fix a 3-dimensionalhyperplane H ⊂ TpQP whi
h doesn't 
ontainp. Then G = C ∩H is non singular quadri
on H. So, any line passing through p has aform (pp′) = �� ∩ �� , where p′ ∈G and theplanes ��; �� are spaned by p and two linespassing through p′ on G (see �g 6⋄1).6.4.AÆne 
ell de
omposition of Gr(2; 4). Let H ⊂ TpQP be a 3-dimensional proje
tive hyperplanesu
h that p 6∈ H, as in above exer
ise, C = QP ∩ TpQP , and G = H ∩ QP . Then C is the simple 
onewith vertex p over G (see �g 6⋄1) and we have the following diagram of in
lusions��p ⊂ - �� ∩ ��⊂ - C ⊂ -

⊂

- QP��⊂ -⊂

-

⇒ Gr(2; 4) = A0 ⊔ A1 ⊔ A2
⊔

A2  ⊔ A3 ⊔ A4
The right side de
omposition is produ
ed via repla
ing ea
h stratum in the left side by the 
omplementto all the smallest strata it 
ontain and identifying the resulting disjoint 
ells with aÆne spa
es as follows:(�� ∩ ��)\p ≃ A1 (be
ause this is a proje
tive line without a point), ��\(�� ∩ ��) ≃ �� \(�� ∩ ��) ≃ A2(be
ause the both are proje
tive planes without a line), C \(�� ∪ ��) ≃ A1×(G \ (G ∩ Tp′G)) (be
auseC is a 
one over G), and �nally, G \ (G ∩ Tp′G) ≃ A2 and Q \ C ≃ A4, be
ause of the lemma below.6.4.1.LEMMA. Let Q ⊂ Pn be a quadri
, p∈Q be a non singular point, and H 6∋ p be a 
odimension1 hyperplane. Then the proje
tion from p onto H indu
es a bije
tion between Q \ (Q ∩ TpQ) and
An−1 = H \ (H ∩ TpQ).Proof. Any non tangent line passing through p have to interse
t Q pre
isely ones more. All su
h lines are 1{1parameterized by the points of An−1 = H \ (H ∩ TpQ). �Exer
ise 6.2∗. If you have some experien
e in topology, show that over C all odd integer homologies of Gr(2; 4)vanish and the even ones are H0 = H2 = H6 = H8 = Z, H4 = Z ⊕ Z. Also, try to 
ompute the homologiesfor the real grassmannian, where the boundary maps are non trivial.



§ 6. Working example: grassmannians. 316.5.General grassmannian Gr(m;d) is de�ned as the set of all m-dimensional ve
tor subspa
es ina given d-dimensional ve
tor spa
e V . If the nature of V is important, we write Gr(m;V ) instead ofGr(m; d). In the proje
tive language, Gr(m; d) is the set of all (m− 1)-dimensional proje
tive subspa
esin Pd−1. If m = 1, then Gr(m; d) = Pd−1. There is a 
anoni
al bije
tion Gr(m;V ) ≃ Gr(d − m;V ∗)indu
ed by duality. It sends U ⊂ V to AnnU ⊂ V ∗ and wise versa.Exer
ise 6.3. Let dimV = 4. Fix an isomorphism V bq- V ∗, say presented by a non singular quadri
Q ⊂ P(V ), and 
onsider an automorphism of Gr(2; V ) given by U 7−→ Ann q̂(U). Show that it maps the�-planes on Gr(2; 4) to the �-planes and wise versa.6.6.Pl�u
ker embedding Gr(m;V ) ⊂
u - P(�mV ) sends m-dimensional subspa
e U ⊂ V to the1-dimensional subspa
e �mU ⊂ �mV . If U is based by the ve
tors {u1; u2; : : : ; um} ⊂ U , then u(U) =u1 ∧ u2 ∧ · · · ∧ um up to proportionality, be
ause taking an other base, say vi =∑ aijuj, we get

u(U) = v1 ∧ v2 ∧ · · · ∧ vm = det (aij) · u1 ∧ u2 ∧ · · · ∧ um :6.6.1.LEMMA. The Pl�u
ker embedding is really inje
tive.Proof. If U1 6= U2, then there exist a base in V su
h that some ve
tors w1; w2; : : : ; wr of this base give a base forU1 ∩ U2, some other u1; u2; : : : ; um−r together with {w�} give a base for U1, some other v1; v2; : : : ; vm−r togetherwith {w�} give a base for U2, and the rest e1; e2; : : : ; ed+r−2m are 
omplementary to U1 +U2. Let ! ∈ �d−mV bethe skew produ
t of all v� and e� . The skew multipli
ation by ! �mV � 7−→�∧!- �dV ≃ k turns into a linear formon �mV as soon as a base ve
tor for �dV is �xed. This linear form does vanish at u(U2) and doesn't at u(U1). �6.6.2.Example: 2× 2-minors of 2× 4-matri
es. Let dimV = 4 and a base {e1; e2; e3; e4} ⊂ V be �xed. Thena subspa
e U ⊂ V based by u1; u2 
an be presented as 2× 4-matrix A = (a11 a12 a13 a14a21 a22 a23 a24) whose rows arethe 
oordinates of u1; u2. This matrix is de�ned by U up to the left multipli
ation A 7→ C ·A by any C ∈ GL2(k)(this 
orresponds to a base 
hange in U). The Pl�u
ker embedding sends A tou1 ∧ u2 =∑i<j det(a1i a1ja2i a2j) ei ∧ ej :So, the homogeneous 
oordinates of u(U) ∈ P5 in the base {eij = ei ∧ ej} are six 2× 2-minors of A. In parti
ular,the left multipli
ations by C ∈ GL2 doesn't e�e
t on the ratios between 2 × 2-minors of A. An other 
laim: sixnumbers x1; x2; : : : ; x6 give a 
olle
tion of 2× 2-minors for some 2× 4 matrix i� they satisfy (maybe, after somerenumbering) the Pl�u
ker equation x1x2 = x3x4 + x5x6.Exer
ise 6.4. Is there 2× 4 - matrix with minors a) { 2; 3; 4; 5; 6; 7 } b) { 3; 4; 5; 6; 7; 8 } ?6.7.Matrix notations and Pl�u
ker 
oordinates on Gr(m;d). A point U ∈ Gr(m; d) 
an bepresented by (m×d)-matrix AU whose rows are the 
oordinates of some base ve
tors {u1; u2; : : : ; um} ⊂ Uwith respe
t to a �xed base {e1; e2; : : : ; ed} ⊂ V . Su
h a matrix is not unique and is de�ned by U only upto the left multipli
ation by any C∈GLm (this 
orresponds to a base 
hange in U). So, the grassmannianGr(m; d) 
an be 
onsidered as a fa
tor spa
e of Matm×d(k) by the left a
tion of GLm(k). Under the Pl�u
k-er embedding , the homogeneous 
oordinates of u(U) ∈ �mV in the standard base eI = ei1∧ei2∧ · · · ∧eimare equal to the maximal minors of A. They are stable under the left GLm-a
tion and are 
alled Pl�u
ker
oordinates of U .6.8.AÆne 
overing and aÆne 
oordinates on Gr(m;d). Consider the standard aÆne 
ard UI ⊂
P(�mV ) given by xI = 1, where xI is the 
oordinate along eI = ei1 ∧ ei2 ∧ · · · ∧ eim . The inverse image
UI def= u−1(UI) ⊂ Gr(m; d) 
onsists of all U su
h that AU has non zero maximal minor in the 
olumns(i1; i2; : : : ; im). Any su
h U has a unique matrix representation A(I)U = (a(I)ij ) with the identity m×m-submatrix staying in these 
olumns. It is given by A(I)U = A−1U;I · AU , where AU is an arbitrary matrixrepresentation for U and AU;I ⊂ AU is m×m-submatrix formed by the 
olumns (i1; i2; : : : ; im). So, thepoints of UI ⊂ Gr(m; d) are 1{1 parametrized by m (d−m) matrix elements (a(I)�� ) staying outside the
olumns (i1; i2; : : : ; im) in A(I)U . In other words, we have an aÆne 
hart Am(d−m) ∼- UI ⊂ Gr(m; d)



32 Algebrai
 Geometry. Start Up Course.whi
h 
overs an open dense subset of the grassmannian. The 
harts UI are 
alled standard and 
overthe whole of Gr(m; d) when I runs through the length m in
reasing subsets in {1; 2; : : : ; d}.Exer
ise 6.5. Write down the expli
it transition fun
tions between the standard aÆne 
harts U12 and U23 onGr(2; 4).Exer
ise 6.6∗. If you had deal with smooth topology, 
he
k that real and 
omplex grassmannians are thesmooth (moreover, analyti
) manifolds.6.9.Cell de
omposition. The Gauss method shows that for any U ⊂ V there exists a unique base
{u1; u2; : : : ; um}, of U , su
h that the 
orresponding matrix AU = (a��) is a strong step matrix , thatis, (a��) 
ontains the identity m × m-submatrix, say in 
olumns (j1; j2; : : : ; jm), su
h that ea
h rowvanishes at the left of the unity 
oming from this identity submatrix (i. e. for all i = 1; 2; : : : ;m we haveaij = 0 ∀ j < ji).Exer
ise 6.7. Prove that di�erent strong step matri
es give di�erent subspa
es in V .So, there exist a bije
tion between Gr(m; d) and the set of all strong step matri
es. The last one splits intodisjoint union of the aÆne spa
es. Namely, all strong step matri
es that 
ontain the identity submatrixin the �xed 
olumns I = (i1; i2; : : : ; im) have exa
tlymn−m2 − (i1 − 1)− (i2 − 2)− · · · − (im −m) = dimGr(m; d)− m∑�=1(i� − �)free entries to put there any numbers from k. Hen
e, topologi
ally, Gr(m; d) is a disjoint union of( dm) aÆne 
ells AI enumerated by length m in
reasing subsets I ⊂ {1; 2; : : : ; d}. The I-th 
ell ishomeomorphi
 to the aÆne spa
e and has 
odimension m∑�=1(i� − �) in Gr(m; d).6.10.Young diagram notations. Traditionally, the �-th di�eren
e (i� − �) in a length m in
reasingsubset I ⊂ {1; 2; : : : ; d} is denoted by �m+1−� in order to have a partition (d −m) > �1 > �2 > · · · >�m > 0 instead of the in
reasing 
olle
tion 1 6 i1 < i2 < · · · < im 6 d. By the de�nition, a partition �is a not in
reasing 
olle
tion of non negative integers � = (�1; �2; : : : ; �m). A length `(�) is a number ofthe last non zero element in �. A weight of � is |�| def= ∑� �� . A Young diagram of � is a flushleft'ed
olle
tion of 
ell rows whose lengths are �1; �2; : : : ; �m. For example, the partition � = (5; 4; 4; 1) haslength `(�) = 4 weight |�| = 14 and Young diagram . In other words, the partition is just theYoung diagram, its weight is the number of 
ells, and its length is the number of rows.Exer
ise 6.8. Che
k that there is a bije
tion between the length m in
reasing subsets I ⊂ {1; 2; : : : ; d} and theYoung diagrams 
ontained in the re
tangle of size m× (d−m).In terms of Young diagrams, the grassmannian Gr(m; d) is de
omposed into the disjoint union of aÆne
ells enumerated by the Young diagrams 
ontained in the m × (d − m) - re
tangle. �-th 
ell has
odimension |�| and is isomorphi
 to Am(d−m)−|�|. In parti
ular there is a unique 1-point 
ell, whi
hhas 
odimension m (d − m) and 
orresponds to the re
tangle itself, and a unique open dense 
ell of
odimension zero, whi
h 
orresponds to the empty diagram and 
oin
ides with the standard aÆne 
hart
U{1;2;:::;m}. A topologi
al 
losure of �-th aÆne 
ell is 
alled a S
hubert 
y
le and denoted by ��.Exer
ise 6.9. Che
k that 6 S
hubert 
y
les on the Pl�u
ker quadri
 Gr(2; 4) ≃ QP ⊂ P5 are: �00 = QP ;�22 = p = (0 : 0 : 0 : 0 : 0 : 1) ∈ P5; �10 = QP ∩ TpQP ; �11 = ��(O), where O = (0 : 0 : 0 : 1) ∈ P3;�20 = ��(�), where � ⊂ P3 is given by x0 = 0; �21 = ��(O) ∩ ��(�).Remark for who studied the topology. Clearly, the S
hubert 
y
les generate the homologies of Gr(m; d). Moreover, for the
omplex grassmannian they form the base of H∗(Gr(m;Cd);Z) over Z. It is a ni
e (but not simle) 
ombinatorial problem, toexpress the (topologi
al) interse
tions of the S
hubert 
y
les in terms of the S
hubert 
y
les. The 
orresponding te
hniqueis known as a S
hubert 
al
ulus and is des
ribed in GriÆts-Harris, Fulton-Harris and Ma
donald. Roughly speaking, thehomology ring H∗(Gr(m;Cd);Z) is isomorphi
 to the trun
ated ring of symmetri
 polynomials via sending the S
hubert
y
les �� to the S
hur polynomials s�.Exer
ise 6.10∗. Show that �10�21 = �220 = �211 = �22, �20�11 = 0, and �210 = �20 + �11 in the integer homologyring of 
omplex Gr(2; 4).



§ 6. Working example: grassmannians. 33Hint. To 
al
ulate �210 realize �10 as �1;0(`) = QP ∩ Tu(`)QP = {`′′ ⊂ P3 | ` ∩ `′′ 6= ∅}. Then, taking twointerse
ting lines ` and `′ in P3 we get �10(`)∩�10(`′) = ��(O)∪��(�), where O = `∩ `′ and � is spanedby ` and `′.6.11.Pl�u
ker equations In general 
ase, an image of the Pl�u
ker embedding Gr(m;V ) ⊂ u- P(�mV ),i. e. the variety of de
omposable quadrati
 grassmannian polynomials, is des
ribed by the quadrati
Pl�u
ker relations 
onsidered in n◦ 5.5.2 and generalizing those we written in n◦ 6.2.2 and n◦ 6.6.2 fordimV = 4. Note that in the latter parti
ular 
ase we 
ould write four generi
 relations from n◦ 5.5.2that 
orrespond to all possible distributions of 4 = 3 + 1 indexes {1; 2; 3; 4} between K and J .Exer
ise 6.11. Che
k that they all produ
e the same quadrati
 equation A12A34 − A13A24 + A14A23 = 0 on2× 2 - minors Aij of 2× 4 - matrix A.
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 Geometry. Start Up Course.
§7.Working example: Veronese 
urves.In this se
tion we always assume that k is algebrai
ally 
losed and 
hark 6= 2.7.1.Linear span of Veronese 
urve. Re
all (see n◦ 5.4.1) that the Veronese 
urve Cn ⊂ Pn is theimage of Veronese's map

P1 = P(U∗) ⊂ vn - Pn = P(SnU∗) ;whi
h takes a linear form � = �0t0 + �1t1 ∈ U∗ to its n-th power:vn(�) = �n =∑(ni) �i0�n−i1 ti0tn−i1 :As in n◦ 5.4.1, we write polynomials f ∈ SnU∗ in the form f =∑(ni) ai ti0tn−i1 and use ai as homoge-neous 
oordinates on Pn = P(SnU∗).Given an arbitrary hyperplane � = {a ∈ Pn | ∑Aiai = 0}, the interse
tion Cn ∩ � 
onsists of alla = a(�) that satisfy the equation ∑i Ai�i0�n−i1 = 0 whose left side is non zero polynomial of degreen. So, a hyperplane se
tion of Veronese's 
urve always 
onsists1 of n points 
ounted with appropriatemultipli
ities (typi
ally, of n distin
t points). In parti
ular, the linear span of any (n + 1) Veronese's
urve points gives the whole of Pn.7.1.1.COROLLARY (ARONHOLD PRINCIPLE). To prove that some linear in f assertion holds for allpolynomials f , it is enough to verify it only for all powers of all linear forms. �Exer
ise 7.1. Use the Aronhold prin
iple to give another proof of the Taylor formula (5-6).7.2.Proje
ting twisted 
ubi
. Let us des
ribe all plane proje
tions of the twisted 
ubi
 C3 ⊂ P3 =
P(S3U∗). Up to a proje
tive isomorphism, the proje
tion does not depend on the 
hoi
e of a targetplane as soon as the 
enter is �xed, be
ause the proje
tion of one target plane onto another gives anlinear isomorphism between the proje
tion images. Let p = p(t) = `1(t)`2(t)`3(t) ∈ P3 = P(S3V ∗) bea proje
tion 
enter. After some parameter 
hange we 
an suppose that either `1 = `2 = `3 = t20, (thismeans that p∈C), or `1 = `2 = t0 ; `3 = t1 (2), or `1 = (t0 + t1) ; `2 = (t0 + ! t1) ; `3 = (t0 + !2t1),where ! = 3√1 6= 1 (that is, p(t) = t30 + t31 has 3 distin
t roots).In the �rst 
ase p = (1 : 0 : 0 : 0); take a target plane to be a0 = 0 with the 
oordinates (x0 : x1 :x2) = (a1 : a2 : a3). Then the proje
tion is given by parametri
 equations (x0 : x1 : x2) = (�20 : �0�1 : �21)and 
oin
ides with the plane Veronese 
oni
 x0x2 = x21.In the se
ond 
ase p = (0 : 1 : 0 : 0); take a target plane to be a1 = 0 with the 
oordinates(x0 : x1 : x2) = (a0 : a2 : a3). Then the proje
tion is given by parametri
 equations (x0 : x1 : x2) = (�30 :�0�21 : �31) and in the aÆne 
hart {x0 = 1} it turns into x = �2, y = �3, where x = x1=x0, y = x2=x0,and � = �1=�0. So, we get a 
urve y2 = x3 or, in the homogeneous 
oordinates, x32 = x23x0. This 
urveis 
alled a 
uspidal 
ubi
, be
ause of the singularity form at the origin.In the third 
ase p = (1 : 0 : 0 : 1); take a target plane � = {a2 = 0} with the 
oordinates (x0 : x1 :x2) = ((a0 − a1) : a1 : a2) (the �rst three 
oordinates w.r.t. the base { t30 ; 3 t20t1 ; 3 t0t21 ; t30 + t31 }). So,the proje
tion from p = t30+ t31 gives the parameterized 
urve (x0 : x1 : x2) = ((�30 − �31) : �20�1 : �0�21) .In aÆne 
hart x0 = 1 we get, like above, x = �=(1− �3), y = �2=(1− �3) or xy = x3 − y3. This 
urvehas a self interse
tion point at the origin and is 
alled a nodal 
ubi
.7.2.1.Example: geometri
 des
ription of rational 
urves. A plane 
urve C ⊂ P2 is 
alled rational if thereare 3 
oprime homogeneous polynomials p0(t), p1(t), p2(t) of the same degree in t = (t0 : t1) su
h that a map
P1 �7→(p0(�):p1(�):p2(�))- P2 gives (maybe, after removing some �nite sets of points from P1 and C) a bije
tionbetween P1 and C .Exer
ise 7.2. Interse
ting C with lines, show that degC = deg pi.1re
all that we suppose the ground �eld to be algebrai
ally 
losed2geometri
ally, this means that p lies on a tangent line to C3



§ 7. Working example: Veronese 
urves. 35When deg pi = d , a map (td0 : td−10 t1 : : : : : t0td−11 : td1) 7−→ (p0(t) : p1(t) : p2(t)) de�nes a proje
tion of theVeronese 
urve Cd ⊂ Pd into some plane P2 ⊂ Pd. So, we have7.2.2.CLAIM. Ea
h rational plane 
urve of degree d is an appropriate proje
tion of the Veronese
urve Cd ⊂ Pd. �7.2.3.COROLLARY. A smooth plane 
ubi
 
urve is not rational.Proof. Rational 
ubi
 
urve is a plane proje
tion of the twisted 
ubi
 C3 ⊂ P3. But su
h a proje
tion is either a
oni
 or a singular 
ubi
. �7.3. Simpli
es ins
ribed into the Veronese 
urve. Let pi = �ni , where 1 6 i 6 n, �i ∈ U∗, be anarbitrary 
olle
tion of n distin
t points on the Veronese 
urve Cn ⊂ Pn = P(SnU∗). For ea
h i 
onsiderthe pen
il of hyperplanes passing through (n − 2)-dimensional fa
e (p1; : : : pi−1; pi+1; : : : ; pn) oppositeto pi in the (n − 1) dimensional simplex (p1; p2; : : : ; pn). These n pen
ils are parameterized uniformlyby the points of P×1 = P(U) as follows. For any � ∈P(U∗) denote by �̂ ∈P(U) the annihilator1 Ann (�)and for ea
h i take the produ
t �i = �̂1; · · · ; �̂i−1�̂i+1; · · · ; �̂1 ∈ Sn−1U . De�ne a plane �i(u) ⊂ P(SnU∗),whi
h 
orresponds to u ∈ P(U) in i-th pen
il, as the annihilator of u�i ∈ SnU . This means that�i(u) = {f(t) ∈ SnU∗ | f̃(�̂1; : : : ; �̂i−1; u; �̂i+1; : : : ; �̂n) = 0}where f̃ is the full polarization of f 
onsidered as a symmetri
 multilinear form on U . In parti
ular, forf(t) = �n(t) ∈ Cn we have �̃n(�̂1; : : : ; �̂i−1; u; �̂i+1; : : : ; �̂n) = �(u) ∏� 6=i � (�̂�)So, for any u ∈ P(U) the plane �i(u) pass through all p� = �n� with � 6= i and through the pointp = �n ∈ Cn whose � annihilate u (i. e. su
h that u = �̂ ). In other words,Cn =⋃u �1(u) ∩ �2(u) ∩ · · · ∩ �n(u) (7-1)Sin
e PGL2(k) a
ts on P(SnU∗) via linear variable a linear isomorphism between proje
tive lines isuniquely de�ned by the images of any 3 distin
t points, we get the following 
orollary.7.3.1.CLAIM. The Veronese 
urve is uniquely re
overed from any 
olle
tion of its (n + 3) distin
tpoints a; b; 
;p1; p2; : : : ; pn as follows. Consider n hyperplane pen
ils through the (n − 2)-dimensionalfa
es of the ins
ribed simplex (p1; p2; : : : ; pn) and parameterize them uniformly by u∈P1 in su
h a waythat the hyperplanes passing through a, b, 
 appear in ea
h pen
il when u = 0; 1; ∞. Then Cn 
oin
ideswith the in
iden
e graph (7-1) when u runs through the parameter line P1. �7.4.Natural a
tion of PGL1 = PGL(U∗) on P(SnU∗) indu
ed by the substitutions (t0; t1) 7−→(at0+ bt1; 
t0+ dt1) sends the Veronese 
urve to itself. We 
all it the reparameterization of the Veronese
urve.7.4.1.CLAIM. Let p1; p2; : : : ; pn; a ; b ; 
 ∈ Pn = P(SnU∗) be any n+ 3 points with no (n+ 1) on thesame hyperplane. Then there exists a proje
tive linear isomorphism Pn ∼- Pn that sends these pointsonto Veronese 
urve Cn; this isomorphism is unique up to a reparameterization of the Veronese 
urve.Proof. For ea
h i = 1; 2; : : : ; n identify P1 = P(U) with a pen
il of hyperplanes through p1; : : : pi−1; pi+1; : : : ; pn
q2q1
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by sending u = e0; e1; (e1 − e0) to the hyperplanes that 
ontain a, b, 
 and denote by �i(u) the u-th hyperplanein the i-pen
il. Let the hyperplane (p1; p2; : : : ; pn) appear in i-th pen
il whenu = ui. We 
laim that u1; u2; : : : ; un ∈ P(U) are mutually distin
t.Indeed, 
onsider 2-dimensional plane � = (a; b; 
) and denote by q1 and q2its interse
tion with i-th and j-th (n−2)-dimensional fa
es of (p1; p2; : : : ; pn).Sitting in this plane, we will see the pi
ture shown on �g 7⋄1. Our i-th and1if � = �0t0 + �1t1, then b� = �1e0 − �0e1, where {eo; e1} ⊂ U is the base of U dual to {t0; t1} ⊂ U∗
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 Geometry. Start Up Course.j-th pen
ils of hyperplanes are represented inside � by the pen
ils of linespassing through q1, q2 and the hyperplane (p1; p2; : : : ; pn) is represented bythe line (q1q2) (
ompare this 
onstru
tion with drawings from the §3).Exer
ise 7.3. Show that no 3 of q1; q2; a; b; 
 are 
ollinear (in parti
ular,q1; q2 are distin
t).Hint. Use linear generality of p1; p2; : : : ; pn; a ; b ; 
.For ea
h pair i 6= j there are two ways to identify the parameter line P(U)with the pen
il of lines passing through O = (aq1) ∩ (bp2): one takes u ∈ Uto the line through �i(u) ∩ (b
), another one takes u ∈ U to the line through�j(u) ∩ (a
). These two parameterizations 
oin
ide, be
ause they atta
h the same u's to a, b, 
. Sin
e O, q1, q2are not 
ollinear, two lines 
orresponding to u = ui, u = uj (they join O with �i(ui) ∩ (b
) = (q1q2) ∩ (b
) and�j(uj) ∩ (a
) = (q1q2) ∩ (a
) respe
tively) are distin
t, i. e. ui 6= uj .Now, denote by � the in
iden
e graph (7-1) build from our 
urrent pen
ils of hyperplanes. Let ui = Ann (�i)for �1; �2; : : : ; �n ∈ U∗. By the n◦ 1.11.1, there exists a unique proje
tive linear automorphism Pn ∼- Pn whi
hsends pi 7−→ �ni for 1 6 i 6 n, a 7−→ tn1 , and b 7−→ tn0 . It identi�es � with the Veronese 
urve, be
ause it sendsthe hyperplane pen
il through p1; : : : pi−1; pi+1; : : : ; pn to the one through �n1 ; : : : �ni−1; �ni+1; �nn in su
h a waythat �i(u) goes to the hyperplane through �n as soon as � = Annu. Indeed, this takes pla
e for u = e1, u = e0and u = ui when a, b and pi go to tn0 , tn1 and �ni . Hen
e, this holds for ea
h u and for u = e1 − e0 we have
 7−→ (t0 + t1)n. This proves the existen
e.Uniqueness follows from the above 
onstru
tion as well. Namely, after appropriate parameter 
hange we 
ansuppose that the isomorphism in question sends a, b, 
 to tn0 , tn1 and (t0 + t1)n. So, it indu
es the uniformparameterization of hyperplane pen
ils trough p� and this parameterization 
oin
ides with the above one. So, theimages of p1; p2; : : : ; pn are uniquely re
overed as �i = Ann (ui). �



§8.Commutative algebra draught.8.1.Noetherian rings. We write (f1; f2; : : : ; fm) for the ideal {g1f1 + g2f2 + · · · + gmfm | g� ∈ A}spanned (as A-module) by {f1; f2; : : : ; fm} ⊂ A. A 
ommutative ring A is 
alled Noetherian, if itsatis�es the next lemma:8.1.1.LEMMA. The following properties of a 
ommutative ring A are mutually equivalent(1) any 
olle
tion of elements {f�} 
ontains a �nite subset generating the same ideal as the whole set;(2) any ideal admits a �nite set of generators;(3) for any in�nite 
hain of embedded ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · there exists n ∈ N su
h thatI� = In ∀ � > n.Proof. Clearly, (1) ⇒ (2). To dedu
e (3) from (2), take a �nite set of generators for the ideal ⋃ I� ; sin
e they allbelong to some In, we get I� = In for � > n. Finally, (1) follows from (3) applied to the 
hain In = (f1; f2; : : : ; fn),where fi are 
hosen from {f�} in order to have f� 6∈ (f1; f2; : : : ; f�−1). �8.1.2.THEOREM (HILBERT'S THEOREM ON A BASIS). If A is Noetherian, then A[x℄ is Noetherian.Proof. Let I ⊂ A[x℄ be an ideal. We write Ld ⊂ A for a set of leading 
oeÆ
ients of all degree d polynomials inI. Clearly, ea
h Ld and L∞ def= ⋃d Ld are ideals in A. Let L∞ be generated by a1; a2; : : : ; as ∈ A 
oming fromf (∞)1 ; f (∞)2 ; : : : ; f (∞)s∞ ∈ I and let max�(deg f�) = m. Similarly, write f (k)1 ; f (k)2 ; : : : ; f (k)sk for the polynomials whoseleading 
oeÆ
ients span the ideal Lk for 0 6 k 6 m−1. It is easy to see that I is spanned by s0+ · · ·+ sm−1+ s∞polynomials f (�)� . �Exer
ise 8.1. Verify the latter 
laim neatly.8.1.3.COROLLARY. If A is Noetherian, then A[x1; x2; : : : ; xn℄ is Noetherian. �8.1.4.COROLLARY. Any �nitely generated k-algebra is Noetherian for any �eld k.Proof. A polynomial algebra k[x1; x2; : : : ; xn℄ is Noetherian by the previous 
orollary. Any its fa
tor algebra A isNoetherian as well: full preimage of any ideal I ⊂ A under the fa
torizing morphism k[x1; x2; : : : ; xn℄ -- A isan ideal in k[x1; x2; : : : ; xn℄, i. e. admits a �nite set of generators, whose 
lasses span I over A, 
ertainly. �8.2. Integrality. Let A ⊂ B be two 
ommutative rings. An element b ∈ B is 
alled integer over A, if itsatis�es the 
onditions from n◦ 8.2.1 below. If all b ∈ B are integer over A, then B is 
alled an integerextension of A or an integer A-algebra.8.2.1.LEMMA. The following properties of an element b ∈ B ⊃ A are pairwise equivalent:(1) bm = a1 bm−1 + · · · + am−1 b+ a0 for some m ∈ N and some a1; a2; : : : ; am ∈ A;(2) A-module spanned by all nonnegative powers {bi}i>0 admits a �nite set of generators;(3) there exist a �nitely generated faithful1 A-submodule M ⊂ B su
h that bM ⊂M .Proof. The impli
ations (1) =⇒ (2) =⇒ (3) are trivial. To dedu
e (1) from (3), let {e1; e2; : : : ; em} generate Mover A and let the multipli
ation map M m 7→bm- M be presented by a matrix Y , i. e.(be1; be2; : : : ; bem) = (e1; e2; : : : ; em) · Y :Note that if A-linear map M κ- M takes (e1; e2; : : : ; em) 7−→ (e1; e2; : : : ; em) ·X, where X is a square matrixwith entries in A, then the Sylvester relation detX · Id = X̂ · X implies an in
lusion (detX) ·M ⊂ κ(M). Inour 
ase this 
an be applied to the zero operator M κ- 0 and the matrix X = b · Id − Y . We 
on
lude that1A-module M is 
alled faithful , if aM = 0 implies a = 0 for a ∈ A37



38 Algebrai
 Geometry. Start Up Course.the multipli
ation by det(b · Id− Y ) annihilates M . Sin
e M is faithful, det(b · Id− Y ) = 0. This is a polynomialequation on b with the 
oeÆ
ients in A and the leading term bn as required in (1). �8.2.2.Example: integer algebrai
 numbers. Let K ⊃ Q be a �nite dimensional1 �eld extension; then elementsz ∈ K are 
alled algebrai
 numbers. Su
h a number z is integer over Z i� there are some #1; #2; : : : ; #m∈ K su
hthat the multipli
ation by z sends their Q-linear span to itself and is presented there by a matrix whose entriesbelong to Z.8.2.3.Example: invariants of a �nite group a
tion. Let a �nite group G a
t on a k-algebra B via k-algebraautomorphisms B g- B, g ∈ G, and let A = BG = {a ∈ B | ga = a ∀ g∈G } be the subalgebra of G-invariants.Then B is an integer extension of A. Indeed, if b1; b2; : : : ; bs∈ B form a G-orbit of any given b = b1 ∈ B, then thepolynomial �(t) =∏(t− bi) is moni
2, lies in A[t℄, and annihilates b.8.3. Integer 
losures. A set of all b ∈ B that are integer over a subring A ⊂ B is 
alled an integer
losure of A in B. If this 
losure 
oin
ides with A, then A is 
alled integrally 
losed in B.8.3.1.LEMMA. The integer 
losure of A is a subring in B (in parti
ular, ab is integer for any a ∈ Aas soon b is integer). If C ⊃ B is an other 
ommutative ring and 
 ∈ C is integer over an integer 
losureof A in B, then 
 is integer over A as well (in parti
ular, any integer B-algebra is an integer A-algebraas soon B is an integer A-algebra).Proof. If pm = xm−1 pm−1+ · · · +x1 p+x0, qn = yn−1 qn−1+ · · · +y1 q+y0 for p; q ∈ B, x� ; y� ∈ A, then A-modulespanned by piqj with 0 6 i 6 (m − 1), 0 6 j 6 (n − 1) is faithful (it 
ontains 1) and goes to itself under themultipli
ation by both p+q and pq. Similarly, if 
r = zr−1 
r−1+ · · · +z1 
+z0 and all z� are integer over A, thena multipli
ation by 
 preserves a faithful A-module spanned by a suÆ
ient number of produ
ts 
izj11 zj22 · · · zjrr . �8.3.2.COROLLARY (GAUSS LEMMA). For any two 
ommutative rings A ⊂ B let f(x); g(x) ∈ B[x℄be two moni
 polynomials. Then all 
oeÆ
ients of h(x) = f(x)g(x) are integer over A i� all 
oeÆ
ientsof both f(x), g(x) are integer over A.Proof. There exists3 a ring C ⊃ B su
h that f(x) =∏(t− ��) and g(x) =∏(t− ��) in C[x℄ for some �� ; �� ∈ C.By n◦ 8.3.1, all 
oeÆ
ients of h(x) =∏(t−��)∏(t−��) are integer over A⇐⇒ all �� ; �� are integer over A⇐⇒all 
oeÆ
ients of f(x) and g(x) are integer over A. �8.3.3.LEMMA. Let B ⊃ A be integer over A. If B is a �eld, then A is a �eld. Vi
e versa, if A is a�eld and B has no zero divisors, then B is a �eld.Proof. If B is a �eld integer over A, then any non zero a ∈ A has an inverse a−1 ∈ B, whi
h satisfy an equationa−m = �1 a1−m + · · · + �m−1 a−1 + �0 with �� ∈ A. We multiply the both sides by am−1 and geta−1 = �1 + · · · + �m−1 am−2 + �0 am−1 ∈ A :Conversely, if A is a �eld and B is an integer A-algebra, then all non negative integer powers bi of any b ∈ Bform a �nite dimensional ve
tor spa
e V over A. If b 6= 0 and there are no zero divisors in B, then x 7−→ bx is aninje
tive linear operator on V , i. e. an isomorphism. A preimage of 1 ∈ V is b−1. �8.3.4.Example: algebrai
 elements and minimal polynomials. If A = k is a �eld and B⊃k is a k-algebra, thenb ∈ B is integer over k i� b satis�es f(b) = 0 for some f ∈ k[x℄. Traditionally, su
h b is 
alled algebrai
 over krather than integer .We write k[b℄ for a k-linear span of nonnegative integer powers {bn}n>0. If ∃ b−1 ∈ B, then we write k(b) for a
k-linear span of all integer powers {bn}n∈Z. Clearly, k[b℄ ⊂ B is the minimal k-subalgebra 
ontaining 1 and b. Inother terms, k[b℄ = im (evb) = k[x℄= ker(evb), where evb : k[x℄ f(x) 7→f(b)- B is an evaluation homomorphism.If b is algebrai
, then ker(evb) = (f) for some non zero f ∈ k[x℄, be
ause k[x℄ is a prin
ipal ideal domain. Thisf is �xed uniquely as a moni
 polynomial of lowest degree su
h that f(b) = 0; it is 
alled the minimal polynomial1as a ve
tor spa
e over Q2a polynomial is 
alled moni
 or unitary , if its leading 
oeÆ
ient equals 13For any 
ommutative ring A and any moni
 non 
onstant f(x) ∈ A[x℄ there exists a 
ommutative ring C ⊃ A su
h thatf(x) = Q(x − 
�) in C[x℄ for some 
� ∈ C. It is 
onstru
ted indu
tively as follows. Consider a fa
tor ring B = A[x℄=(f)(whi
h 
ontains A as the 
ongruen
e 
lasses of 
onstants) and put b def= x (mod f) ∈ B. Then f(b) = 0 in B[x℄. Hen
e theresidue after dividing f(x) by (x − b) in B[x℄ vanishes and we get the fa
torization f(x) = (x − b)h(x) with h(x) ∈ B[x℄.Now repeat the pro
edure for h, B instead of f , A e. t. 
.



§ 8. Commutative algebra draught. 39of b over k. Note that in this 
ase 1; b; b2; : : : ; bdeg(f)−1 form a basis for the ve
tor spa
e k[b℄ over k and if B hasno zero divisors, then k[b℄ is a �eld by n◦ 8.3.3 (in parti
ular, the minimal polynomial of b has to be irredu
ible).If b is not algebrai
, then ker(evb) = 0 and k[b℄ ≃ k[x℄ is a polynomial ring. It is in�nite dimensional as ave
tor spa
e over k and it is not a �eld.We generalize this alternative in n◦ 8.5.1 below.8.3.5.LEMMA. Let K = Q(A) be a fra
tion �eld of a 
ommutative ring A without zero divisors, Bbe any K-algebra, and b ∈ B be algebrai
 over K with minimal polynomial f ∈ K[x℄. If b is integer overA, then all 
oeÆ
ients of f are integer over A.Proof. Sin
e b is integer, g(q) = 0 for some moni
 g ∈ A[x℄. Then g = fh in K[x℄ for some moni
 h ∈ K[x℄ and allthe 
oeÆ
ients of g, h are integer over A by the Gauss lemma from n◦ 8.3.2. �8.4.Normal rings. A 
ommutative ring A without zero divisors is 
alled normal , if it is integrally
losed in Q(A). Certainly, any �eld is normal.Exer
ise 8.2. Show that the ring of integer numbers Z is normal.Hint. A polynomial a0tm + a1tm−1 + · · · + am−1t + am ∈ Z[t℄ annihilates a fra
tion p=q ∈ Q with 
oprimep; q ∈ Z only if q|a0 and p|am8.4.1.COROLLARY. Let A be a normal ring with the fra
tion �eldK = Q(A). If f ∈ A[x℄ is fa
torizedin K[x℄ as f = gh, where both g; h are moni
, then g; h ∈ A[x℄.Proof. Indeed, all the 
oeÆ
ients of g; h are integer over A by n◦ 8.3.2. �8.4.2.COROLLARY. Let A be normal ring with the fra
tion �eld K = Q(A) and B be any K-algebra.Then b ∈ B is integer over A i� it is algebrai
 over K and its minimal (over K) polynomial lies in A[x℄.Proof. This follows immediately from n◦ 8.3.5. �8.5.Finitely generated 
ommutative k-algebras. Let k be an arbitrary �eld. A 
ommutative k-algebra B is 
alled �nitely generated , if there is a k-algebra epimorphism k[x1; x2; : : : ; xm℄ �-- B. Inthis 
ase the images bi = �(xi) ∈ B are 
alled algebra generators for B over k.8.5.1.LEMMA. A �nitely generated k-algebra B 
an be a �eld only if ea
h b ∈ B is algebrai
 over k.Proof. Let B be a �eld and {b1; b2; : : : ; bm} be some algebra generators for B over k. We use indu
tion over m.The 
ase m = 1, B = k[b℄ was 
onsidered in n◦ 8.3.4. For m > 1, if bm is algebrai
 over k, then k[bm℄ is a �eld andB is algebrai
 over k[bm℄ by the indu
tive assumption. Hen
e, by n◦ 8.3.1, B is algebrai
 over k as well. So, it isenough to show that bm must be algebrai
 over k as soon m > 1.Suppose the 
ontrary: let bm be not algebrai
. Then k(bm) is isomorphi
 to the �eld k(x), of rational fun
tionsin one variable, via sending bm 7−→ x. By the indu
tive assumption, B is algebrai
 over k(bm) and b1; b2; : : : ; bm−1satisfy polynomial equations with 
oeÆ
ients in k(bm). Multiplying these equations by appropriate polynomialsin bm, we 
an put their 
oeÆ
ients into k[bm℄ and make all their leading 
oeÆ
ients to be equal to the samepolynomial, whi
h we denote by p(bm) ∈ k[bm℄.Now, B is integer over a subalgebra F ⊂ B generated over k by bm and q = 1=p(bm). By n◦ 8.3.3, F is a �eld.So, there exists a polynomial g ∈ k[x1; x2℄ su
h that g(bm; q) is inverse to 1 + q in F . Let us write the rationalfun
tion g(x ; 1=p(x)) ∈ k(x) as h(x)=pk(x), where h ∈ k[x℄ is 
oprime to p ∈ k[x℄. Multiplying the both sides of
(1 + 1p(bm)) h(bm)pk(bm) = 1by pk+1(bm), we get for bm a polynomial equation h(bm) (p(bm) + 1) = pk+1(bm). It is nontrivial, be
auseh(x)(1 + p(x)) is not divisible by p(x). Hen
e, bm should be algebrai
 over k. �8.6.Hilbert's Nullstellensatz. Let us write V (I) = {a ∈ An | f(a) = 0 ∀ f ∈ I } ⊂ An for aÆnealgebrai
 variety de�ned by a system of polynomial equations I ⊂ k[x1; x2; : : : ; xn℄. Certainly, V (I) isnot 
hanged when I is extended to an ideal spanned by I.Vi
e versa, for any subset V ⊂ An we write I(V ) = {f ∈ k[x1; x2; : : : ; xn℄ | f |V ≡ 0} for a set ofall polynomials vanishing along V . Clearly, I(V ) is always an ideal and I(V (I)) ⊃ I for any ideal I.Generi
ally, the latter in
lusion is proper. For example, if I = (x2) ∈ C[x℄, then V (I) = {0} ⊂ A1(C)and I(V (I)) = (x).



40 Algebrai
 Geometry. Start Up Course.8.6.1.THEOREM (WEEK NULLSTELLENSATZ). Let k be an arbitrary algebrai
ally 
losed �eld andI ⊂ k[x1; x2; : : : ; xn℄ be an ideal. Then V (I) = ∅ i� 1 ∈ I.Proof. If 1 ∈ I, then V (I) = ∅, 
ertainly. Let I ⊂ k[x1; x2; : : : ; xn℄ be a proper ideal. We must �nd a point p ∈ Ansu
h that f(p) = 0 for all f ∈ I. We 
an assume that I is maximal , i. e. any g 6∈ I is invertible modulo I. Indeed,otherwise an ideal J generated by g and I would be proper and stri
tly larger than I and we 
ould repla
e I byJ ; a �nite 
hain of su
h repla
ements leads to some maximal ideal.As soon I is maximal the fa
tor algebraK = k[x1; x2; : : : ; xn℄=I is a �eld. Hen
e, any element of K is algebrai
over k ⊂ K by n◦ 8.5.1. Sin
e k is algebrai
ally 
losed, this means that any polynomial is (mod I)-
ongruent tosome 
onstant. Let #1; #2; : : : ; #n be the 
onstants presenting basi
 linear forms x1; x2; : : : ; xn(mod I). Then anypolynomial f ∈ k[x1; x2; : : : ; xn℄ is (mod I) 
ongruent to f(#1; #2; : : : ; #n) ∈ k. In parti
ular, f(#1; #2; : : : ; #n) = 0for any f ∈ I as required. �8.6.2.COROLLARY (STRONG NULLSTELLENSATZ). Let k be an arbitrary algebrai
ally 
losed �eldand I ⊂ k[x1; x2; : : : ; xn℄ be an ideal. Then f ∈ I(V (I)) i� fk ∈ I for some k ∈ N.Proof. If V (I) = ∅, there is nothing to prove. Clearly, vanishing of fk along V (I) always implies vanishing of fitself. So, the theorem is redu
ed to the following statement: if f vanishes along a nonempty algebrai
 varietyV (I), then fk ∈ I for some k.To prove it, 
onsider bigger aÆne spa
e An+1 with 
oordinates (t; x1; x2; : : : ; xn) and identify the initial Anwith the hyperplane t = 0 in this bigger spa
e. If f ∈ k[x1; x2; : : : ; xn℄ ⊂ k[t; x1; x2; : : : ; xn℄ vanishes along V (I),then an ideal J ⊂ k[t; x1; x2; : : : ; xn℄ spanned by I and a polynomial g(t; x) = 1 − t f(x) has empty zero setV (J) ⊂ An+1, be
ause g(x; t) ≡ 1 on V (I). By the week Nullstellensatz 1 ∈ J , i. e.q0(x; t)(1− tf(x)) + q1(t; x)f1(x) + · · ·+ qs(x; t)fs(x) = 1 (8-1)for appropriate q0; q1; : : : ; qs⊂ k[t; x1; x2; : : : ; xn℄ , f1; f2; : : : ; fs ⊂ I. Consider a homomorphism
k[t; x1; x2; : : : ; xn℄ - k(x1; x2; : : : ; xn)that sends t 7−→ 1=f(x), x� 7−→ x� . It takes (8-1) to the identityq1(1=f(x) ; x) f1(x) + · · ·+ qs(1=f(x) ; x) fs(x) = 1inside k(x1; x2; : : : ; xn). Sin
e I is proper, some of q�(1=f(x); x) a
tually have nontrivial denominators of the formf� . Hen
e, multiplying by appropriate power fk, we get an expression q̃1(x) f1(x)+ · · ·+ q̃s(x) fs(x) = fk(x) withq̃� ∈ k[x1; x2; : : : ; xn℄. �8.7.Fa
torization. Let A be a 
ommutative ring without zero divisors. An element q ∈ A is 
alledirredu
ible, if it is not invertible and q = rs implies that one of r; s is invertible. An element p ∈ A is
alled prime, if it generates a prime ideal in A, i. e. if A=(p) is not zero and has no zero divisors.Exer
ise 8.3. Che
k that p is prime i� it is not invertible and p|rs implies that p divides at least one of r; s.Exer
ise 8.4. Show that ea
h prime element is irredu
ible.A ring A is 
alled fa
torial , if any a ∈ A is a �nite produ
t of irredu
ible elements:a = q1 q2 · · · qmand su
h irredu
ible fa
torization is unique up to multipli
ation of its fa
tors by invertible elements1,i. e. given two irredu
ible fa
torizationsq1 q2 · · · qm = a = q′1 q′2 · · · q′n ;then m = n and (after appropriate renumbering) qi = si q′i for some invertible si ∈ A.8.7.1.LEMMA. Any fa
torial ring A is normal.Proof. Let �=� ∈ Q(A) satisfy a polynomial equation tn + a1tn−1 + · · ·+ an−1t+ an = 0, where �i ∈ A. Then �nis divisible by �. Sin
e A is fa
torial, ea
h irredu
ible divisor of � divides �, that is, �=� ∈ A. �1re
all that if a = bs for an invertible s, then a and b are 
alled asso
iated (with ea
h other) elements of ring



§ 8. Commutative algebra draught. 418.7.2.LEMMA. A Noetherian ring without zero divisors is fa
torial i� all its irredu
ible elements areprime.Proof. In a Noetherian ring, any element f is a �nite produ
t of irredu
ible elements: in the 
ontrary 
ase f 
anwritten as f = f1g1, where f1 is redu
ible and 
an be written as f = f2g2 an so on in�nitely many times produ
ingan in�nite 
hain of stri
tly in
reasing ideals (f) ⊂ (f1) ⊂ (f2) ⊂ (f2) ⊂ : : : . Further, if there are no zero divisorsand all irredu
ible elements are prime, then two irredu
ible fa
torizations ∏ qi = ∏ q′j have the same number offa
tors and satisfy qi = siq′i for some invertible si (after appropriate renumbering). Indeed, sin
e prime q′1 divides∏ qi it divides some qi, say q1. So, q1 = s1q′1, where s1 is invertible, be
ause q1 is irredu
ible. Now we haveq′1(s1 ∏i>2 qi − ∏j>2 q′j) = 0, whi
h implies s1 ∏i>2 qi = ∏j>2 q′j , and we 
an repla
e q2 by s1q2 and use indu
tion overthe number of fa
tors.It remains to note that in fa
torial ring all irredu
ible elements are prime: if ab = pq, where q is irredu
ible,then irredu
ible fa
torization of either a or b should 
ontain an element sq with invertible s. �8.7.3.Greatest 
ommon divisor. Let A be a fa
torial ring and a1; a2 ∈ A have the prime fa
toriza-tions: a1 = q1 · · · qsq′s+1 · · · q′m ; a2 = q1 · · · qsq′s+1 · · · q′n ;where no q′i, q′j are asso
iated (the 
ase s = 0, without any q's, is also possible). The produ
t q1 · · · qs(or 1, if s = 0) is 
alled the greatest 
ommon divisor of a1, a2 and denoted by g
d(a1; a2). Note thatg
d(a1; a2) is de�ned up to invertible fa
tor. Indu
tively,g
d(a1; a2; : : : ; an) = g
d (g
d(a1; a2; : : : ; an−1); an) :Given a polynomial f = a0xn + a1xn−1 + · · · + an−1x + an ∈ A[x℄, then g
d(a1; a2; : : : ; an) is 
alled a
ontent of f and is denoted by 
ont(f).8.7.4.LEMMA. 
ont(fg) = 
ont(f) · 
ont(g) for any f; g ∈ A[x℄.Proof. It is enough to 
he
k that 
ont(fg) = 1, if 
ont(f) = 
ont(g) = 1. If all the 
oeÆ
ients of fg are divisibleby some prime p ∈ A, then fg (mod p) = 0 in the ring (A=pA)[x℄, whi
h has no zero divisors, be
ause p is prime.So, either f (mod p) = 0 or g (mod p) = 0. �8.7.5.LEMMA. If A is fa
torial, then A[x℄ is fa
torial as well.Proof. Let k = Q(A) be the quotient �eld. By n◦ 8.7.2, it is enough to show that any irredu
ible f ∈ A[x℄ remainsto be irredu
ible inside the fa
torial ring k[x℄. Let f = gh in k[x℄. We 
an write g(x) = a−1g′(x), h(x) = b−1h′(x)for some a; b ∈ A and g′; h′ ∈ A[x℄ su
h that 
ont(g′) = 
ont(h′) = 1. Now ab f = g′h′, where 
ont(g′h′) = 1 byn◦ 8.7.4 and 
ont(f) = 1, be
ause f is irredu
ible in A[x℄. Hen
e. ab is invertible and h′′ = (ab)−1h′ ∈ A[x℄. Thisleads to the de
omposition f = h′′g′ inside A[x℄. �8.7.6.COROLLARY. If A is fa
torial, then A[x1; x2; : : : ; xn℄ is fa
torial (in parti
ular, normal). �Exer
ise 8.5. Let k be an algebrai
ally 
losed �eld of any 
hara
teristi
, X ⊂ An(k) be an algebrai
 hy-persurfa
e given by a polynomial equation f(x1; x2; : : : ; xn) = 0, where f ∈ k[x1; x2; : : : ; xn℄, and letg(x) ∈ k[x1; x2; : : : ; xn℄ vanish at any point of X. Show that g is divisible by any irredu
ible fa
tor off Hint. Sin
e k[x1; x2; : : : ; xn℄ is fa
torial, the result follows from Hilbert's Nullstellensatz8.8.Resultant systems. We �x a 
olle
tion of m degrees d1; d2; : : : ; dm and write Sd = P(SdV ∗) forthe spa
e of hypersurfa
es of degree d in Pn = P(V ). Let R ⊂ Sd1 × Sd2 × · · · × Sdm be a set ofall hypersurfa
e 
olle
tions S1; S2; : : : ; Sm ⊂ Pn su
h that ⋂S� 6= ∅. Then R is an algebrai
 variety ,i. e. 
an be des
ribed by a �nite system of multi-homogeneous polynomial equations on the 
oeÆ
ients offorms (f1; f2; : : : ; fm) ∈ Sd1V ∗ × · · · × SdnV ∗ de�ning the hypersurfa
es S1; S2; : : : ; Sm. This equationsystem depends only on n;d1; d2; : : : ; dm and is 
alled a resultant system. Indeed, 
onsider an idealI ⊂ k[x0; x1; : : : ; xn℄ generated by f� . Then ⋂S� ⊂ P(V ) is empty ⇐⇒ V (I) ⊂ A(V ) either is emptyor 
oin
ides with the origin O ∈ A(V ). In the both 
ases ea
h xi vanishes along V (I), i. e. by Hilbert'sNullstellensatz xmi ∈ I for some m, that is SdV ∗ ⊂ I ∀ d ≫ 0. Sin
e V (xm0 ; xm1 ; : : : ; xmn ) = {O} this
ondition is also suÆ
ient. So, ⋂S� = ∅ i� k-linear map:�d : Sd−d0V ∗ ⊕ Sd−d1V ∗ ⊕ · · · ⊕ Sd−dnV ∗ (g0;g1; :::; gn) 7→P g� f� - Sd (8-2)
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 Geometry. Start Up Course.is non surje
tive ∀ d≫ 0. In terms of the standard monomial bases, �d is presented by a matrix whoseentries are linear forms in the 
oeÆ
ients of f� . Sin
e for d ≫ 0 the dimension of the left side in (8-2)be
ames greater then the right one1, R 
oin
ides with the zero set of all d× d - minors of all �d with dlarge enough. By Hilbert's theorem on a basis, this in�nite equation system is equivalent to some �nitesubsystem. Say, we will see in n◦ 8.8.2 that for n = 1, m = 2 the smallest d produ
ing a non trivialrestri
tion is d = d0 + d1 − 1, when �d be
omes a square matrix; in this 
ase R is a hypersurfa
e givenby equation det�d0+d1−1 = 0.8.8.1.Example: proje
tion Pm × An �- An sends algebrai
 varieties to algebrai
 varieties, i. e. ifX = { (q; p) ∈ Pm × An | f�(q; p) = 0 }is given by some polynomial equations f�(t; x) = 0 (homogeneous in t = (t1; t2; : : : ; tm) ∈ Pm), then its proje
tiononto An also 
an be des
ribed by a system of polynomial equations.Indeed, 
onsider f� as homogeneous polynomials in t with the 
oeÆ
ients in k[x1; x2; : : : ; xn℄. Then the image�(X) ⊂ An 
onsists of all p su
h that the homogeneous in t polynomials f�(t; p) have a 
ommon zero on Pm. As wehave seen, this means that their 
oeÆ
ients, whi
h are polynomials in p, satisfy the system of resultant equations.8.8.2.Example: resultant of two binary forms. If k is algebrai
ally 
losed, then ea
h polynomial f(t) = a0 tm +a1 tm−1 + · · · + am−1 t + am 
an be fa
torized as f(t) = a0∏(t − #�) = am∏(1 − #−1� t), where #1; #2; : : : ; #mare all its roots. In homogeneous world, ea
h degree d homogeneous polynomialA(t0; t1) = a0 td1 + a1 t0 td−11 + a2 t20 td−21 + · · · + ad−1 td−10 t1 + ad td0has similar de
omposition A(t0; t1) = d∏i=0(�′′i t0 − �′it1) = d∏i=0 det(t0 t1�′i �′′i ) , whi
h means that A vanishes at dpoints �1; �2; : : : ; �d∈ P1 with homogeneous 
oordinates �i = (�′i : �′i). In parti
ular, ea
h 
oeÆ
ient ai, of A(t),is expressed as bihomogeneous degree (i; d− i) polynomial in (�′; �′′):ai = (−1)d−i�i(�′; �′′) ; where �i(�′; �′′) = ∑#I=i(∏i∈I �′i ·∏j 6∈I �′′j )(here I runs through all in
reasing length i subsets in {1; 2; : : : ; d} and �i is a bihomogeneous version of the i-thelementary symmetri
 fun
tion).Now, let us �x two degrees m;n ∈ N and 
onsider a polynomial ring k[�′; �′′; �′; �′′℄ in four 
olle
tions ofvariables �′ = (�′1; �′2; : : : ; �′n) ; �′′ = (�′′1 ; �′′2 ; : : : ; �′′n) ; �′ = (�′1; �′2; : : : ; �′m) ; �′′ = (�′′1 ; �′′2 ; : : : ; �′′m) Then theprodu
t RAB def= ∏i;j (�′i�′′j − �′′i �′j) = n∏j=1A(�j) = (−1)mn m∏i=1B(�i) ;vanishes i� two homogeneous binary formsA(t0; t1) = n∑i=0 ai ti0 tn−i1 andB(t0; t1) = m∑j=0 bj tj0 tm−j1 (whose 
oeÆ
ientsai = (−1)n−i�i(�′; �′′) , bj = (−1)m−j�j(�′; �′′) have a 
ommon root. Clearly, RA;B is bihomogeneous ofbidegree (mn;mn) in (�; �) and may be expressed in terms of the 
oeÆ
ients of A, B. This expression is 
alleda resultant of the polynomials A(t0; t1), B(t0; t1) and generates the ideal of all resultant relations for two binaryforms. More pre
isely, RA:B up to a s
alar fa
tor 
oin
ides with the Silvester determinant
det

a0 a1 : : : ana0 a1 : : : an. . . . . . . . .a0 a1 : : : anb0 b1 : : : bmb0 b1 : : : bm. . . . . . . . .b0 b1 : : : bm



︸ ︷︷ ︸m+n



m




n

Indeed, 
onsider a ve
tor spa
e U with a basis {t0; t1} and a linear map Sm−1U ⊕Sn−1U MA;B- Sm+n−1U whi
hsends a pair of polynomials (h1(t); h2(t)) to A(t)h1(t) + B(t)h2(t) as in 8-2. The Silvester matrix is transpose1the leading terms of their expansions as polynomials in d are mdn=n! and dn=n! respe
tively



§ 8. Commutative algebra draught. 43to the matrix of MA;B in the standard monomial bases. If a point (�; �) lies on the quadri
 �′i�′′j − �′′i �′j = 0,then (�′′i t0 − �′it1) = (�′′i t0 − �′it1) up to a s
alar fa
tor. This linear form divides A(t), B(t) and any polynomialA(t)h1(t) + B(t)h2(t). Hen
e, imMA;B 6= Sm+n−1U . So, the Silvester determinant vanishes along ea
h quadri
�′i�′′j −�′′i �′j = 0 and, by Hilbert's Nullstellensatz, it is divisible by RA;B. The quotient has to be a 
onstant, be
ausethe both polynomials are bihomogeneous of the same bidegree (mn;mn) in (�; �). Moreover, sin
e the Silvesterdeterminant vanishes as soon A(t) and B(t) are not 
oprime, RAB spans the ideal of all resultant relations | so,it is prin
ipal in the 
ase of two binary forms.8.8.3.Example: elimination te
hnique. Let C1, C2 be two plane 
urves of degrees m and n given by equationsF (x) = 0 and G(x) = 0 in x = (x0 : x1 : x2). Consider F , G as (non homogeneous) polynomials in x0 with the
oeÆ
ients in k(x1; x2) and take their resultant1 RF;G(x1; x2) ∈ k[x1; x2℄. If it is identi
ally zero, then F and Ghave a 
ommon divisor in k(x1; x2)[x0℄.Exer
ise 8.6. Dedu
e from the Gauss lemma that it 
an be taken with the 
oeÆ
ients in k[x1; x2℄.So, if R ≡ 0, then C1 and C2 have a 
ommon 
omponent. If R 6≡ 0, then (x1; x2)-
oordinates of any interse
tionpoint p ∈ C1 ∩C2 have to satisfy the resultant equation RF;G(x1; x2) = 0 whi
h is homogeneous of degree mn. So,the 
urves have either a 
ommon 
omponent or at most mn interse
tion points, whi
h may be found by solving ahomogeneous polynomial equation in x1; x2 only. These pro
edure is 
alled an elimination of a variable.

1resultant of non-homogeneous polynomials F (x0) and G(x0) is de�ned as the resultant of tn0F (t1=t0) and tm0 G(t1=t0)



§9.Proje
tive hypersurfa
es.In this se
tion we assume that k is algebrai
ally 
losed and 
hark 6= 2.9.1. Spa
e of hypersurfa
es. Proje
tive spa
e P(SdV ∗) 
onsists of all non zero d-th degree homo-geneous polynomials 
onsidered up to a s
alar fa
tor. It is 
alled a spa
e of degree d hypersurfa
es in
Pn = P(V ). Geometri
ally, ea
h polynomial whose prime fa
torization is f(x) = s∏i=1 pi(x)mi de�nes azero set Zf def= {x∈Pn | f(x) = 0} = s⋃i=1mi · Zpi ;whi
h is an union of the irredu
ible 
omponents Zpi = {x ∈ P(V ) | pi(x) = 0} 
ounted with integermultipli
ities mi. We will also write Zf = m1Zp1 +m2Zp2 + · · · +msZps. By ex. 8.5, ea
h irredu
ible
omponent Zpi does not admit any further de
omposition into a sum of proper subsurfa
es.Exer
ise 9.1. Find dimP(SdV ∗).Traditionally, 1-, 2-, and 3-dimensional proje
tive subspa
es in the spa
e of hypersurfa
es are 
alled,respe
tively, pen
ils, nets and webs of hypersurfa
es.9.1.1.Example: pen
il of plane 
urves ` = (C1C2) ⊂ P(SdV ∗) on P2 = P(V ) is de�ned by any two distin
telements C1; C2 ∈ `. A 
urve �C1 + �C2 ∈ ` (whose homogeneous 
oordinates w. r. t. the basis {C1; C2}, of `, are(� : �)) is given in P2 by the equation �f1(x) + �f2(x) = 0, where f1(x) = 0 and f2(x) = 0 are the equations ofthe basi
 
urves C1, C2. In parti
ular, ea
h 
urve from the pen
il (C1C2) 
ontains all interse
tion points C1 ∩C2.Another remarkable property: any pen
il of plane 
urves 
ontains a 
urve passing through any pres
ribed pointp ∈ P2. Indeed, 
urves passing through a given point form a 
odimension 1 hyperplane in the spa
e of 
urves andthis hyperplane interse
ts ea
h line of 
urves.As an appli
ation of pen
ils, let us give another fruitful proof of the Pas
al theorem from n◦ 3.3.1. Given ahexagon p1p2p3p4p5p6 ins
ribed in a non singular 
oni
 C, write x = p3p4 ∩ p6p1, y = p2p3 ∩ p5p6, z = p1p2 ∩ p4p5for the interse
tion points of its opposite sides. Fix some 7-th point p7 ∈ C, whi
h di�ers from p1; p2; : : : ; p6, and
onsider a pen
il of 
ubi
 
urves (Q1Q2) spanned by 2 
ompletely splitted 
ubi
s formed by `opposite triples' ofsides Q1 = (p1p2) ∪ (p3p4) ∪ (p5p6) and Q2 = (p2p3) ∪ (p4p5) ∪ (p6p1). All 
ubi
s of this pen
il pass through 9interse
tion points Q1 ∩ Q2 = {p1; p2; : : : ; p6; x; y; z} and at least one of them, say Q, pass through p7 as well.Sin
e the 
oni
 C has more than 6 
ommon points with the 
ubi
 Q, it should be a 
omponent of this 
ubi
,i. e. Q = C + some line, where the line has to pass through x; y; z 6∈ C.9.2. Intera
tion with lines. Let S ⊂ Pn be a hypersurfa
e given by a homogeneous equation F (x) = 0of degree d and ` = (pq) ∈ Pn be a line spanned by p; q ∈ V . Write (� : �) for internal homogeneous
oordinates of a point �p + �q ∈ `. In these 
oordinates, ` ∩ S is given by the equation f(�; �) = 0obtained from F (x) = 0 by the substitution x = �p+ �q. By the Newton{Taylor formula,f(�; �) = F (�p+ �q) = d∑i=0 �i�n−i(di) F̃ (pi; qn−i) ; where (9-1)F̃ (pi; qn−i) def= pl(F )(p; p; : : : ; p︸ ︷︷ ︸i ; q; q; : : : ; q︸ ︷︷ ︸d−i ) = (d− i)!d! �iF�pi (q) = i!d! �d−iF�qd−i (p) : (9-2)Note that the bottom term F (pi; qn−i) is bihomogeneous of degree (i; n− i) in (p; q).If f(�; �) ≡ 0 or, equivalently, F̃ (pi; qn−�) = 0 for all i, then ` ⊂ S.If f(�; �) 6≡ 0, then f(�; �) = ∏i(�′′i � − �′i�)si is a produ
t of linear forms1. Ea
h linear form
orresponds to an interse
tion point � = (�′ : �′′) = �′p + �′′q ∈ ` ∩ S. The maximal power si su
hthat f(�; �) is divisible by (�′′i �− �′i�)si is 
alled a lo
al interse
tion index between S and ` at �. It isdenoted by (S; `)�. So, degS =∑�∈S∩`(S; `)� as soon as ` 6⊂ S, i. e. a line either lies on S or interse
tS in degS points 
ounted with multipli
ities.9.3.Tangent lines and tangent spa
e. A line ` is 
alled a tangent line to S, if there is a pointp ∈ S ∩ ` with (S; `)p > 2. We say that ` does tou
h S at p or that p is a tangen
y point .1namely, f(�; �) = �df(t; 1), where t = �=� and f(t; 1) ∈ k[t℄; now, f(t; 1) = Q(t− �i)mi44



§ 9. Proje
tive hypersurfa
es. 459.3.1.CLAIM. For any p ∈ S and any q∈Pn the line (pq) tou
h S at p i� F̃ (pn−1; q) = 0.Proof. If p∈S, that is F̃ (pn) = F (p) = 0, the aÆne version of (9-1) near p takes the form:F (p+ tq) = t(d1) F̃ (pn−1; q) + t2(d2) F̃ (pn−2; q2) + · · ·and (S; (pq))p is the maximal power of t fa
tored out of F (p+ tq). It is > 2 i� F̃ (pn−1; q) = 0. �9.3.2.COROLLARY. The union of all tangent lines through p∈S is a proje
tive spa
eTpS def= {y∈Pn ∣∣∣ n∑i=0 yi �F�xi (p) = 0} :It is either a hyperplane or the whole of Pn. The last happens i� �F�xi (p) = 0 ∀i. �The spa
e TpS is 
alled a tangent spa
e to S at p. If TpS = Pn, then S is 
alled singular at p and pis 
alled a singular point of S. Otherwise p is 
alled a smooth point of S. S is 
alled smooth, if all itspoints are smooth.9.3.3.COROLLARY. Let q be either a smooth point on S or any point outside S. Then the apparent
ontour1 of S visible from q is slashed by the hypersurfa
e of degree (d− 1)S(d−1)q def= {y∈Pn ∣∣∣ n∑i=0 qi �F�xi (y) = 0} :In parti
ular, n∑i=0 qi �F�xi (y) 6≡ 0 as a polynomial in y.Proof. Indeed, (qy) tou
h S at y, if 0 = F̃ (yn−1; q) = plqF (y) = 1d ∑ni=0 qi �F�xi (y). If this polynomial vanishesidenti
ally in y, then taking y = q we get F (q) = 0, i. e. q ∈ S. At the same timeF (q; q; : : : ; q; y) = pln−1q F (y) = pln−2q plqF (y) ≡ 0 ;be
ause of F̃ (yn−1; q) ≡ 0. So, q is singular point of S. �9.4.Point multipli
ities. A number multS(p) def= min`∋p (`; S)p is 
alled a multipli
ity of p on S. A pointp∈S is singular i� any line through p interse
ts S with index > 2 at p. So, p ∈ S is smooth i� p hasthe multipli
ity 1. A point p has multipli
ity > m i� all possible (m− 1)-typle partial derivatives of Fvanish at p.9.5.Polar hypersurfa
es. A hypersurfa
e S(r)q def= {y∈Pn ∣∣∣ F̃ (qn−r; yr) = 0} is 
alled a r-th degreepolar of S with respe
t to p. If F (qn−r; yr) vanishes identi
ally in y, we say that the polar is trivial ,i. e. 
oin
ides with the whole of Pn. Intuitively, for a smooth point q ∈ S, the polar S(r)q is a degree rsurfa
e whi
h gives the most 
losed approximation for S near q in a sense that the both have at q thesame tangent hyperplanes (i. e. their linear polars at q 
oin
ide), the same `tangent quadri
s' (i. e. theirquadrati
 polars at q 
oin
ide), and so on up to 
oin
iden
e of (r−1)-th degree polars. If q∈S is singularof multipli
ity m > 2, then all the polars of degree 6 (m − 1) w. r. t. p are trivial and the m-th degreepolar is non trivial but singular at p.9.5.1.Example: spa
e of singular 
oni
s. Let V be 3D ve
tor spa
e, P5 = P(S2V ∗) be the spa
e of 
oni
s on
P2 = P(V ), and S ⊂ P5 be a lo
us of the singular 
oni
s. Let us �x some 
oordinates and present quadrati
 formsq(x) ∈ S2V ∗ as q(x) = x ·A · tx with symmetri
 3× 3-matri
es A. Sin
e q is singular i� detA = 0, we see that S isan irredu
ible 
ubi
 hypersurfa
e in P5. We would like to �nd its singular points and des
ribe non singular tangenthyperplanes. By Sylvester's relations, detA =∑� (−1)i+�ai�Ai� , where Ai� is 2 × 2-minor situated outside i-throw and j-th 
olumn. So, � detA�aij = (−1)i+jAij and a point q ∈ S is singular i� rkA = 1.Exer
ise 9.2. Show that any m × n matrix aij of rank 1 has aij = �i�j , i. e. 
an be written as the produ
t ofappropriate 
olumn t(�1; �2; : : : ; �m) and row (�1; �2; : : : ; �n).1i. e. the set of all tangen
y points p 6= q where S tou
hed by the tangent lines drawn from q



46 Algebrai
 Geometry. Start Up Course.Hint. A linear operator kn x 7→Ax- km has rkA = 1 i� dim imA = 1; if w = (�1; �2; : : : ; �m) generatesimA, then A(v) = �(v)w, where kn �- k is linear form, say � = (�1; �2; : : : ; �n) : : :In our 
ase A = (aij) is symmetri
 and we should have �i = �i, i. e. aij = �i�j for some �0; �1; �2 ∈ k. So, A∈Sis singular i� q(x) = (∑�ixi)2 is a double line. Thus, the set of singular points of S 
oin
ides with 2-dimensionalVeronese's surfa
e V ⊂ S, whi
h parameterizes double lines in P2.Now, let q(x) = x ·A · tx be a smooth point of S, i. e. a pair of distin
t lines `1 ∪ `2 ⊂ P2. Then the 
orrelationmap V x 7→x·A- V ∗ has 1-dimensional kernel spanned by v = `1 ∩ `2, that is rk (A) = 2 and the adjoint matrixÂ = ((−1)i+jAij) is non zero. By the Sylvester relations: A·Â = Â·A = det(A)·Id = 0, ea
h row and ea
h 
olumnof Â lies in the kernel of A, i. e. is proportional to v. Thus, rk Â = 1 and (−1)i+jAij = �i�j , where (�0 : �1 : �2)are homogeneous 
oordinates of v. So, B = (bij) ∈ TqSn ⇐⇒∑ij bij · (−1)i+jAij = 0 ⇐⇒∑ij bij �i�j = 0 ⇐⇒v ·B · tv = 0. In other words, the tangent spa
e TqS at q = `1 ∪ `2 ⊂ P2 
onsists of all 
oni
s passing through thepoint `1 ∩ `2 ∈ P2.Exer
ise 9.3. Extend this result to general 
ase dimV = n + 1, i. e. show that a point q on the hypersurfa
eS ⊂ P(S2V ∗), of singular quadri
s on Pn = P(V ), is non-singular i� the 
orresponding quadri
 Qq ⊂ P(V )has just one singular point v(q) ∈ P(V ) and prove that TqS 
onsists of all quadri
s passing through v(q).



§10.Working example: plane 
urves.In this se
tion we assume that k is algebrai
ally 
losed and 
hark 6= 2.10.1.Geometri
al tangents at singularity. Let C ⊂ P2 be a 
urve given by an equation F (x) = 0of degree d and p∈C be a (singular) point of multipli
ity m > 2. Then all the polars C(�)p (whi
h wouldbe given by equations1 F̃ (pd−� ; x�) = 0) are trivial for 0 6 � 6 (m − 1) and m-th degree polar C(m)p(given by F̃ (pd−m; xm) = 0) is non trivial but singular: its Taylor expansion near pF̃ (pd−m; (p+ tq)m) = m∑�=1 t�(m�) F̃ (pd−m+�; q�) = tm F̃ (pd−m; qm)
ontains just one term and a line (p; q) either is a 
omponent of C(m)p (when F̃ (pd−m; qm) = 0) orinterse
ts C(m)p only at p with multipli
ity m (when F (pd−m; qm) 6= 0). So, C(m)p splits into union of mlines (pqi), where qi are the roots of F̃ (pd−m; qm) = 0 
onsidered as degreem equation on q, where q runsthrough any �xed line ` 6∋ p. (Of 
ourse, some of (pqi) may 
oin
ide when the roots be
ame multiple.)The lines (pqi) are 
alled geometri
al tangent lines to C at p.Geometri
ally, generi
 line (pq), through p, interse
ts C at p with multipli
ity m, be
ause the Taylorexpansion F (p+tq) = ( dm) ·tm · F̃ (pd−m; qm)+ · · · starts with non-zerom-th degree term. The geometri
tangents (pqi) are the lines whose interse
tion multipli
ity with C at p jumps w. r. t. the generi
 value.Algebrai
ally, this means that F̃ (pd−m; xm) = �1(x) �2(x) · · · �m(x) is the produ
t of m linear forms�1; �2; : : : ; �s whose zeros are the geometri
 tangents (pqi) (again, some of them may 
oin
ide).10.1.1.Example: the simplest singularities. Given a 
urve C ⊂ P2, an m-typle point p∈C is 
alled an m-typlenode (or an m-typle sel�nterse
tion) if there are m distin
t geometri
al tangents `1; `2; : : : ; `m to C through p.Geometri
ally, this means that C has m mutually transversal bran
hes through p. The di�eren
e (`i; C)p −m− 1is 
alled an order of the 
onta
t between `i and the 
orresponding bran
h of C. A node is 
alled ordinary if allthe geometri
al tangents have the se
ond order 
onta
ts with its bran
hes, that is (`i; C)p = m+ 1 ∀ i.
XY XY

Fig. 10⋄1. The node y2 = x2(x+ 1). Fig. 10⋄2. The 
usp y2 = x3.A double point p∈C is 
alled a 
usp (or a self
onta
t) if the quadrati
 polar of p is a double line `. Geomet-ri
ally, this means that C has two bran
hes whi
h do tou
h ea
h other at p. The unique geometri
al tangent ` atp is 
alled a 
uspidal tangent . A lo
al interse
tion number (`; C)p measures an order of the self
onta
t for C at p;
learly, (`; C)p > 3. A 
usp is 
alled ordinary , if (`; C)p = 3 is minimal possible.We say that C has only the simplest singularities, if the singular points of C are exhausted by ordinary doublenodes and ordinary 
usps. Two 
ubi
 
urves with the simplest singularities are shown on the �gs. �g 10⋄1{�g 10⋄2.For higher degree 
urves, the neighborhood of the simple singularity looks similarly2.Exer
ise 10.1. Show that irredu
ible 
ubi
 
urve has at most one (automati
ally simple) singularity.Hint. A line ` has to be a 
omponent of a 
ubi
 C as soon as (`; C) > 4.10.1.2.Example: how mu
h is to put a singularity on a 
urve? Given a point p∈P2, then the polar mapSdV ∗ F 7→�d−mF=�pd−m-- SmV ∗1re
all that eF (pd−� ; x�) = pl(F )(p; p; : : : ; p
| {z }d−� ; x; x; : : : ; x

| {z }� ) = �!d! �(d−�)F�p(d−�) (x) = (d− �)!d! ��F�x� (p)2one 
an show that any smooth 
urve in Pn admits a plane proje
tion that has only the simplest singularities47



48 Algebrai
 Geometry. Start Up Course.is a linear epimorphism. Hen
e the 
urves whose m-degree polar 
oin
ides with a given 
olle
tion of lines throughp form a proje
tive subspa
e of 
odimension dim(SmV ∗) − 1 = m(m + 3)=2. For example, 5 parameters in a
urve equation are �xed by assuming that this 
urve has at a given point a 
usp with a given 
uspidal tangen
y.However, these restri
tions, if 
ome from several distin
t points, are not independent, in general.10.2.AÆne neighborhood of a singularity. Pra
ti
al 
omputation of geometri
 tangents usuallybe
omes simpler in aÆne 
hart with the origin in the singular point in question. Let C have an aÆneequation f(x; y) = 0 in su
h a 
hart U . Write it as∑�>0 f�(x; y) = 0, where ea
h f�(x; y) is homogeneousof degree �, and 
onsider a line `�:� given parametri
ally as1 x = �t ; y = �t. Then C ∩ ` is given bythe following equation on t:fm(�; �) tm + fm+1(�; �) tm+1 + · · · + fd(�; �) td = 0where m is the degree of lowest non trivial homogeneous 
omponent of f and ea
h f�(�; �) is a
tuallynothing but the �-th degree polar of p evaluated at q = (� : �). Thus, the multipli
ity of p 
oin
ideswith the degree of lowest non trivial homogeneous 
omponent of f and the dire
tions (� : �) of thegeometri
al tangents through p are the roots of this 
omponent, i. e. satisfy the equation 'm(�; �) = 0.10.2.1.Example: analyzing singularities. Taking x = �t, y = �t in the nodal 
ubi
 equation y2−x2−x3 = 0, weget the lowest term (� + �)(� − �) t2, whi
h vanishes for (� : �) = (1 : ±1); so, there are two distin
t geometri
altangents x = ±y. Lo
al interse
tion number (`; C)p = 3 for ea
h tangent line `, i. e. ea
h tangent has the se
ondorder 
onta
t with its bran
h. The 
uspidal 
ubi
 on the �g 10⋄2 has the lowest term �2 t2. So, the se
ond polaris a the double line x = 0 with lo
al interse
tion 3 with C at the origin.As an advan
ed example, 
onsider a quarti
 given by the polynomial F (t) = t40 − t30t1 + t20t22 − t21t22. Itssingularities are t∈P2 where all partial derivatives�F=�t0 = 4 t30 − 3 t20t2 − 2 t0t22�F=�t1 = −2 t1t22�F=�t2 = −t30 + 2 t20t2 − 2 t21t2vanish simultaneously. It happens at two points a = (0 : 0 : 1) and b = (0 : 1 : 0). Take an aÆne 
hart withx = t0=t2 ; y = t1=t2 near a. Then F = 0 turns into x2 − y2 − x3 + x4 = 0 with two simple geometri
al tangentsx = ±y at the origin. Sin
e a lo
al interse
tion number equals 3 for ea
h tangen
y, a is an ordinary node. Takinga 
hart with x = t0=t1 ; y = t2=t1 near b, we get the equation y2 − x4 + x3y − x2y2 whose geometri
al tangent isa double line ` = {x = 0} with (`; C)p = 4. So, b is the non ordinary 
usp, where C has a self
onta
t of order 4.10.3.Blow up. Geometri
ally, the substitution x = �t, y = �t lifts C from P2 to a surfa
e � ⊂ P1×P2
alled a blow up of p∈P2. It is des
ribed as follows. Identify a pen
il of lines through p with any �xedline P1 = (ab) 6∋ p and 
onsider the in
iden
e graph � def= {(`; q) ∈ P1 × P2 | `∋ q}. It is an algebrai
surfa
e in P1 × P2: if we put p = (1 : 0 : 0), a = (0 : 1 : 0), b = (0 : 0 : 1), take q = �a+ �b, and 
onsider((� : �); (x0 : x1 : x2)) as 
oordinates on P1×P2, then (x0 : x1 : x2) ∈ (pq) is equivalent to the quadrati
relation �x2 = �x1.Proje
tion � �- P2 is bije
tive outside p, but �−1(p) ≃ P1 is the pen
il of lines through p on P2(see �g 10⋄3). A map ( (� : �) ; t) 7−→ ( (� : �) ; (1 : �t : �t) ) ∈ P1×P2 gives a rational parameterizationfor some aÆne neighborhood of this ex
eptional �ber in �. Full preimage �−1(C), of a 
urve C ⊂ P2passing through p, 
onsists of 2 
omponents: �−1(p) ≃ P1 and and some 
urve whose equation (in termsof parameters (� : �; t) on �) is a result of the substitution x = �t, y = �t in the aÆne equation for C.1as in the beginning of this le
ture, line `�:� has a form (p + tq), where q = (� : �) ∈ U∞ ≃ P1 is runing through thein�nite proje
tive line of the 
hart U
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P1 = (ab) =∞
b=(0: 1)
a=(1: 0)

(�′ : �′)
(0 : 1)(� : �)
y� (� : �)p

(�′ : �′)
(1 : 0)

x
y•

•

•

•

•

�2(x)�1(x)�2(x) �1(x)
C2
C1q(x) •

•

•

•

•

`(x) `(0)
uv

p
•

•

•

Fig. 10⋄3. Blow up. Fig. 10⋄4. The Zeuthen rule.10.4.Lo
al interse
tion multipli
ity. Consider two 
urves C1; C2 ⊂ P2 given by homogeneous equa-tions F = 0, G = 0 of degrees n, m without 
ommon divisors. Let u ∈ C1 ∩ C2. We �x two points p, vsu
h that the line (pu) satis�es the 
onditions:(pu) ∩ C1 ∩ C2 = {u} & v 6∈ (pu) (10-1)and will use the triple {p; u; v} as a basis for P2. Let a point q(x) = u+ x v tend to u (as x→ 0) alongthe line (pu). We restri
t the both 
urves onto a varying line `(x) = (p; q(x)) and write �0(x); : : : ; �n(x)for the points C1 ∩ `(x) and �0(x); : : : ; �m(x) for the points C2 ∩ `(x) (see �g 10⋄4). These points arethe roots of two homogeneous polynomials fx(t0; t1) = F (t0p + t1q(x)), gx(t0; t1) = G(t0p + t1q(x)) int = (t0 : t1) with 
oeÆ
ients depending on the parameter x. When x varies, the pints ��(x), ��(x) drawthe bran
hes of C1 and C2. Let �1(x); : : : ; �r(x) ; �1(x); : : : ; �s(x) be all the bran
hes that 
ome to uas x→ 0.Intuitively, over �a 
ontinuous �eld� like k = R;C, a lo
al interse
tion multipli
ity (C1; C2)u, of the
urves at the point u, equals to the sum of orders of rs in�nitesimals �i(x) − �j(x) w. r. t. x as x → 0.This naive geometri
 de�nition is known as the Zeuthen rule.Algebrai
ally, the sum of orders of in�nitesimals �i(x)− �j(x) 
oin
ides with the multipli
ity of thezero root of the resultant Rfx;gx 
onsidered as a polynomial in x. Thus, over an arbitrary �eld k we
an de�ne (C1; C2)u as the multipli
ity of the fa
tor x in the prime fa
torization of Rfx;gx in k[x℄. Thisde�nition does not depend on a 
hoi
e of p, v satisfying (10-1), be
ause of the following10.4.1.LEMMA. Consider the resultant Rf;g(p; q) ∈ k[p; q℄, of two binary forms f(t0; t1) = F (t0p +t1q), g(t0; t1) = G(t0p + t1q), as a polynomial in p = (p0; p1; p2), q = (q0; q1; q2). Then its irredu
iblefa
torization in k[p; q℄ has a form1:Rf;g(p; q) = 
onst · ∏w∈C1∩C2 detw0 w1 w2p0 p1 p2q0 q1 q2mw (10-2)where the multipli
ities mw are 
omputed by the Zeuthen rule with any 
hoi
e of p, v satisfying (10-1).1geometri
ally, Rf;g(p; q) = 0 de�nes in the spa
e of lines (pq) a �gure whose irredu
ible 
omponents are pen
ils of lines
entered at the interse
tion points and the multipli
ities of these 
omponents are predi
ted by the Zeuthen rule
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 Geometry. Start Up Course.Proof. Denote the determinants in the right side of (10-2) by Dw(p; q). Geometri
ally, Dw(p; q) = 0 is an irredu
iblequadri
, whi
h 
onsists of all pairs p; q ∈ P2 whose joining line (pq) belongs to the pen
il of lines through w. Ifw ∈ C1 ∩ C2, then R(p; q) vanishes along the quadri
 Dw(p; q) = 0. Hen
e, by Hilbert's Nullstellensatz, any su
hDw(p; q) divides the resultant. Vi
e versa, if R(p; q) = 0, then the restri
tions of F , G onto the line (p; q) havea 
ommon root, i. e. (p; q) pass through some w ∈ C1 ∩ C2 and ∏w∈C1∩C2 Dw(p; q) vanishes at this (p; q). So,this produ
t vanishes everywhere along V (R(p; q)) and, again by Hilbert, R(p; q) should divide some power of∏w∈C1∩C2 Dw(p; q). To 
he
k the Zeuthen rule, �x p and q = q(x) as on �g 10⋄4. The 
ondition (10-1) impliesthat only Dw(p; q(x)) with w = u vanishes at x = 0 in the right hand side of (10-2). This vanishing determinantDu(p; q(x)) = det(u; p; u+ x v) = x det(u; p; v) is proportional to x. �10.5. Interse
tion theory of plane 
urves. It follows immediately from the Zeuthen rule, that thelo
al interse
tion multipli
ities are distributive w. r. t. the 
urve bran
hes, that is if C1 has b1 bran
hespassing through u and C2 has b2 ones, then (C1; C2)u is the sum of b1b2 mutual interse
tion indi
esbetween the bran
hes1.Sin
e ea
h Dw(p; q) in (10-2) is bilinear in (p; q) and Rf;g(p; q) has bidegree (mn;mn), we get theB�ezout theorem:10.5.1.THEOREM. ∑w∈C1∩C2(C1; C2)w = degC1 · degC2 for any two plane proje
tive 
urves without
ommon 
omponents. �10.5.2.Example: proper tangents and 
lass. A tangent lane is 
alled proper , if its tangen
y point is smooth.A number of proper tangents to C passing through a generi
 point q ∈ P2 is 
alled a 
lass of C and denotedby 
 = 
(C). If degC = d, then by n◦ 9.3.3 the tangents 
oming form a point q ∈ P2 \ Sing (C) tou
h C at thepoints of C ∩ C(d−1)q , where C(d−1)q is (d − 1)-th degree polar of q. If C is irredu
ible, then C ∩ C(d−1)q 
onsistsof d(d − 1) points2 
ounted with multipli
ities. Besides the proper tangen
y points, C ∩ C(d−1)q 
ontains also allsingular points of C, be
ause ea
h line trough a singularity is (non proper) tangent. So, 
lass of irredu
ible 
urvesatis�es inequality 
 6 d(d− 1), whi
h turns to equality i� C is smooth.10.5.3.Example: in
e
tions. A smooth point p∈C is 
alled an in
e
tion, if (C; TpC)p > 3. An in
e
tion is
alled ordinary (or simple), if this number equals 3. If p∈C is an in
e
tion, then the quadrati
 polar C(2)p of phas the zero restri
tion onto ` = TpC, i. e. ` is a 
omponent of C(2)p . Note that p is a smooth point of the 
oni
C(2)p , be
ause C(2)p and C have the same linear polar w. r. t. p and p is smooth on C. So, p∈C is an in
e
tion i�C(2)p = ` ∪ `′ with ` ∩ `′ 6= p. The points q ∈ P2 with degenerate quadrati
 polar C(2)q form a 
urve HC , whi
his 
alled the Hessian of C. It is de�ned by the equation detC(2)q = 0, whi
h has degree 3(d − 2) in q, whered = degC. Hen
e, an irredu
ible 
urve of degree d > 3 has at most 3d(d − 2) in
e
tions, whi
h are 
ontained inC ∩HC . Again, this interse
tion 
ontains also all singular points3 of C.10.5.4.Example: aÆne lo
alization. Let us restri
t the pi
ture �g 10⋄4 onto aÆne 
hart where (pv) is thein�nity, (uv) is the x-axis, and (up) is the y-axis. Then the line pen
il through p turns to the family of verti
allines x = 
onst. Consider aÆne equations f(x; y) = 0, g(x; y) = 0 for C1, C2 as (nonhomogeneous) polynomialsin y with the 
oeÆ
ients in k[x℄. Their resultant Rf;g(x) is a polynomial in x and vanishes at x = 0. Themultipli
ity of this zero root 
oin
ides with (C1; C2)(0;0). If there are known some expli
it analyti
 expressions ofall the bran
hes y = �i(x) and y = �j(x) through x (even not algebrai
, say several starting terms of the (formalfra
tional) power series expansions are OK), then (C1; C2)(0;0) usually 
an be also 
omputed expli
itly by lookingat either the orders of �i(x) − �j(x) or the order of the resultant.10.6.Dual 
urves. Let C ⊂ P2 be an irredu
ible 
urve given by an equation F (x) = 0 of degree d. Forany smooth p∈C its tangent �p = TpC de�nes a point �∗p = Ann �p ∈ P× on the dual plane P×2 . When pvaries along C, �∗p also is running through some 
urve C× ⊂ P×2 
alled a dual 
urve for C. The degree ofdual 
urve, i. e. the number of its interse
tion points with a generi
 line # = q× ⊂ Px2 , is nothing but the1in parti
ular, (n1C1+n2C2; D) = n1(C1; D)+n2(C2; D), where m1C1+m2C2 is a 
urve given by equation Fm11 Fm22 = 0and F1 = 0, F2 = 0 are the equations for C1 and C22Note that this is not true in positive 
hara
teristi
: for example, if 
har (k) = 2, then all tangents to the smooth 
oni
x20 = x1x2 pass through one 
ommon point.3In fa
t, even for singular 
urves one 
an write pre
ise equations between degree, 
lass, number of in
e
tions and somedata des
ribing singularities; we'll do this below for 
urves with simplest singularities.



§ 10. Working example: plane 
urves. 51number of proper tangents to C living in a generi
 pen
il of lines (
entered at a generi
 point q ∈ P2).Thus deg(C×) = 
(C).10.6.1.CLAIM. C×× = C; in parti
ular, deg(C) = 
(C×).Proof. A tangent line # = T�∗1C× ⊂ P×2 , at a smooth point �∗1 ∈ C×, is a limit of se
ant lines � = (�∗1 ; �∗2 ) as�∗2 → �∗1 (see �g 10⋄5 { �g 10⋄6). The se
ant � represents a pen
il of lines through �∗ = �1 ∩ �2 ∈ P2. Clearly,�∗ → p1 as p2 → p1. �We also see on �g 10⋄5 { �g 10⋄6 that under the duality C ←→ C× self
onta
ts (
usps) turns intoin
e
tions and sel�nterse
tions | to multiple tangents1. In parti
ular, if C has at most the simplesingularities, then spe
ial proper tangents of C× are exhausted by simple in
e
tions and double tangents.
• •

•

• •

�
�1 �2�∗�1 �2p2p1=#∗ �∗2••

�∗
•

�#�∗1 �∗2�∗1Fig. 10⋄5. A 
urve C ⊂ P2. Fig. 10⋄6. The dual 
urve C× ⊂ P×2 .10.7.Pl�u
ker identities. Let C be a 
urve of 
lass 
 and degree d with singularities exhausted by Æordinary sel�nterse
tions of multipli
ities m1;m2; : : : ;mn and κ ordinary 
usps. Then
 = d (d− 1)− 3κ − Æ∑�=1m�(m�−1) (10-3)If we assume, in addition, that C has only ordinary in
e
tions, then their number � = �(C) equals� = 3 d (d− 2)− 8κ − 3 Æ∑�=1m�(m�−1) (10-4)These formulas are known as the Pl�u
ker identities. We will prove them in the remaining subse
tionsusing geometri
 approa
h tra
ed ba
k to Chasles, Cayley and Brill2Exer
ise 10.2. Let q 6∈ C lie neither on an in
e
tion tangen
y nor on a geometri
 tangen
y through a singularpoint of C; we write C(d−1)q for (d−1)-th degree polar of q with respe
t to C. Dedu
e (10-3) from the equality(C;C(d−1)q ) = d(d− 1) by proving that (C;C(d−1)q )p equals 1 for smooth p, equals 3, if p is an ordinary 
usp,and equals m(m− 1), if p is an ordinary m-typle sel�nterse
tion.Hint. In the �rst 
ase p is smooth on C(d−1)q and TpC(d−1)q 6= TpC; in the se
ond 
ase p is smooth on C(d−1)qagain, but TpC(d−1)q 
oin
ides with the 
uspidal tangen
y; in the third 
ase p is an (m − 1)-typle pointon C(d−1)q , but ea
h geometri
al tangen
y of C at p is transversal to C(d−1)q , that is, interse
ts it withmultipli
ity (m− 1). Now, use the Zeuthen rule.If both C and C× have at most the simple singularities, then the Pl�u
ker relations written for the both
urves turn into 
 = d (d− 1)− 3κ − 2 Æ � = 3 d (d− 2)− 8κ − 6 Æd = 
 (
− 1)− 3 �− 2� κ = 3 
 (
− 2)− 8 �− 6�where � is a number of bitangents to C. Any three of d, 
, κ, Æ, �, � 
an be found from these equationsas soon as the other three are known.1a proper tangen
y is 
alled multiple, if it tou
h the 
urve in several distin
t points2we follow the book: J. G. Semple, L. Roth. Introdu
tion to algebrai
 geometry. (Oxford, 1949)
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 Geometry. Start Up Course.10.8.Blowing up � ⊂ P2 × P2. Identify P×2 with the set of lines on P2 and 
onsider the in
iden
egraph
B

def= {(p; q; `) | p; q ∈ `} ⊂ P2 × P2 × P×2It is given by two quadrati
 equations∑#�x� =∑#�y� = 0 on (x; y; #) ∈ P2 × P2 × P×2 . Topologi
ally,
B is a 4-dimensional 
ompa
t manifold. A proje
tion B

�- P2 × P2 is bije
tive outside the diagonal� def= {(p; p)} ⊂ P2 × P2. Ea
h �ber �−1(p; p) = {(p; p; `) | ` ∋ p} over (p; p)∈� is naturally identi�edwith the line pen
il through p on P2 and 3-dimensional submanifold E def= �−1(�) ⊂ B is 
alled anex
eptional divisor . Let us denote the proje
tions of B onto 
onsequent fa
tors of P2 × P2 × P×2 by �1,�2, �3 and write A1 = �−11 (�), A2 = �−12 (�), M = �−13 (�) for the full preimages of a generi
 line � livingon these planes. Topologi
ally, A1, A2, andM are 3-dimensional 
y
les on B and their homology 
lassesdon't depend on the 
hoi
e of the line � in ea
h plane. Any 1-parametri
 algebrai
 family of �pointed�lines (pq) ⊂ P2 
an be pi
tured by an algebrai
 
urve � ⊂ B. Topologi
al lo
ation of su
h a 
urve isdes
ribed by a triple of numbers:�1 = #(� ∩A1) | a number of p-points in � = {(p; q; `)} laying on a generi
 line � ⊂ P2;�2 = #(� ∩A2) | a number of q-points in � = {(p; q; `)} laying on a generi
 line � ⊂ P2;� = #(� ∩M) | a number of lines ` in � = {(p; q; `)} passing through a generi
 point1 �×∈P2.Strongly speaking, we should use the topologi
al interse
tion indi
es instead of �the numbers of points�.But for all � we will 
onsider below there is an open dense set of lines2 su
h that all 
orrespondingA1, A2, M interse
t � transversally in a �nite 
onstant number of points. We will always suppose that�1, �2, � are 
al
ulated using A1, A2, M taken from these open dense sets3. The triples (p; q; `) ∈ �with p = q, i. e. the interse
tion points � ∩ E, are 
alled ex
eptional . Typi
ally, � has a �nite numberof ex
eptional points. Our goal is to equip the ex
eptional points with appropriate multipli
ities andexpress the number �(�) of �ex
eptional points 
ounted with multipli
ities� through �1, �2, � in thefollowing three examples.10.8.1.Example: join family. Let C1; C2 ⊂ P2 be two 
urves of degrees d1; d2 without 
ommon 
omponents.Fix any point u∈P2 outside the both 
urves and all the lines joining pairs of their interse
tion points. Then� = {(p; q; `)∈B | p∈C1; q∈C2; `∋u }is a 
urve in B given by an obvious triple of algebrai
 equations. Its ex
eptional points are (p; p; (pu)) withp ∈ C1 ∩C2, that is �(�) 
ounts the interse
tions of C1 and C2. Further, �1 = �2 = d1d2, be
ause a generi
 line �interse
t, say C1, in d1 distin
t points p1; p2; : : : ; pd1 and for ea
h of them C2 ∩ (up�) 
onsist of d2 points. Finally,� = d1d2 too, be
ause there is a unique line ` = (u�×) passing through a given �× and this line 
ontains d1d2distin
t pairs (pi; qj) with pi ∈ C1 ∩ `, qj ∈ C2 ∩ `, if �× is general enough.10.8.2.Example: se
ant family. In the above example, let C1 = C2 = C be the same irredu
ible 
urve ofdegree d given by an equation F (x) = 0 and u be a point outside the 
urve, all its singular tangents, and all linesjoining pairs of distin
t singularities. Then a 
losure of {(p; q; `)∈B | p 6= q; p; q ∈C; `∋ u } is a 
urve given bythe equations F (x) = F (y) = #(u) = 0 in (x; y; #) ∈ P2 × P2 × Px2 . Ex
eptional points of this 
urve are (p; p; (pu))su
h that mult(C; (pu))p > 2, i. e. either (pu) = TpC or p ∈ Sing(C). So, � 
ounts singular points of C and propertangents 
oming from 
 to C. By the same reasons as above, �1 = �2 = � = d (d− 1) in this 
ase.10.8.3.Example: tangent family. Let C be as above and � be a 
losure of {(p; q; `)∈B | p 6= q; p; q ∈C; ` =TpC } (it is given by the equations F (x) = F (y) = F̃ (xd−1; y) = 0). Ex
eptional points of � are (p; p; `) su
h thatmult(C; `)p > 3, i. e. either in
e
tion tangents at smooth p or geometri
 tangents at singular p. So, �(�) 
ountsin
e
tions and singularities. Sin
e a simple tangent at a smooth point p interse
t the 
urve in (d− 2) more pointsq, we have �1 = d (d− 2). Clearly, � = 
 (d− 2), be
ause there are 
 proper tangents to C through generi
 �×∈P2by the de�nition of 
lass. Finally, �2 = d (
 − 2), be
ause a generi
 line interse
ts C in d distin
t smooth pointsq1; q2; : : : ; qd and for ea
h of them there are (
−2) proper tangents (qjp) tou
hing C at some p 6= qj : when a pointq 6∈ C tends to some qj ∈ C, pre
isely 2 of 
 tangents through q turn to TqjC (see �g. �g 10⋄7; other argumentswill appear in n◦ 10.10.4 and ex. 10.3).1here � ⊂ P×2 is the pen
il of lines through a point �× ∈ P22in the spa
e of all lines3it will be an exer
ise for readers, to 
he
k the existen
e of su
h open sets of lines in ea
h of examples below
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urves. 5310.9.A 
orresponden
e on P1 is 
alled algebrai
 of type m-n, if the pairs of 
orresponding points
Fig 10⋄7. Two proper tangent linesdisappear as q → qj .

(p; q) ∈ P1 × P1 form an algebrai
 
urve 
 ⊂ P1 × P1 given by an irredu
ible bihomogeneous polynomialg(t′; t′′) of bidegree (m;n) in (t′; t′′) = ( (t′0 : t′1) ; (t′′0 : t′′1) ). This
urve is 
alled a graph of the 
orresponden
e. So, images of a givenpoint p ∈ P1 are presented by the equation g(p; t) = 0 in t ∈ P1 andpreimages | by the equation g(t; p) = 0. Sin
e these equations haverespe
tivelym and n ordinary distin
t roots for almost all1 p, a generi
point has n distin
t images and m distin
t preimages under an m-n
orresponden
e.A point e ∈ P1 is 
alled a �xed point of the 
orresponden
e, if it
orresponds to itself2, that is, if g(e; e) = 0. So, the set of all �xed points is 
 ∩�, where � = {(t; t)} ⊂
P1 × P1 is the diagonal. Sin
e g(t; t) is homogeneous of degree m+ n in t = (t0; t1), any algebrai
 m-n
orresponden
e has m+n �xed points 
ounted with multipli
ities, where the multipli
ity of a �xed pointe means the lo
al interse
tion multipli
ity (
;�)(e;e), of the 
urve g(t′; t′′) = 0 and the line t′ = t′′ atthe point (e; e)∈ 
. In parti
ular, it 
an be 
al
ulated by the Zeuthen rule applied in any aÆne 
hart
A1 × A1 = A2 ∋ (e; e).10.9.1.CLAIM. Let U ⊂ P1 be an aÆne 
hart with the origin at a �xed point e of a 
orresponden
e
, x be an aÆne 
oordinate on U , and y1(x); y2(x); : : : ; ym(x) be all 
-images of x whi
h tend to 0 asx→ 0. Then (
;�)(0;0) equals the sum of orders of in�nitesimals yi(x) − x with respe
t to x.Proof. Let (x; y) be aÆne 
oordinates on A2 = U × U (see �g 10⋄8). Sin
e the both lines x = 0 and y = 0 
ontainjust one interse
tion point (0; 0)∈
∩� we 
an use the line pen
il x = 
onst parameterized by the x-axis to 
al
ulate(
;�)(0;0) as the sum of orders of in�nitesimals �i(x) − �j(x) where �i and �j run trough the interse
tions of averti
al line x = 
onst respe
tively with 
 and with �. So, �i(x) = yi(x) and there is just one �(x) = x. �10.10.Ex
eptional point multipli
ities. A 
urve � ⊂ B, of pointed lines (p; q; `), de�nes an algebrai

orresponden
e on P1 as follows. Fix a point a∈P2 su
h that it lies on pre
isely � distin
t lines ` of �and a generi
 line through a 
ontains exa
tly �1 distin
t p-points and exa
tly �2 distin
t q-points of �.Then 
onsider the pen
il of lines through a as P1 in question and say that (ap) ←→ (aq) i� (p; q; `)∈�for some3 `. This is an algebrai
 �1-�2 
orresponden
e, be
ause a generi
 point has �2 images and �1preimages, 
ertainly. A line through a 
orresponds to itself under 
� pre
isely in two 
ases: either itbelongs to �, i. e. 
ontains 2 points p 6= q su
h that (p; q; `) ∈ �, or it pass through an ex
eptional pointe su
h that (e; e; `) ∈ � for some `.

X
Y � 
e y3y2 y1x y = x

•

•

•

•

•

• q2y2 y3q3 xp3p2
p1 y1

q1
e=p=q L

a
• •

•

•

• •

•

•

•

•

•

Fig. 10⋄8. Fixed point. Fig. 10⋄9. Ex
eptional point. Fig. 10⋄10. Interse
tion point.Let us de�ne the multipli
ity of an ex
eptional point (e; e; `) ∈ � as a multipli
ity of the 
orresponding�xed point (ae) of the 
orresponden
e 
�. By n◦ 10.9.1, it 
an be 
al
ulated geometri
ally as follows.Parameterize the pen
il of lines through a by some line L 6∋ a, whi
h pass through an ex
eptional pointe (see �g �g 10⋄9), and �x on L an aÆne 
oordinate x 
entered at e. Let (ay1); (ay2); : : : ; (aym), where1that is, for all p outside some �nite subset on P1 where the both dis
riminants vanish2of 
ourse, besides itself, a �xed point may have several other (pre) images as well3of 
ourse, ` = (pq), if p 6= q
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 Geometry. Start Up Course.y� ∈ L, be all lines 
orresponding to (ax) and tending to (ae) as x → e. Then the multipli
ity of (pe)equals the sum of orders of in�nitesimals yi(x)− x w. r. t. x as x→ 0.10.10.1.CLAIM (CHASLES{CAYLEY{BRILL FORMULA). The total number of ex
eptional points
ounted with multipli
ities equals �(�) = �1 + �2 − �.Proof. Sin
e deg(
�) = (�1; �2), it has �1+�2 �xed points. By the 
hoi
e of a, ea
h line (ap) su
h that (p; q; (ap)) ∈� for some q 6= p, q ∈ (ap) has multipli
ity 1 as a �xed point for 
�. The residuary 
ontribution of ex
eptional�xed points equals �(�). �

•

y x•eq p 

a

••

•

•

•

ey xq p
 a• • •

•

•

•

•
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p xye q
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•
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Fig. 10⋄11. Fig. 10⋄12. Fig. 10⋄13.10.10.2.Example: ex
eptional point multipli
ities in join family (
ontinuation of n◦ 10.8.1). In this 
ase themultipli
ity of an ex
eptional point (e; e; (
e)) ∈ � 
oin
ides with the lo
al interse
tion number (C1; C2)e (see�g. �g 10⋄10). Indeed, use the line pen
il 
entered at 
 to 
ompute (C1; C2)e by the Zeuthen rule as it wasexplained in the previous le
ture. If we take a outside all geometri
 tangents to the both 
urves at e and su
hthat e is the only interse
tion point of C1 and C2 on (ae), then (C1; C2)e is a sum of orders p − qj w. r. t. t ast → 0. But it is 
lear from �g. �g 10⋄10 that p − qj is like x − yj and t is like x as soon the both lines (
e) and(ae) do not tou
h the bran
hes of C1, C2 at e. So, �(�) is the sum of lo
al interse
tion numbers of C1 and C2,i. e. (C1; C2) = �(�) = �1 + �2 − � = d1d2 + d1d2 − d1d2 = d1d2. We get the B�ezout theorem.10.10.3.Example: ex
eptional point multipli
ities in se
ant family (
ontinuation of n◦ 10.8.2). There are 3 typesof ex
eptional points here. A proper tangen
y (e; e; (
e)) (see �g 10⋄11) has multipli
ity 1, be
ause any x 
losed toe has a unique image y 
oming to e when x→ e and y−x is like x− e. If e is an ordinary m-typle sel�nterse
tion,then a line through 
 
losed to (
e) 
ontains m p-points running through m bran
hes of C; ea
h su
h p-pointprodu
es (m−1) q-points 
oming from other (m−1) bran
hes; so, there are m(m−1) di�eren
es y−x and ea
h ofthem is like (x−e) (see �g 10⋄12) as soon (
e) does not tou
h any bran
h. If e is an ordinary 
usp (see �g. �g 10⋄13,where the line pen
il through a is parameterized by the 
uspidal tangent), then any x 
losed to e produ
es twop-points (interse
tions of (ax) with two bran
hes of C) and ea
h of them has just one q-point (interse
tion of (
p)with the other bran
h of C); it is easy to see from �g. �g 10⋄13 that (x− y) ∼ (p− q) ∼ (x− e)3=2 as x→ e. So,the 
uspidal point 
ontributes 2 · (3=2) = 3. Hen
e,
+ Æ∑� m�(m� − 1) + 3κ = �(�) = �1 + �2 − � = d(d− 1) + d(d− 1)− d(d− 1) = d(d− 1)by the Chasles{Cayley{Brill formula. This gives the �rst Pl�u
ker identity.
•
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y
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•
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•Fig. 10⋄14. Fig. 10⋄15. Fig. 10⋄16.



§ 10. Working example: plane 
urves. 5510.10.4.Example: ex
eptional point multipli
ities in tangent family (
ontinuation of n◦ 10.8.3). We see on�g 10⋄14 { �g 10⋄16 that ea
h di�eren
e (y − x) is like (x − e) for all three types of ex
eptional points. Anin
e
tion point (�g 10⋄14) produ
es a unique di�eren
e and has a multipli
ity 1; ea
h of m bran
hes through anm-typle sel�nterse
tion (�g 10⋄15) produ
es (m− 1) di�eren
es, so the multipli
ity equals m(m− 1) here; a 
usp(�g 10⋄16) produ
es 2 di�eren
es and has multipli
ity 2. Hen
e,�+ Æ∑� m�(m� − 1) + 2κ = �(�) = �1 + �2 − � = d(d− 2) + d(
− 2)− 
(d− 2) = d2 − 4 d+ 2 
by the Chasles{Cayley{Brill formula. Sin
e 
 = d(d−1)−∑m�(m� −1)−3κ, we get the se
ond Pl�u
ker identity� = 3 d(d− 2)− 3 ∑m�(m� − 1)− 8κ.Exer
ise 10.3. Let 
 be a smooth point of C in n◦ 10.8.2 and n◦ 10.10.3. Che
k that a multipli
ity of anex
eptional point (
; 
; T
C)∈� equals 2 (so, we have really �2 = d(
− 2) in n◦ 10.8.3).



§11.AÆne algebrai
 { geometri
 di
tionary.In this se
tion we assume that the ground �eld k is algebrai
ally 
losed.11.1.AÆne varieties: their ideals and 
oordinate algebras. Let X = V (J) ⊂ An be an aÆnealgebrai
 variety given by some ideal J ⊂ k[x1; x2; : : : ; xn℄ of polynomial equations. We write I(X) for theideal of all polynomials vanishing along X. If k is algebrai
ally 
losed, then by Hilbert's NullstellensatzI(X) = √J def= { f ∈k[x1; x2; : : : ; xn℄ | fn∈J for some n∈N }is the radi
al of J . Clearly, V (J1) ⊂ V (J2)⇐⇒ √J1 ⊃ √J2. A �nitely generated 
ommutative k-algebra
k[X℄ def= k[x1; x2; : : : ; xn℄=I(X)is is 
alled a 
oordinate algebra (or a stru
ture algebra) of the aÆne algebrai
 variety X ⊂ An. Ge-ometri
ally, k[X℄ 
onsists of fun
tions X v 7→f(v) - k obtained by restri
ting the polynomials f ∈

k[x1; x2; : : : ; xn℄ onto X ⊂ An. These fun
tions are 
alled regular algebrai
 fun
tions on X. Thus,algebra k[X℄ is redu
ed , i. e. has no nilpotent elements: fn = 0 ⇒ f = 0.Exer
ise 11.1. Let X = {O} ∈ An be the origin. Des
ribe I(X) and k[X℄.11.1.1.PROPOSITION. Ea
h redu
ed �nitely generated algebra A over an algebrai
ally 
losed �eld
an be realized as A = k[X℄ for some aÆne algebrai
 variety X.Proof. Sin
e A = k[x1; x2; : : : ; xn℄=I is redu
ed, fn ∈ I ⇒ f ∈ I for any f ∈ k[x1; x2; : : : ; xn℄. By Hilbert'sNullstellensatz, this means that X = V (I) ⊂ An has I(X) = I and A = k[x1; x2; : : : ; xn℄=I(X) = k[X℄. �11.2.Points. Given a point p ∈ X, the evaluation map evp : k[X℄ f 7→f(p) - k 
oin
ides with thefa
torization k[X℄ f 7→ f (modmp)- k[X℄=mp, where mp def= {f ∈ k[X℄ | f(p) = 0}. Hen
e, mp = ker(evp)is a proper maximal ideal in k[X℄. It is 
alled a maximal ideal of p.11.2.1.PROPOSITION. If k is algebrai
ally 
losed, then the 
orresponden
es p ←→ evp ←→ mpestablish bije
tions between the points of X, the homomorphisms k[X℄ - k identi
al on k, and theproper maximal ideals in k[X℄.Proof. Ea
h k-algebra homomorphism k[X℄ - k is surje
tive and its kernel is a proper maximal ideal in k[X℄.Vi
e verse, for any maximal ideal m ⊂ k[X℄ the fa
tor algebra k[X℄=m is a �eld and is �nitely generated as a
k-algebra. By n◦ 8.5.1 it is algebrai
 over k and hen
e 
oin
ides with k, be
ause k is algebrai
ally 
losed. Thus,
m is the kernel of the 
anoni
al fa
torization homomorphism k[X℄ -- k[X℄=m = k and the 
orresponden
eevp ←→ mp is bije
tive.Clearly, p 6= q ⇒ mp 6= mq, be
ause we 
an always �nd a linear form An '- k su
h that ' ∈ mp but ' 6∈ mq.To show that ea
h proper maximal ideal m ⊂ k[X℄ is a maximal ideal of some point p ∈ X let us write k[X℄as k[x1; x2; : : : ; xn℄=I(X). Then full preimage of m is also a proper maximal ideal m̃ ⊂ k[x1; x2; : : : ; xn℄, be
ause
m̃ ⊃ I(X) and k[x1; x2; : : : ; xn℄=m̃ = k[X℄=m = k. We 
on
lude that V (m̃) ⊂ An is nonempty and is 
ontained inX. So, there is a point p∈X su
h that f(p) = 0 for any f ∈m, i. e. m ⊂ mp. Sin
e m is maximal, m = mp. �11.3.Algebrai
 varieties via spe
tra. A set of all proper maximal ideals in a given k-algebra Ais 
alled a maximal spe
trum of A and is denoted by Spe
m (A). We 
an treat an aÆne algebrai
variety over an algebrai
ally 
losed �eld k pure algebrai
ally as a maximal spe
trum Spe
m (A) of anarbitrary �nitely generated redu
ed k-algebra A whose elements f ∈A are 
onsidered as the fun
tionsSpe
m (A) m7→f (modm) - k.11.4.Regular morphisms of algebrai
 varieties. Any map of sets X '- Y produ
es a pull ba
khomomorphism '∗ from the algebra kY , of all k-valued fun
tions on Y , to the algebra kX , of all k-valuedfun
tions on X. It sends Y f- k to the 
omposition'∗f def= f◦' : X '- Y f- k :



§ 11. AÆne algebrai
 { geometri
 di
tionary. 57A map X '- Y between aÆne algebrai
 varieties is 
alled a regular morphism of algebrai
 varieties,if '∗ sends the regular algebrai
 fun
tions on Y to the regular algebrai
 fun
tions on X, i. e. indu
es awell de�ned homomorphism of 
oordinate algebras
k[Y ℄ '∗- k[X℄ :11.4.1.PROPOSITION. Let A, B be �nitely generated redu
ed algebras over any algebrai
ally 
losed�eld k. Then ea
h homomorphism B  - A su
h that  (1) = 1 is a pull ba
k homomorphism  = '∗for a unique regular map Spe
m (A) '- Spe
m (B). This map ' sends a maximal ideal m ⊂ A to itsfull preimage '∗−1(m) ⊂ B and 
an be treated as a pull ba
k homomorphism ' =  ∗, for B  - A, ifthe points of Spe
m (A), Spe
m (B) are treated as k-algebra homomorphisms A - k, B - k.Proof. Let Spe
m (A) '- Spe
m (B) be a regular morphism, p ∈ Spe
m (A) be a point, and f ∈ B be a fun
tionon Spe
m (B). Then f('(p)) = 0 ⇐⇒ '∗f(p) = 0, i. e. f ∈ m'(p) ⇐⇒ '∗(f) ∈ mp. So, if B  - A is a pullba
k of some Spe
m (A) '- Spe
m (B), then ' has to send mp 7−→  −1(mp) for ea
h p ∈ Spe
m (A). Onthe other hand,  −1(m) ⊂ B is proper maximal ideal for any proper maximal m ⊂ A, be
ause '∗(1) = 1 ⇒B= −1(m) = im ( )=(m∩ im ( )) ≃ k. So, ' : Spe
m (A) mp 7→ −1(mp)- Spe
m (B) is well de�ned map of sets.To 
ompute its pull ba
k homomorphism, note that for any b∈B, p∈Spe
m (A) we have'∗b(p) = b('(p)) = b (mod m'(p) ) = b (mod  −1(mp) ) =  (b) (mod mp ) =  b(p) :So, '∗ =  as required. �11.5.Geometri
 s
hemes. Let A be an arbitrary algebra over a �eld k. All nilpotent elements of Aform an ideal n(A) ⊂ A. It is 
ontained in any proper maximal ideal m ⊂ A, be
ause A=m = k has nonilpotent elements. So, a fa
tor algebra Ared def= A=n is redu
ed and has the same maximal spe
trumX = Spe
mA = Spe
mAred. If k is algebrai
ally 
losed, then the interse
tion of all maximal ideals inAred is zero, be
ause it 
onsists of all fun
tions vanishing everywhere on the aÆne algebrai
 variety X.Hen
e, the interse
tion of all maximal ideals in A 
oin
ides with n(A).Exer
ise 11.2. Show that in general situation, when A is an arbitrary 
ommutative ring, n(A) 
oin
ides withthe interse
tion of all proper prime1 ideals p ⊂ AA pair (A; Spe
mA), where A is an arbitrary �nitely generated algebra over algebrai
ally 
losed �eld,is 
alled an aÆne geometri
al s
heme. AÆne algebrai
 variety X = Spe
mA = Spe
mAred is 
alleda support of this s
heme. Intuitively, the s
heme di�ers from X by allowing some �in�nitezimals�,i. e. nilpotent �fun
tions� whose �numeri
al values� vanish everywhere on X. Usually, these nilpotentsen
ode some �multipli
ities� atta
hed to X.11.5.1.Example: an interse
tion of aÆne algebrai
 varieties X;Y ⊂ An is de�ned as V (I(X) + I(Y )), i. e. bythe union of all equations for X and Y . If the interse
tion is non-transversal, a fa
tor algebraA = k[x1; x2; : : : ; xn℄=(I(X) + I(Y ))is not redu
ed. Say, if I(X) = (x), I(Y ) = (x2 − y) in k[x; y℄, then the fa
tor algebra A = k[x; y℄=(x; y2 − x) ≃

k[y℄=(y2) has quadrati
 nilpotent y. Geometri
ally, the interse
tion of the line X = V (x) and the parabolaY = V (x2 − y) 
onsists of unique point Spe
m (k) = Spe
mAred, where they tou
h ea
h other with multipli
ity 2.This multipli
ity 
an be extra
ted from non redu
ed algebra A but it is lost under the repla
ement of A by Ared.Thus, if we want, say, to develop an interse
tion multipli
ities te
hnique, then we have to treat interse
tions asgeometri
 s
hemes rather than algebrai
 varieties and investigate the di�eren
e between A and Ared.By the de�nition, a regular morphism (A; Spe
mA) ('∗;') - (B; Spe
mB) of s
hemes is a pair that
onsists of an algebra homomorphism B '∗- A and a regular map Spe
m (A) '- Spe
m (B) su
h that'∗f(p) = f('(p)) for all f ∈ B, p ∈ Spe
m (A). Note that now '∗ 
an not be re
overed from ', be
ausethe latter one knows nothing about the nilpotent in�nitesimals.1an ideal p ⊂ A is 
alled prime, if A=p has no zero divisors
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 Geometry. Start Up Course.11.6.A dire
t produ
t of aÆne algebrai
 varieties. Let A, B be �nitely generated k-algebras.Then the tensor produ
t of algebras1 A⊗B is a �nitely generated k-algebra with the multipli
ation(A⊗B)× (A⊗B) (a⊗b;�⊗�)7→a�⊗b� - A⊗B :11.6.1.PROPOSITION. A set-theoreti
al produ
t X × Y , of aÆne algebrai
 varieties X = Spe
mA,Y = Spe
mB, is naturally identi�ed with Spe
m (A⊗B). Both proje
tionsX ��X X × Y �Y- Yare regular morphisms w. r. t. the stru
ture of an aÆne algebrai
 variety on X × Y pres
ribed by thisidenti�
ation and for any two regular maps X �' Z  - Y there exists a unique regular mapZ '× - X × Y that �ts into 
ommutative diagramX × YX ��
�X Y�Y

--Z'× 
6  -�'Proof. Assume for a moment that A ⊗ B is redu
ed and de�ne X × Y as Spe
m (A ⊗ B) and the proje
tions �X ,�Y as the regular maps whose pull-ba
k homomorphisms are the 
anoni
al algebra in
lusions� : A ⊂

a֌a⊗1- A⊗B � 1⊗b֋b
⊃ B : � :Then the last asseveration of the proposition turns to the universal property whi
h 
hara
terizes the tensor produ
tof algebras. Namely, if Z = Spe
m (C), then for any two algebra homomorphisms A '∗

- C � ∗ B there is aunique homomorphism A⊗B '∗⊗ ∗

- C su
h that ('∗ ⊗  ∗)◦� = '∗ and ('∗ ⊗  ∗)◦� =  ∗.Exer
ise 11.3. Dedu
e this property from the universality of the tensor produ
t of ve
tor spa
es dis
ussed in §4.In parti
ular, for the points of Z, i. e. the regular morphisms Spe
m (k) - Z (or, equivalently, the algebrahomomorphisms C -- k)), we get a set-theoreti
al bije
tionsSpe
m (A)× Spe
m (B) ≃ Hom(Spe
m (k); X)×Hom(Spe
m (k); Y ) ≃
≃ Hom(Spe
m (k); X × Y ) ≃ Spe
m (A⊗B) :Thus, it remains to show that A ⊗ B is redu
ed. We 
an write f ∈ A ⊗ B as ∑ a� ⊗ b� , where the fun
tionsb� ∈ B are linearly independent over k. If f produ
es the identi
ally zero fun
tion on X × Y , i. e. f(p; q) = 0

∀(p; q)∈X × Y , then ∑ a�(p) · b� = 0 in k[Y ℄. Hen
e, all a�(p) = 0 ∀ p∈X . Thus, all a� = 0 in A and f = 0 inA⊗B. �11.7.Zariski topology. Any aÆne algebrai
 variety X = Spe
mA admits a 
anoni
al topology whose
losed sets are V (I) = {x∈X | f(x) = 0 ∀ f ∈ I }, where I ⊂ A is an arbitrary ideal. This topology is
alled the Zariski topology .Exer
ise 11.4. Che
k that V (I) satisfy the 
losed set properties, namely: ∅ = V (1); X = V (0); ⋂V (I�) =V (∑ I�), where ∑ I� 
onsists of all �nite sums ∑ f� with f� ∈ I� ; V (I) ∪ V (J) = V (IJ), where IJ is anideal spanned by all produ
ts ab with a∈I, b∈J .Sin
e any ideal I ⊂ k[X℄ is �nitely generated, ea
h 
losed set is a �nite interse
tion of hypersurfa
es:V (I) = V (f1; f2; : : : ; fm) = ⋂V (f�). Hen
e, any Zariski open set is a �nite union of prin
ipal open sets
D(f) def= X \ V (f) = {x∈X | f(x) 6= 0}.1as a ve
tor spa
e over k it 
oin
ides with the tensor produ
t of ve
tor spa
es A, B and 
onsists of all �nite sums
P a� ⊗ b� with a� ∈A, b� ∈B; for example, k[x℄⊗ k[y℄ is naturally isomorphi
 to k[x; y℄
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 { geometri
 di
tionary. 59The Zariski topology has a pure algebrai
 nature. Sin
e the Zariski neighborhoods express rathersome divisibility 
onditions than any distan
e relations, their properties are far enough from the metri
topology standards.11.7.1.Example: irredu
ible 
losed sets. A topologi
al spa
e X is 
alled redu
ible, if X = X1 ∪ X2 for someproper 
losed subsets X1; X2 ⊂ X. This is a vapid notion in the usual metri
 topology, where everything isredu
ible. In Zariski topology, the redu
ibility of X means an existen
e of non zero fun
tions f1; f2 ∈ k[X℄ su
hthat f1 vanishes along X1 and f2 vanishes along X2. Sin
e f1f2 vanishes everywhere, f1f2 = 0 in k[X℄. So, X isredu
ible i� k[X℄ has zero divisors. For example, a hypersurfa
e {g(x) = 0} ⊂ An is irredu
ible i� g is a power ofan irredu
ible polynomial. Irredu
ible algebrai
 sets are similar to the prime numbers in arithmeti
s.11.7.2.PROPOSITION. Any aÆne algebrai
 variety admits a unique �nite de
omposition X = ⋃Xi,where Xi ⊂ X are irredu
ible proper 
losed subsets su
h that Xi 6⊂Xj ∀ i 6= j (they are 
alled irredu
ible
omponents of X).Proof. A de
omposition is 
onstru
ted step by step. If X is redu
ible, the �rst step takes X = Z1 ∪ Z2, whereZ1;2 are proper 
losed subsets. Let X = ⋃Z� after n steps. If ea
h Z� is irredu
ible, then for ea
h � and anyirredu
ible 
losed subset Y ⊂ X either Y ∩ Z� = ∅ or Y ⊂ Z� , be
ause of Y = ⋃(Z� ∩ Y ). So, if we take awayall Z� 
ontained in some other Z�, then we get the required de
omposition and it is unique. If there are someredu
ible Z� after n steps, (n + 1)-th step repla
es ea
h of them by a union of two proper 
losed subsets. If thispro
edure would never stop, then it produ
es an in�nite 
hain of stri
tly embedded subsets X ⊃ Y1 ⊃ Y2 ⊃ : : :,i. e. an in�nite 
hain of stri
tly in
reasing ideals (0) ⊂ I1 ⊂ I2 ⊂ : : : , whi
h does not exist in the Noetherianalgebra k[X℄. �11.7.3.Example: �big� open sets. Zariski topology is week and non Hausdorf. For example, Z ⊂ A1 is Zariski
losed i� Z is �nite. If X is irredu
ible, then any non empty open U1; U2 ⊂ X have a nonempty interse
tion,be
ause in the 
ontrary 
ase X = (X \ U1) ∪ (X \ U2).Exer
ise 11.5. Prove that f = g in k[X℄, if X is irredu
ible and f |U = g|U over some open non-empty U ⊂ X.Hint. If U = D(h), then X = V (h) ∪ V (f − g).11.7.4.Example: Zariski topology on X×Y is �ner than the produ
t of Zariski topologies on X and Y , be
ausethe 
losed Z ⊂ X ×Y are not exhausted by the produ
ts of 
losed subsets on X, Y . For example, if X = Y = A1,then any 
urve, say a hyperbola V (xy − 1), is 
losed in Zariski topology on A1 × A1 = A2, whereas the produ
tsof 
losed sets on A1 are exhausted by �nite unions of isolated points and 
oordinate lines.11.7.5.PROPOSITION. A regular morphism X '- Y of algebrai
 varieties is 
ontinuous in Zariskitopology.Proof. A preimage '−1(Z) of a 
losed Z = V (I) ⊂ Y 
onsists of all x∈X su
h that 0 = f('(x)) = '∗−1f(x) forall f ∈I. So, it 
oin
ides with the zero set of an ideal '∗−1(I) ⊂ k[X℄. �11.8.De
omposition of regular morphism. Let X '- Y be a regular morphism of aÆne algebrai
varieties. Then, k-algebra homomorphism k[Y ℄ '∗- k[X℄ 
an be de
omposed as
k[Y ℄ -- im ('∗) ⊂ - k[X℄ :Sin
e k[X℄ is redu
ed, im ('∗) ⊂ k[X℄ is redu
ed too, i. e. there is an aÆne algebrai
 varietyZ = Spe
m im ('∗)su
h that X '- Y is de
omposed as X '1- Z '2- Y and k[Y ℄ '∗2- k[Z℄ is surje
tive, k[Z℄ '∗1- k[X℄is inje
tive. The inje
tivity of '∗1 means that non zero fun
tion f ∈ k[Z℄ 
an not vanish along '1(X),i. e. '1(X) ⊂ Z is dense. The surje
tivity of '∗2 means that '2 indu
es an isomorphism between Z anda 
losed subset V (ker'∗2) ⊂ Y given by the ideal1 ker('∗2) = ker(') ⊂ k[Y ℄. In other words, the Zariski
losure Z = '(X) ⊂ Y is an aÆne algebrai
 variety and the maps X - '(X) ⊂ - Y are regularmorphisms.1note that this ideal is automati
ally radi
al
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 Geometry. Start Up Course.11.9.Dominant morphisms, 
losed embeddings, and �nite morphisms. If X is irredu
ible anda homomorphism k[Y ℄ '∗- k[X℄ is inje
tive, then the 
orresponding morphism X '- Y is 
alleddominant . Geometri
ally, this means that '(X) = Y . If X is redu
ible, then ' is 
alled dominant whenits restri
tion onto ea
h irredu
ible 
omponent of X is dominant.A morphism X '- Y is 
alled a 
losed embedding , if k[Y ℄ '∗- k[X℄ is surje
tive. This means that' identi�es X with V (ker'∗) ⊂ Y .Exer
ise 11.6. Show that any dominant morphism of irredu
ible aÆne varieties X '- Y 
an be de
omposedas X ⊂
 - Y × Am �-- Y ; (11-1)where  is a 
losed embedding and � is the natural proje
tion along Am.Hint. Let A = k[X℄, B = k[Y ℄. A has a natural stru
ture of a �nitely generated B-algebra provided by thein
lusion B ⊂

'∗

- A; thus, there is an epimorphism of B-algebras B[x1; x2; : : : ; xm℄  -- A for some m.Given a regular morphism X '- Y , then the 
oordinate algebra k[X℄ 
an be 
onsidered as analgebra over '∗(k[Y ℄) = k['(X)℄ ⊂ k[X℄. A morphism ' is 
alled �nite, if k[X℄ is integer over '∗(k[Y ℄).Sin
e k[X℄ is �nitely generated as algebra over '∗(k[Y ℄) (even over k), �niteness of ' means that k[X℄ is�nitely generated as '∗(k[Y ℄)- module, i. e. there are some f1; f2; : : : ; fm∈ k[X℄ su
h that any h∈k[X℄
an be written as h =∑'∗(gi) fi for some gi∈k[Y ℄.11.9.1.PROPOSITION. Let X '- Y be a �nite morphism of aÆne algebrai
 varieties. Then '(Z) is
losed for any 
losed Z ⊂ X and indu
ed morphism Z '|Z- '(Z) is �nite. Moreover, if X is irredu
ibleand Z 6= X, then '(Z) 6= Y .Proof. Let I = I(Z) ⊂ k[X℄ be the ideal of Z ⊂ X. Then Z '|Z- Y has '∗Z : k[Y ℄ '∗

- k[X℄ - k[X℄=I. Sin
e
k[X℄ is �nitely generated as '∗(k[Y ℄)-module, k[Z℄ = k[X℄=I is �nitely generated as a module over

k['(Z) ℄ = '|∗Z (k[Y ℄) = '∗(k[Y ℄)=(I ∩ '∗(k[Y ℄)) ;i. e. Z - '(Z) is a �nite morphism. To prove that '(Z) = '(Z), we 
an restri
t ourself onto irredu
ible
omponents of Z, i. e. suppose that Z is irredu
ible. Let B = k[Z℄, A = k['(Z) ℄ ⊂ B, and f1; f2; : : : ; fm generateB as A-module. Sin
e '|Z takes a maximal ideal mp ⊂ B to the maximal ideal mp ∩A ⊂ A, a point q ∈ Spe
m (A)does not belong to Spe
m (B) i� its maximal ideal mq ⊂ A generates non proper ideal in B, that is mq ·B = B. Inthis 
ase we 
an write fi =∑�i�f� for some �i� ∈mq; that is the zero homomorphism of A-modules: B - 0,whi
h takes ea
h fi to zero, 
an be presented in terms of the generator system {f�} by the matrix E − (��i).Hen
e, the multipli
ation by det(E − (�ij)) annihilates B. Sin
e there no zero divisors in B = k[Z℄, we getdet(E − (�ij)) = 0. But det(E − (�ij)) = 1 + � where �∈mq. So, 1∈mq and mq ⊂ A is non proper as well.To prove that '(Z) 6= Y for Z  X, let us take a non zero fun
tion f ∈ k[X℄ vanishing along Z and write theinteger equation of the lowest possible degree for f over '∗(k[Y ℄) asfm + '∗(g1) fm−1 + · · · + '∗(gm−1) f + '∗(gm) = 0 :Computing its left side at any z ∈ Z, we get '∗(gm)(z) = 0, that is gm('(z)) = 0. So, if '(Z) = Y , then gm ≡ 0along Y , i. e. '∗(gm) = 0 in k[X℄. Sin
e k[X℄ has no zero divisors, the minimal equation above is divisible by f .Contradi
tion. �11.10.Normal algebrai
 varieties. If Y is irredu
ible, then k[Y ℄ has no zero divisors. Its quotient�eld is 
alled the �eld of rational fun
tions on Y and is denoted k(Y ). An irredu
ible variety Y is 
allednormal , if k[Y ℄ is a normal ring, i. e. there are no rational fun
tions f ∈ k(Y ) \ k[Y ℄ integer over k[Y ℄.By n◦ 8.7.1, any algebrai
 variety X with fa
torial 
oordinate algebra k[X℄ is normal. For example, allaÆne spa
es An are normal.11.10.1.PROPOSITION. Let X '- Y be a surje
tive �nite morphism. If Y is normal, then '(U) isopen for any open U ⊂ X and ea
h irredu
ible 
omponent of X is surje
tively mapped onto Y .Proof. We will identify k[Y ℄ with a subalgebra of k[X℄ embedded into k[X℄ via '∗. To prove the �rst assertion,we 
an suppose that U = D(f) is prin
ipal. Then for any p ∈ D(f) it is enough to �nd a ∈ k[Y ℄ su
h that'(p) ∈ D(a) ⊂ '(D(f)). Consider a map = '× f : X p7→('(p);f(p))- Y × A1 : (11-2)
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 { geometri
 di
tionary. 61It is regular and �nite, be
ause its pull ba
k homomorphism is the evaluation map ∗ : k[Y × A1℄ = k[Y ℄[t℄ t7→f- k[X℄ (11-3)and k[X℄ is �nitely generated as k[Y ℄-module. We 
an treat evaluation (11-3) as taking values in a k(Y )-algebraB = k(Y ) ⊗
k[Y ℄k[X℄, whi
h 
onsists of all fra
tions b=a, where b ∈ k[X℄, a ∈ k[Y ℄, a 6= 0, modulo the equivalen
eb′=a′ ∼ b′′=a′′ ⇐⇒ b′′a′ − b′a′′ divides zero in k[X℄(k[X℄ is mapped into B via f 7−→ f=1). Sin
e f is integer over k[Y ℄, f is algebrai
 over k(Y ) and the kernel ofthe extended evaluation k(Y )[t℄ t7→f- B is a prin
ipal ideal (�f ) ⊂ k(Y )[t℄ spanned by the minimal polynomial�f (t) = tm + a1tm−1 + · · ·+ am−1t+ am ∈ k(Y )[t℄ for f over k(Y ). By n◦ 8.4.2, the the 
oeÆ
ients of �f belongto k[Y ℄, i. e. �f ∈ k[Y × A1℄. Thus, ker ∗ = (�f ) and im = Spe
m (k[Y × A1℄=(�f )) = V (�f ).In other words, regular morphism (11-2) gives a �nite surje
tion of X onto hypersurfa
e V (�f ) ⊂ Y ×A1 andthe initial morphism ' is obtained from (11-2) by proje
ting this hypersurfa
e onto Y . Thus, for any y ∈ Y theset '−1(y) ⊂ X is surje
tively mapped by f onto the set of all roots of the polynomial�f (y; t) = tm + a1(y) tm−1 + · · · + am(y) ∈ k[t℄obtained by evaluating the 
oeÆ
ients of �f at y ∈ Y . In parti
ular, D(f) ∩ '−1(y) is sent by f to non-zeroroots. We 
on
lude that y ∈ '(D(f) i� �f (y; t) ∈ k[t℄ has a non zero root (i. e. �f (y; t) 6= tm). Sin
e p ∈ D(f),the polynomial �f ('(p); t) should have some non zero intermediate 
oeÆ
ient ai('(p)) 6= 0, i < m. This for
es�f (y; t) to have a non zero root over ea
h y ∈ D(ai) ⊂ Y . We 
on
lude that '(D(f)) ⊃ D(ai) ∋ '(p) as required.What about irredu
ible 
omponents, 
onsider the irredu
ible de
omposition X = ∪X� . ThenUi = X \ ∪� 6=iX� = Xi \ ∪� 6=i(Xi ∩X�)is open in X and dense in Xi. Sin
e '(Ui) is non empty open subset of Y , '(Xi) = '(Ui) = Y . �



§12.Algebrai
 manifolds.12.1.Lo
alization. Let U ⊂ X be an open subset of an aÆne algebrai
 variety and u ∈ U . A fun
tionU f- k is 
alled regular at u, if there are p; q ∈ k[X℄ su
h that q(u) 6= 0 and f(x) = p(x)=q(x)
∀x ∈ D(q) ∩ U . All fun
tions U f- k regular at any u ∈ U form a 
ommutative ring denoted by
OX(U) or by �(U;OX). It is 
alled a ring of lo
al regular fun
tions on U ⊂ X.12.1.1.CLAIM. Let X be irredu
ible and h ∈ k[X℄. Then any f ∈ OX(D(h)) 
an be written asf(x) = r(x)=hd(x) for appropriate r ∈ k[X℄, d ∈ N. In parti
ular, for h ≡ 1, we get OX(X) = k[X℄.Proof. If f ∈ OX(D(h)), then ∀u∈D(h) there are pu; qu ∈ k[X℄ su
h that qu(u) 6= 0 and f(x) = pu(x)=qu(x) forall x ∈ D(qu) ∩ D(h). So, ⋂u∈U V (qu) sits inside V (h) and, by Hilbert's Nullstellensatz, some power hd belongsto the ideal spanned by qu, i. e. there are some u1; u2; : : : ; um ∈ D(h) su
h that hd = ∑ qu�g� for appropriateg1; g2; : : : ; gm ∈ k[X℄. At the same time, f(x) qu� (x) = pu� (x) for ea
h � and any x ∈ D(h), in
luding x ∈
D(h) ∩ V (qu� ). Indeed, let qu� (w) = 0 for some w ∈ D(h). Rewriting f = pu�=qu� as pw=qw with qw(w) 6= 0,we get pu� (x) qw(x) = qu� (x) pw(x) for all x ∈ D(h · qu� · qw). By ex. 11.5, this holds for any x ∈ X at all. Inparti
ular, pu� (w) = qu� (w) pw(w)=qw(w) = 0. We 
on
lude that f hd =∑ f qu� g� =∑ pu� g� ∈ k[X℄. �12.1.2.COROLLARY. Any prin
ipal open set D(f) = Spe
m k[X℄[f−1℄ is an aÆne algebrai
 variety,the in
lusion D(f) ⊂ - X is a regular map with the pull ba
k homomorphism k[X℄ ⊂ - k[X℄[f−1℄. �12.2. Stru
ture sheaf. The 
orresponden
e OX : U 7−→ OX(U) is 
alled a stru
ture sheaf of anaÆne algebrai
 manifold X. If U = ⋃Wi is an union of open sets, then U f- k is regular i� ea
h itsrestri
tion f |Wi is regular on Wi. Conversely, a 
olle
tion of fun
tions Wi fi- k su
h that fi ≡ fj onWi ∩Wj gives a unique regular fun
tion f ∈ OX (∪Wi) whose restri
tion onto Wi is fi for all i.Note that although n◦ 12.1.2 says that open sets are lo
ally aÆne, a generi
 open U ⊂ X is notan aÆne algebrai
 variety and in general there is no natural 1{1 
orresponden
e between the points ofSpe
m OX(U) and the ones of U .Exer
ise 12.1. Let U = An \O be the 
omplement to the origin. Show that OAn(U) = k[An℄ for n > 2.Hint. Use the 
overing U = S

D(xi) and n◦ 12.1.1.12.3.Algebrai
 manifolds. Let X be a topologi
al spa
e. An open subset U ⊂ X is 
alled an algebrai
aÆne 
hart on X, if there exists an aÆne algebrai
 variety XU and a homeomorphism XU 'U- U . Twoalgebrai
 
harts XU 'U- U and XW 'W- W on X are 
alled 
ompatible, if their transition map'WU = 'W ◦'−1U , whi
h identi�es '−1U (U ∩W ) ⊂ XU with '−1W (U ∩W ) ⊂ XW , is a regular isomorphismof algebrai
 open sets, i. e. its pull ba
k � ('−1W (U ∩W ) ; OXW ) '∗WU- � ('−1U (U ∩W ) ; OXU ) is a wellde�ned isomorphism of k-algebras. A (�nite) open 
overing X = ⋃U� by mutually 
ompatible algebrai

harts is 
alled a (�nite) algebrai
 atlas on X. Two algebrai
 atlases are 
alled equivalent , if their unionis an algebrai
 atlas too. A topologi
al spa
e X equipped with a 
lass of equivalent (�nite) algebrai
atlases is 
alled an algebrai
 manifold (of �nite type).Exer
ise 12.2. Che
k that proje
tive spa
es and Grassmannians are algebrai
 manifolds of �nite type as wellas any zero set of a 
olle
tion of multihomogeneous polynomials on Pn1 × Pn2 × · · · × Pnm .12.3.1.Example: a dire
t produ
t X × Y of algebrai
 manifolds X, Y is an algebrai
 manifold too. Its atlas
onsists of all pairwise produ
ts U ×W , where U ⊂ X, W ⊂ X are aÆne algebrai
 
harts on X, Y .12.3.2.Example: separability. The standard atlas on P1 
onsists of two 
harts 'i : A1 ∼- Ui ⊂ P1, i = 0; 1,and '−10 (U0 ∩ U1) = '−11 (U0 ∩ U1) = {t ∈ A1 | t 6= 0} is the 
omplement to the origin. The 
harts U0;1 = A1are glued together along A1 \ {O} via transition map '01 : t 7→ 1=t. If we repla
e it by the identity map'̃01 : t 7→ t, then we get an other manifold 
alled �A1 with doubled origin�, whi
h looks like ------------------:----------------- .Su
h the pathology is known as a non-separability . It has appeared, be
ause the latter gluing rule '̃01 is �non-
omplete� and 
ould be extended from A1 \ {O} to a larger set. This 
an be formalized as follows. Two in
lusionsU0 � ⊃ U0 ∩ U1 ⊂ - U1 give an embedding U0 ∩ U1 ⊂ - U0 × U1. In the 
ase of P1, this is an in
lusion(A1 \O) ⊂ - A2 given as x = t ; y = 1=t; it identi�es U0 ∩U1 with a 
losed subset V (xy− 1) ⊂ A2 = U0×U1. Inthe se
ond 
ase, the embedding U0 ∩ U1 ⊂ - U0 × U1 = A2 is given as x = t ; y = t and has a non-
losed image
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 manifolds. 63� \ {(0; 0)}, where � = V (x − y) ⊂ A2 is the diagonal. An algebrai
 manifold X is 
alled separable, if an imageof the 
anoni
al embedding U ∩W ⊂ - U ×W is 
losed for any two aÆne 
harts U;W ⊂ X. Sin
e this image isnothing more than the interse
tion of diagonal � ⊂ X ×X with the aÆne 
hart U ×W on X ×X, a manifold Xis separable i� the diagonal � ⊂ X ×X is 
losed. For example, An and Pn are separable, be
ause the diagonalsin An × An and in Pn × Pn are given, a

ordingly, by the equations xi = yi and xiyj = xjyi.12.4.Regular fun
tions and morphisms. Let U ⊂ X be an open set. A fun
tion U f- k is
alled regular , if ea
h point u ∈ U has an aÆne neighborhood XW 'W- W ∋ u su
h that f◦' ∈
OXW ('−1(U ∩W )). In other words, a lo
al fun
tion on X is regular, if it indu
es a lo
al regularfun
tions on ea
h aÆne 
hart. Regular fun
tions U - k form a 
ommutative ring OX(U); a 
orre-sponden
e U 7−→ OX(U) is 
alled a stru
ture sheaf on X. More generally, a map of algebrai
 manifoldsX '- Y is 
alled a regular morphism, if its pull ba
k is well de�ned homomorphism of k-algebras:
OY (U) '∗- OX('−1U) for any open U ⊂ Y . For example, a set of regular morphisms X - A1
oin
ides with OX(X).12.5.Rational maps. A regular1 morphism U '- Y , whi
h is de�ned only on some open denseU ⊂ X, is 
alled a rational map from X to Y . One should be 
areful in 
omposing rational maps,be
ause an image of the �rst map may be 
ompletely outside the domain where the se
ond is de�ned.12.5.1.Example: a proje
tion An+1 �- Pn sending a point A ∈ An to the line (OA) ∈ Pn is a rationalsurje
tion de�ned on U = An \O. In terms of the standard aÆne 
hart

An 'i- Ui = {(t0; t1; : : : ; tn) ∈ Pn | ti = 1} ;the pull ba
k homomorphism OPn(Ui) �∗

- OAn+1(�−1(Ui)) sendsf(x1; x2; : : : ; xn) ∈ k[x1; x2; : : : ; xn℄ = OPn(Ui)to the rational fun
tionf̃(t0; t1; : : : ; tn) = f(t0=ti ; : : : ; ti−1=ti ; ti+1=ti ; : : : ; tn=ti) ∈ OAn+1(D(ti)) = OAn+1(�−1(Ui)) :12.6.Closed submanifolds. Any 
losed subset Z ⊂ X of an algebrai
 manifoldX has natural stru
tureof algebrai
 manifold. Namely, for any aÆne 
hart U the interse
tion Z ∩U is a 
losed subset of U , thatis an aÆne algebrai
 set Spe
m (OX(U)=IZ(U)), where IZ(U) = {f ∈ OX(U) | f |Z ≡ 0} is the idealof Z ∩ U on U . The 
orresponden
e U 7−→ IZ(U) is 
alled the ideal sheaf of the 
losed submanifoldZ ⊂ X. This is a subsheaf of the stru
ture sheaf. It 
onsists of all lo
al regular fun
tions vanishingalong Z. A regular morphism of arbitrary algebrai
 manifolds X '- Y is 
alled a 
losed embedding , if'(X) ⊂ Y is a 
losed submanifold and ' gives an isomorphism between X an '(X). One 
an say thatan algebrai
 manifold X is aÆne i� it admits a 
losed embedding into aÆne spa
e. Similarly, a manifoldX is 
alled proje
tive, if it admits a 
losed embedding X ⊂ - Pm for some m.12.6.1.Example: 
losed submanifold X ⊂ Y is separable as soon Y is, be
ause the diagonal in X × X is apreimage of the diagonal in Y ×Y under an embedding X ×X ⊂ - Y ×Y . In parti
ular, any aÆne or proje
tivemanifold is separable and has a �nite type.12.6.2.Example: graph of morphism. Let X '- Y be a regular morphism. A preimage of the diagonal� ⊂ Y × Y under an indu
ed morphism X × Y '×IdY- Y × Y is 
alled a graph of ' and is denoted by �'.Geometri
ally, �' = {(x; f(x)} ⊂ X×Y . It is 
losed, if Y is separable. For example, a graph of a regular morphismof aÆne manifolds Spe
m (A) '- Spe
m (B) is given in A⊗B by the equation system 1⊗ f = '∗(f)⊗ 1, wheref runs through B and B '∗

- A is the pull ba
k of '.12.6.3.Example: family of 
losed submanifolds. Any regular morphism X �- Y may be 
onsidered as afamily of 
losed submanifolds Xy = �−1(y) ⊂ X parameterized by the points y ∈ Y . If X �- Y , X ′ �′

- Y1as above, the regularity means that the pull ba
k OY (W ) '∗

- OX('−1(W )) is a well de�ned k-algebra homomorphism
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 Geometry. Start Up Course.are two families with the same base, then a regular morphism X '- X ′ is 
alled a morphism of families (or amorphism over Y ), if it sends Xy to X ′y for any y ∈ Y , i. e. if � = �′◦'. A family X �- Y is 
alled 
onstant ortrivial with a �ber F , if it is isomorphi
 over Y to the dire
t produ
t F × Y �Y- Y .12.6.4.Example: blow up a point p ∈ Pn. Lines passing through a given point p ∈ Pn form a proje
tivespa
e E ≃ Pn−1, whi
h 
an be identi�ed with any hyperplane H ⊂ Pn su
h that p 6∈ H. An in
iden
e graph
Bp = {(`; q) ∈ E × Pn | q ∈ `} is 
alled a blow up of p ∈ Pn.If n > 2, then the proje
tion �p : Bp -- Pn is bije
tive outside q = p, but a preimage �−1p (p) ⊂ Bp 
oin
ideswith E; this �ber is 
alled an ex
eptional divisor .The se
ond proje
tion %E : Bp -- E �bers Bp as a line bundle over E. This line bundle is 
alled atautologi
al line bundle over E. Its �ber %È over a point ` ∈ E 
oin
ides with the line ` ⊂ Pn itself.If we �x homogeneous 
oordinates (t0 : t1 : : : : : tn) on Pn su
h that p = (1 : 0 : · · · : 0) and identify E withthe hyperplane H = {(0 : q1 : · · · : qn)} ⊂ Pn, then (q; t) ∈ Bp i� qitj = qjti for all 1 6 i < j 6 n, i. e. i�rk  1 0 · · · 00 q1 · · · qnt0 t1 · · · tn = 2 :Thus, Bp is 
losed submanifold of H × Pn.12.7.Closed morphisms. A regular morphism X '- Y is 
alled 
losed , if '(Z) ⊂ Y is 
losed forany 
losed Z ⊂ X. Of 
ourse, any 
losed embedding is 
losed. The theorem from n◦ 11.9.1 says that any�nite morphism of aÆne manifolds is 
losed. By n◦ 8.8.1, the proje
tion Pm×An - An is also 
losed.12.7.1.PROPOSITION. If X is a proje
tive manifold, then the proje
tion X × Y - Y is 
losedfor any manifold Y .Proof. Taking an aÆne 
hart on Y , we 
an suppose that Y is aÆne, i. e. that X × Y is a 
losed submanifold of
Pm × An. Then our proje
tion is the restri
tion of the 
losed map Pm × An - An onto the 
losed subsetX × Y ⊂ Pm × An. �12.7.2.PROPOSITION. If X is proje
tive and Y is separable, then any morphism X '- Y is 
losed.Proof. Sin
e Y is separable, the graph �' ⊂ X × Y is 
losed. Z × Y is also 
losed in X × Y for any 
losed Z ⊂ X.But '(Z) is the image of �' ∩ (Z × Y ) under the proje
tion X × Y - Y . �12.7.3.COROLLARY. If X is a 
onne
ted proje
tive manifold, then OX(X) = k. Moreover, ea
hregular map from X to any aÆne manifold 
ontra
ts X into one point.Proof. Let us identify k = A1 with an aÆne 
hart on P1 and 
onsider a global regular fun
tion X f- k as a regularmorphism X f- P1. Sin
e f(X)  P1 is 
losed and 
onne
ted, it is one point. In parti
ular, if X '- An isregular, then ea
h 
oordinate form xi ∈ k[An℄ takes a 
onstant value along '(X). �12.8.Finite morphisms of manifolds. A regular morphism of arbitrary algebrai
 manifoldsX '- Yis 
alled �nite, if W = '−1(U) is an aÆne 
hart on X for any aÆne 
hart U ⊂ Y and the restri
tionW 'W- U is a �nite morphism of aÆne algebrai
 varieties. It follows from n◦ 11.9.1 that any �nitemorphism is 
losed and a restri
tion of a �nite morphism onto any 
losed submanifold Z ⊂ X is a �nitemorphism as well. Moreover, if X is irredu
ible, then ea
h proper 
losed Z ⊂ X goes to a proper 
losedsubset of Y .12.8.1.Example: a proje
tion of any proje
tive manifold X  Pn from any point p 6∈ X onto any hyperplaneH 6∋ p is a �nite morphism. To 
he
k this, let us �x the 
oordinates as in n◦ 12.6.4 and follow the notationsof that example. Consider a standard aÆne 
hart on H, say Uqn = {q = (0 : u1 : · · · : un−1 : 1)} ⊂ H. Itspreimage Y = �−1p (Uqn) ⊂ X under the proje
tion from p lies inside the 
one over Uqn with the pun
tured vertexp (be
ause p 6∈ X). The blow up maping �p identi�es this pun
tured 
one with the aÆne spa
e An = Uqn ×A1 viathe substitution t = #p+qu, where t = (t0 : t1 : : : : : tn) is the homogeneous 
oordinate on Pn, p = (1 : 0 : : : : : 0),qu = (0 : u1 : · · · : un−1 : 1) ∈ Uqn . If X is given by a system of homogeneous equations f�(t) = 0, then Y is givenin aÆne 
oordinates (u; t) by equationsf�(#p+ qu) = �(�)0 (u)#m + �(�)1 (u)#m−1 + · · · + �(�)m (u) = 0 : (12-1)
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 manifolds. 65So, Y is aÆne and it remains to 
he
k that k[Y ℄ = k[u℄[#℄=(f�(#p + qu)) is a �nitely generated k[u℄-module. Tothis aim it is enough to �nd an integer equation with �0(u) ≡ 1 in the ideal spanned by equations (12-1). Thenalready a fa
torization through this equation leads to a �nitely generated k[u℄-module.Note that the leading 
oeÆ
ients �(�)0 (u) have no 
ommon zeros in Uqn . Indeed, if all �(�)0 (u) vanish at u = u0,then the homogeneous versions of (12-1)�(�)0 (u0)#m0 + �(�)1 (u0)#m−10 #1 + · · · + �(�)m (u0)#m1 = 0(they are obtained by substitution t = #0 p + #1 qu and des
ribe the interse
tion X ∩ (pqu0)) have the solution(#0 : #1) = (1 : 0), whi
h 
orresponds to the point p 6∈ X.Thus, the ideal spanned by the leading 
oeÆ
ients �(�)0 (u) is non proper and 
ontains the unity as required.Exer
ise 12.3. Che
k that a 
omposition of �nite morphisms is �nite and prove that any proje
tive manifoldadmits a �nite surje
tive morphism onto a proje
tive spa
e.12.8.2.COROLLARY. Ea
h aÆne manifold X admits a �nite surje
tive morphism ' onto appropriateaÆne spa
e Am.Proof. Let X  An, where An is embedded in Pn as the standard 
hart U0. We write H∞ for Pn \U0 and X ⊂ Pnfor the proje
tive 
losure of X. A proje
tion of X from any point p ∈ H∞ \ (X ∩H∞) onto any hyperplane L 6∋ pindu
es a �nite morphism from X = X \ (X ∩H∞) to An−1 = L \ (L ∩H∞). If it is non surje
tive, we repeatthis pro
edure. �12.9.Dimension. For an arbitrary algebrai
 manifold X and an arbitrary point x ∈ X, the maximaln ∈ N su
h that there exists a 
hain of irredu
ible 
losed subsets
{x} = X0  X1  · · ·  Xn−1  Xn ⊂ X : (12-2)is 
alled a dimension of X at x and is denoted by dimxX.Certainly, if X is irredu
ible, then Xn = X in the maximal 
hain (12-2). If X is redu
ible, thendimxX 
oin
ides with the maximal dimension of irredu
ible 
omponents passing through x.Exer
ise 12.4. Show that dimpX = dimp U for any aÆne 
hart U ∋ p.Hint. Let X1; X2 ⊂ X be two 
losed irredu
ible subsets and U ⊂ X be an open set su
h that both X1 ∩ U ,X2 ∩ U are nonempty. Then X1 = X2 ⇐⇒ X1 ∩ U = X1 ∩ U , be
ause Xi = Xi ∩ U .12.9.1.LEMMA. Let X '- Y be a �nite morphism of irredu
ible manifolds. Then dimxX 6dim'(x) Y for any x ∈ X and the equality holds i� '(X) = Y .Proof. By ex. 12.4, we 
an assume that both X, Y are aÆne. Then n◦ 11.9.1 implies that ea
h 
hain (12-2) in Xprodu
es a 
hain · · ·  '(Xi)  '(Xi+1)  · · · of 
losed irredu
ible submanifolds in Y . Vi
e versa, if '(X) = Y ,then given a 
hain Y0  Y1  · · ·  Yn−1  Yn = Y , for ea
h i we 
an 
hoose an irredu
ible 
omponent Xi of'−1(Yi) mapped surje
tively onto Yi. This gives a 
hain (12-2) in X. �12.9.2.PROPOSITION. dimpAn = n at any p ∈ An.Proof. Clearly, dimA0 = 0. Suppose indu
tively that dimAn−1 = n − 1. Sin
e any proper 
losed X ⊂ An has a�nite proje
tion on An−1, the above lemma implies that dimpX 6 (n− 1) for any p. Thus, dimp An 6 n. On theother hand, there is a 
hain (12-2) 
onsisting of aÆne subspa
es passing through p. So, dimp An > n. �12.9.3.COROLLARY. Let X be an irredu
ible aÆne manifold and X '- Am be a surje
tive �nitemorphism. Then dimpX = m at ea
h p ∈ X. In parti
ular, m doesn't depend on a 
hoi
e of ' anddimpX is the same for all p ∈ X. �Exer
ise 12.5. Prove that dim(X × Y ) = dimX + dimY for any irredu
ible manifolds X, Y .Exer
ise 12.6. Let V (f) ⊂ An be given by irredu
ible f ∈ k[x1; x2; : : : ; xn℄. Show that dimV (f) = n− 1.Hint. Find a surje
tive �nite proje
tion V (f) - An−1 (
omp. with ex. 12.3 and n◦ 12.8.2).12.9.4.LEMMA. If X is irredu
ible, then dimp V (f) = dimp(X)− 1 for any non 
onstant f ∈ OX(X)and any p ∈ V (f).Proof. We 
an assume that X is aÆne. Fix some �nite surje
tion X �- Am and 
onsider the indu
ed map = � × f : X x 7→(�(x);f(x))- Am × A1
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 Geometry. Start Up Course.as in the proof from n◦ 11.10.1. It maps X �nitely and surje
tively onto aÆne hypersurfa
e V (�f ) ⊂ Am × A1,where �f (u; t) = tn + �1(u) tn−1 + · · · + �n(u) ∈ k[u1; u2; : : : ; um℄[t℄is the minimal polynomial for f over k(Am). Write H ⊂ Am × A1 for a hyperplane given by equation t = 0.Then V (f) =  −1 (H ∩ V (�f )). The interse
tion H ∩ V (�f ) is a hypersurfa
e of H given in H = An by equation�n(u) = 0. Thus, there is a �nite surje
tion V (f)  -- V (an) ⊂ An. Now the proposition follows from ex. 12.6and n◦ 12.9.1. �12.9.5.COROLLARY. dimp V (f) > dimp(X)−1 for any algebrai
 manifold X, an arbitrary f ∈ k[X℄,and any p ∈ V (f). �12.9.6.COROLLARY. For any two 
losed submanifolds X1; X2 ⊂ An and any x ∈ X1 ∩X2dimx(X1 ∩X2) > dimx(X1) + dimx(X2)− n :Proof. Write X1 ⊂
'1- An, X2 ⊂

'2- An for the 
orresponding 
losed embeddings. Then X1 ∩X2 is the preimage ofdiagonal � ⊂ An ×An under the map X1 ×X2 ⊂
'1×'2- An ×An. It is given inside X1 ×X2 by the pull ba
ksof n equations xi = yi, whi
h de�ne � inside An × An. It remains to apply n◦ 12.9.5. �12.9.7.COROLLARY. If dim(X1) + dim(X2) > n for some 
losed X1; X2 ⊂ Pn, then X1 ∩X2 6= ∅.Proof. Let Pn = P(V ). Consider aÆne 
ones1 X ′1; X ′′2 ⊂ An+1 = A(V ) formed by the lines passing through theorigin O ∈ An+1 and belonging to X1; X2 respe
tively. By the previous 
orollary, dimO(X ′1 ∩X ′′2 ) > dimO(X1) +1 + dimO(X2) + 1− n− 1 > 1. So, X ′1 ∩X ′′2 is exhausted by O. �12.9.8.THEOREM. Let X '- Y be a dominant morphism of irredu
ible manifolds. Then:(1) dimx '−1('(x)) > dimX − dimY for any x ∈ X_,(1) there exists open dense U ⊂ Y su
h that dim'−1(y) = dimX − dimY for all y ∈ U .Proof. In (1) we 
an repla
e Y by an aÆne neighborhood of '(x), i. e. assume that Y is aÆne. Appropriate �niteproje
tion Y -- Am redu
es (1) to the 
ase Y = Am = Spe
m k[u1; u2; : : : ; um℄, '(x) = 0. Now '−1(0) is aninterse
tion of m hypersurfa
es V ('∗(ui)) in X and the required inequality follows indu
tively from n◦ 12.9.5.In (2) we 
an suppose that both X, Y are aÆne and ' is obtained by restri
ting the proje
tion Y ×Am �-- Yonto some 
losed submanifold X ⊂ Y × Am (
omp. with the de
omposition (11-1) from ex. 11.6). Now we aregoing to apply the arguments from n◦ 12.8.2 �berwise over Y .Namely, 
onsider the 
losure X ⊂ Y × Pm and 
hoose a hyperplane H ⊂ Pm and a point p ∈ Pm \ H su
hthat the se
tion Y × {p} ⊂ Y × Pm is not 
ontained in X. The �berwise proje
tion from p onto H is well de�nedover an open subset U ⊂ Y 
omplementary to �((Y × {p}) ∩ X), where � : Y × Pm -- Y is the proje
tionalong Pm (this is a 
losed morphism). Repla
ing Y by any non empty prin
ipal open subset of U , we get a �nitemorphism X - Y × Am−1. After a number of su
h repla
ements we 
an suppose that ' is a �nite surje
tionX -- Y ×An followed by the proje
tion Y ×An -- Y . Now all �bers have dimension n = dimX − dimY . �12.9.9.COROLLARY (CHEVALLEY'S SEMI-CONTINUITY THEOREM). For any morphism of alge-brai
 manifolds X '- Y and ea
h k ∈ Z a subset Xk def= {x ∈ X | dimx '−1('(x)) > k } is 
losed in X.Proof. We 
an suppose that X, Y are irredu
ible. If k 6 dim(X) − dim(Y ), then Xk = X by the above theorem.For k > dim(X) − dim(Y ) we 
an repla
e Y by Y ′ = Y \ U , where U is the same as in n◦ 12.9.8, and X | byX ′ = '−1(Y ′). Clearly, Xk ⊂ X ′ and we 
an repeat the arguments de
reasing the dimensions of X, Y . �Exer
ise 12.7. Show that isolated points in the �bers of a morphism X '- Y �ll an open subset in X.12.9.10.COROLLARY. For any 
losed morphism X '- Y and ea
h k ∈ Z a subsetYk def= { y ∈ Y | dim'−1(y) > k }1they have the same equations as X1, X2 but these equations are 
onsidered now as aÆne rather than homogeneous
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losed in Y . �12.9.11.COROLLARY. Let X '- Y be a 
losed morphism with irredu
ible �bers of the samedimension. Then irredu
ibility of Y implies that X is irredu
ible as well.Proof. Let X = X ′ ∪X ′′. Sin
e ea
h �ber '−1(y) is irredu
ible, it 
ompletely belongs to one of X ′, X ′′. Applyingn◦ 12.9.10 to the restri
tion X ′ '|X′- Y , we see that a set of all �bers 
ompletely 
ontained in X ′ is mappedto some 
losed subset Z ′ ⊂ Y . Similarly, all �bers 
ompletely 
ontained in X ′′ are also mapped to some 
losedZ ′′ ⊂ Y . So, Y = Z ′ ∪ Z ′′ but both Z ′, Z ′′ should be proper as soon as X ′, X ′′ were proper. �



§13.Working example: lines on surfa
es.13.1.Variety of lines on surfa
es of given degree. We are going to analyze the set of lines lyingon a surfa
e S ⊂ P3 of a given degree d.Exer
ise 13.1. Carry out the 
omplete analysis for d = 2.To this aim 
onsider the spa
e PN = P(SdV ∗), of surfa
es of degree d in P3 = P(V ), and identify the setof all lines in P(V ) with the Pl�u
ker quadri
 QP ⊂ P5 = P(�2V ). Let� def= { (S; `) ∈ PN ×QP | ` ⊂ S } ⊂ PN ×QPbe the in
iden
e graph.13.1.1.CLAIM. � is 
losed submanifold of PN ×QP .Proof. 2-dimensional subspa
e spanned by u;w ∈ V 
oin
ides with the image of the 
ontra
tion map V ∗ - V ,whi
h sends � ∈ V ∗ to 〈 � ; u ∧ w 〉. So, the line ` = (uw) lies on a surfa
e S given by F = 0 i� F (〈 � ; u ∧ w 〉) ∼= 0identi
ally in � ∈ V ∗. In 
oordinates, let e� form a basis of V , �� be the 
oordinates of � w. r. t. the dual basisof V ∗, and u ∧ w = ∑�6=� p�� e� ∧ e� , where p�� = −p�� are the asso
iated Pl�u
ker 
oordinates on P5 ⊃ Q. Then
〈 � ; u ∧ w 〉 =∑i �i · (∑� pi�e�). Substitute this into F , expand the result through the monomials in �, and writedown that all 
oeÆ
ients of this expansion vanish | this gives a system of polynomial equations on the 
oeÆ
ientsof F and pij des
ribing � ⊂ PN ×QP ⊂ PN × P5. �13.1.2.CLAIM. Proje
tion � �2- QP is surje
tive; all its �bers are proje
tive spa
es of dimensiond(d+ 1)(d+ 5)=6− 1.Proof. Let a line ` ⊂ P(V ) be given by x0 = x1 = 0. Then S ⊃ ` i� S has an equation 0 = x2 · F2(x) + x3 · F3(x),where F2; F3 ∈ Sd−1V ∗ are arbitrary homogeneous polynomials. These equations form a ve
tor spa
e W , whi
h
oin
ides with the image of the linear operator Sd−1V ∗⊕Sd−1V ∗ (f;g) 7→x2f+x3g- SdV ∗ whose kernel 
onsists ofall (f; g) su
h that x2f = −x3g that is possible i� f = x3h and g = −x2h for some h ∈ Sd−2V ∗. Hen
e, the kernelis isomorphi
 to Sd−2V ∗ and dimW = 2 dim(Sd−1V ∗)−dim(Sd−1V ∗) = 16 ( 2 d(d+1)(d+2)− (d−1)d(d+1)) =d(d+ 1)(d+ 5)=6 . �13.1.3.COROLLARY. � is an irredu
ible proje
tive manifold of dimension d(d+ 1)(d+ 5)=6 + 3.Proof. This follows at on
e from n◦ 12.9.11 and n◦ 12.9.8. �13.1.4.CLAIM. A generi
1 surfa
e Sd ⊂ P3 of degree d > 4 does not 
ontain lines.Proof. By n◦ 12.7.2, the image of the proje
tion � �1- PN , that is the set of all surfa
es 
ontaining some lines,is 
losed irredu
ible submanifold of PN = P(SdV ∗). By n◦ 12.9.8, its dimension equals dim� minus the minimaldimension of non-empty �bres of �1. We see that the image is proper as soon dim� < N , i. e. whend(d+ 1)(d+ 5)=6 + 3 < (d+ 1)(d+ 2)(d+ 3)=6 :This holds for all d > 4. �13.1.5.CLAIM. Ea
h 
ubi
 surfa
e S3 ⊂ P3 
ontains lines; generi
ally, this is a �nite set of lines.Proof. Taking in the previous proof d = 3, we get dim� = N = 19. Thus, to show that �1 is surje
tive, it is enoughto �nd a non-empty 0-dimensional �ber of �1, i. e. to present a 
ubi
 surfa
e 
ontaining a �nite set of lines.Let us �nd all the lines, say, on a 
ubi
 C with aÆne equation xyz = 1. This aÆne pie
e does not 
ontain thelines at all, be
ause x = x0 + � t ; y = y0 + � t ; z = z0 + 
 t lies on C i� ��
 = 0, ��z0 + �
x0 + 
�y0 = 0, and�y0z0+�x0z0+
x0y0 = 0, but x0y0z0 = 1, whi
h leads to 
ontradi
tion when we go from the left to the right: forexample, � = 0 ⇒ � = 0 or 
 = 0 ⇒ � = 
 = 0. To des
ribe C at in�nity, put x = x1=x0, y = x2=x0, z = x3=x0and rewrite its equation as x1x2x3 = x30. Thus, C ∩ {x0 = 0} 
onsists of 3 lines: xi = x0 = 0, i = 1; 2; 3. �Exer
ise 13.2∗. Find all lines on the (smooth) Fermat 
ubi
 CF , given by ∑x3i = 0.1at least any one from some dense open subset in the spa
e of all degree d surfa
es



§ 13. Working example: lines on surfa
es. 69Hint. CF is preserved by the permutations of the 
oordinates; up to permutations, a pair of linear equationsfor ` ⊂ CF 
an be redu
ed by the Gauss method to x0 = �x2 + �x3, x1 = 
x2 + Æx3; substitute this inFermat's 
ubi
 equation, show that ��
Æ = 0 e. t. 
.13.2.Lines on a smooth 
ubi
. Now, let S ⊂ P3 be a smooth 
ubi
 surfa
e with equation F (x) = 0.13.2.1.LEMMA. A redu
ible plane se
tion of S 
an split either into a line and a smooth 
oni
 or intoa triple of distin
t lines.Proof. We have to show that a plane se
tion � ∩ S 
an not 
ontain a double line 
omponent. If there is a doubleline ` ⊂ � ∩ S, we 
an take the 
oordinates where � is given by x2 = 0 and ` is given by x2 = x3 = 0. ThenF (x) = x2Q(x) + x23L(x) = 0 for some linear L and quadrati
 Q. Let a be an interse
tion point of ` with thequadri
 Q(x) = 0. Then x2(a) = x3(a) = Q(a) = 0 implies that all partial derivatives �F=�xi vanish at a, i. e. Sis singular at a. �13.2.2.COROLLARY. A point of S 
an belong to at most 3 lines lying on S and these lines shouldbe 
oplanar.Proof. Indeed, all lines passing through p ∈ S and lying on S belong to S ∩ TpS. �13.2.3.LEMMA. Given ` ⊂ S, there are pre
isely 5 distin
t planes �1; �2; : : : ; �5 
ontaining ` andinterse
ting S in a triple of lines; moreover, if �i ∩ S = ` ∪ `i ∪ `′i, then `i ∩ `j = `i ∩ `′j = `′i ∩ `′j = ∅
∀ i 6= j (in parti
ular, S 
ontains some skew lines) and any line on S skew to ` must interse
t for ea
h ipre
isely one of `i, `′i.Proof. Fix a basis {e0; e1; e2; e3} for V su
h that ` = (e0e1), given by equations x2 = x3 = 0, lies on S. Then theequation F (x) = 0, de�ning S, 
an be written in this basis as:L00(x2; x3) ·x20+2L01(x2; x3) ·x0x1+L11(x2; x3) ·x21+2Q0(x2; x3) ·x0+2Q1(x2; x3) ·x1+R(x2; x3) = 0 (13-1)where Lij ; Q� ; R ∈ k[x2; x3℄ are homogeneous of degrees 1, 2, 3 respe
tively. Let us parameterize a pen
il of plainspassing through ` by the points e# = #2e2 + #3e3 ∈ (e2e3) and write (t0 : t1 : t2) for homogeneous 
oordinates inthe plane �# = (e0e1e#) w. r. t. these basi
 points. An equation for the plane 
oni
 (�# ∩ S) \ ` is obtained from(13-1) by the substitution x = (t0 : t1 : #2t3 : #3t3) and 
an
eling the 
ommon fa
tor t3. The resulting 
oni
 hasthe Gram matrix G = L00(#) L01(#) Q0(#)L01(#) L11(#) Q1(#)Q0(#) Q1(#) R(#)whose determinant is homogeneous degree 5 polynomial in # = (#2 : #3)D(#2; #3) = L00(#)L11(#)R(#) + 2L01(#)Q0(#)Q1(#)− L11(#)Q20(#)− L00(#)Q21(#)− L01(#)2R(#) :Thus, it has 5 roots 
ounted with multipli
ities. We have to show that all these roots are simple. Ea
h root
orresponds to a splitting of the 
oni
 into a pair of lines `′, `′′. There are two possibilities: the interse
tion point`′ ∩ `′′ lies either on ` or outside `.In the �rst 
ase, we 
an �x a basis in order to have `′ = (e0e2) and `′′ = (e0 (e1 + e2)). These lines are givenby equations x3 = x1 = 0 and x3 = (x1 − x2) = 0. Su
h the splitting 
orresponds to the root # = (1 : 0). Itsmultipli
ity equals the highest power of #3 dividing D(#2; #3). Sin
e `; `′; `′′ ⊂ S, the equation (13-1) has a formx1x2(x1 − x2) + x3 · q(x) with some quadrati
 q(x). Thus, elements of G that may be not divisible by #3 areexhausted by L11 ≡ x2 (mod #3) and Q1 ≡ −x22=2 (mod #3). So, D(#2; #3) ≡ −L00Q21 (mod #23). This term is oforder 1 in t3 as soon x1x22 and x20x2 do 
ome in (13-1) with non zero 
oeÆ
ients. But the �rst is the only monomialthat gives non zero 
ontribution into �F=�x1 
omputed at e2 ∈ S and the se
ond | in �F=�x2 at e0 ∈ S. Hen
e,they do 
ome.In the se
ond 
ase we �x a basis in order to have `′ = (e0e2), `′′ = (e1e2), whi
h are given by equationsx3 = x1 = 0 and x3 = x0 = 0. This splitting 
orresponds to the same root # = (1 : 0). Now equation (13-1) turnsto x0x1x2 + x3 · q(x) and non zero modulo #3 entry of G is only L01 ≡ x2=2 (mod #3). Thus, D(#2; #3) ≡ −L201R(mod #23), whi
h is of the �rst order in t3 as soon x22x3 and x0x1x2 do really appear in (13-1). The se
ond does,be
ause otherwise F is divisible by x3. The �rst is the only monomial that gives non zero 
ontribution into �F=�x3
omputed at e2 ∈ S.The rest assertions follow immediately from n◦ 13.2.2, n◦ 13.2.1 and remark that any line in P3 interse
ts anyplane. �



70 Algebrai
 Geometry. Start Up Course.13.2.4.LEMMA. Any four mutually skew lines on S do not lie simultaneously on a quadri
 and thereexist either one or two (but no more!) lines on S interse
ting ea
h of these four lines.Proof. If four given lines on S lie on some quadri
 Q, then Q is smooth and the lines belong to the same linefamily1 ruling this quadri
. Ea
h line from the se
ond ruling family on Q lies on S, be
ause a line passing through4 distin
t points of S has to lie on S. Hen
e, Q ⊂ S and S is redu
ible. It remains to apply ex. 2.4. �13.3.Con�guration of 27 lines. Take 2 skew lines a; b ⊂ S and 
onstru
t 5 pairs of lines `i, `′ipredi
ted by n◦ 13.2.3 applied to ` = a. Let us write `i for those lines that do meet b and `′i forremaining lines, whi
h do not. There are 5 more lines `′′i 
oupled with `i by n◦ 13.2.3 applied to ` = b.Ea
h `′′i meets b but neither a nor `j with j 6= i. Thus, `′′i interse
ts all `′j with j 6= i.Any line 
 ⊂ S, di�erent from 17 just 
onstru
ted, is skew to a, b but meets either `i or `′i for ea
hi. By n◦ 13.2.4, all lines meeting > 4 of `i's are exhausted by a, b. Let 
 meet 6 2 of `i's. Then, up toa permutation of indi
es, 
 meets `′1; `′2; `′3 and, say, either `′4 or `5. In the both 
ases we already havetwo distin
t lines a; `′′5 6= 
 interse
ting all these 4 lines. This 
ontradi
ts to n◦ 13.2.4.We 
on
lude that 
 interse
ts pre
isely 3 of 5 lines `i.13.3.1.LEMMA. Remaining lines 
 ⊂ S are in 1{1 
orresponden
e with 15 triples
{i; j; k} ⊂ {1; 2; 3; 4; 5} :Proof. There is at most one line 
 interse
ting a given triple of `i's | this is the se
ond possible line besides ameeting all these `i's and the rest `′j 's (all 5 are mutually skew). On the other hand, by n◦ 13.2.3, for ea
h i thereare pre
isely 10 lines on S interse
ting `i: 4 of them are a, b, `′i, `′′i and other 6 have to interse
t exa
tly 2 of therest four `j 's. So, we have 1{1 
orresponden
e between these 6 lines and 6 = (42) 
hoi
es of pairs of `'s. �Thus, we have proven13.3.2.COROLLARY. Ea
h smooth 
ubi
 surfa
e S ⊂ P3 
ontains pre
isely 27 lines and their in
i-den
e 
ombinatori
s is the same for all S. �Exer
ise 13.3. Let G ⊂ S27 be a group of all permutations of the 27 lines preserving all the in
iden
e relationsbetween them; �nd the order of G. ( answer:|G|=51840=27·34·5 )Exer
ise 13.4∗. Consider the �eld of 4 elements F4 def= F2[!℄=(!2 + ! + 1), where F2 = Z=(2). The extension

F2 ⊂ F4 has a 
onjugation automorphism2 z 7−→ z def= z2, whi
h lives F2 �xed and permutes two roots of thepolynomial !2 + ! + 1. Show that unitary3 4 × 4 - matri
es with entries in F4 modulo the s
alar matri
esform a (normal) subgroup of index 2 into the group G from ex. 13.3.Hint. The unitary group preserves the Fermat 
ubi
 CF (see ex. 13.2) whose equation over F4 turns to thestandard Hermitian form Pxixi.

1
omp. with n◦ 2.8.1{n◦ 2.8.22quite similar to the 
omplex 
onjugation in the extension R ⊂ C3i. e. satisfying M ·M t = E



§14.General nonsense appendix.14.1.Categories. Let us evade an expli
it formal de�nition of �a 
ategory�1. Informally, a 
ategory
C 
onsists of obje
ts, whi
h form a 
lass2 denoted by ObC , and for ea
h pair of obje
ts X;Y ∈ ObCthere is a set of morphisms Hom(X;Y ) = HomC (X;Y ). These sets are distin
t for distin
t pairs X, Y .It is 
onvenient to think of the morphisms as the arrows X - Y . All these data have to satisfy thefollowing properties:
• for any ordered triple of obje
ts X;Y; Z ∈ ObC there is a 
omposition mapHom(Y;Z)×Hom(X;Y ) ('; )7→'◦ - Hom(X;Z) ;whi
h is asso
iative: (�◦')◦ = �◦('◦ ) ;
• for any X ∈ ObC there is a unique3 identity morphism IdX ∈ Hom(X;X) that satis�es'◦IdX = ' ; IdX◦ =  for any morphisms X '- Y , Y  - X and any Y ∈ ObC .Probably, the reader is familiar with some �big� 
ategories like topologi
al spa
es and 
ontinuous mapsas the morphisms, or �nitely generated k-algebras with unity and algebra homomorphisms preservingunity, or aÆne algebrai
 varieties with regular maps, e. t. 
.Of 
ourse, there are mu
h simpler examples of 
ategories. Say, ea
h partially ordered set 
an be
onsidered as a 
ategory in whi
h Hom(X;Y ) 
onsist of one arrow, if X 6 Y , and is empty, if X andY are non 
omparable. Further, any monoid M (i. e. a semigroup with unity) 
an be 
onsidered as a
ategory with just one obje
t X and Hom(X;X) =M .Two obje
ts X;Y ∈ ObC of an arbitrary 
ategory are 
alled isomorphi
, if there are two arrowsX '-� Y (
alled inverse isomorphisms) su
h that '◦ = IdY ,  ◦' = IdX .Given a 
ategory C , one 
an always 
onstru
t an opposite 
ategory C opp with the same obje
tsObC opp = ObC but inverted arrows HomC opp(X;Y ) def= HomC (Y;X). The duality C ↔ C opp is 
alledreversing of arrows.We have seen that the 
ategory of �nitely generated k-algebras looks like an opposite 
ategory forthe 
ategory of aÆne algebrai
 varieties over the same �eld k. To make this statement more pre
ise weneed a tool �for 
omparing� the 
ategories.14.2.Fun
tors are �homomorphisms of 
ategories�. More pre
isely, a 
ovariant fun
tor C

F- D is amap ObC
X 7→F (X)- ObD together with a 
olle
tion of mapsHomC (X;Y ) '7→F (')- HomD(F (X); F (Y ))de�ned for ea
h pair X;Y ∈ ObC and preserving the 
ompositions, i. e. satisfyingF ('◦ ) = F (')◦F ( )as soon '◦ is de�ned. Note that this for
es F (IdX) = IdF (X).1like in the 
al
ulus, where �the sets� are usually su

essfully employed without proper logi
al ba
kground2expli
it logi
al formalization of this notion requires quite deep settling down into logi
al 
asuistry laying fahr enoughfrom our 
urrent subje
t; we would like to 
onsider �the 
ategory of all sets�, whose obje
ts do not form a set, 
ertainly;but they 
an be des
ribed by means of appropriate �se
ond order langauge�, whi
h exists, and that is all we need here3uniqueness 
an be formally dedu
ed from the de�ning relations, be
ause two identity morphisms Id′X , Id′′X satisfyId′X = Id′X◦Id′′X = Id′′X



72 Algebrai
 Geometry. Start Up Course.Dually, a 
ontravariant fun
tor C
F- D is a 
ovariant fun
tor C opp F- D . In other words, a
ovariant fun
tor is an �antihomomorphism of 
ategories�, that is takesHomC (X;Y ) '7→F (')- HomD(F (Y ); F (X))for ea
h pair X;Y ∈ ObC and satis�es F ('◦ ) = F ( )◦F (').For example, the dualization, whi
h takes ea
h ve
tor spa
e V over k to its dual V ∗ and ea
h linearmap V '- W to the dual map W ∗ '∗- V ∗, is a 
ontravariant fun
tor from the 
ategory of ve
torspa
es and linear maps to itself. The double dualization gives then an example of a 
ovariant fun
tor.For any C we always have the identity fun
tor C

IdC- C , whi
h a
ts identi
ally on the obje
ts andthe arrows.An other trivial series of examples is given by forgetful fun
tors. They a
t from 
ategories of setsequipped with an extra stru
ture1 to the 
ategory Set of ordinary sets. Su
h a fun
tor also a
tsidenti
ally on obje
ts and arrows | it just forgets the extra stru
ture.Less trivial is14.2.1.Example: Hom-fun
tors. Ea
h X ∈ ObC produ
es two fun
tors from C to 
ategory of sets.A 
ovariant fun
tor hX : C - Set takes an obje
t Y to hX(Y ) def= Hom(X;Y ) and an arrow Y1 '- Y2 tothe 
omposition map hX(') : hX(Y1) = Hom(X;Y1)  7→'◦ - Hom(X;Y2) = hX(Y2).A 
ontravariant fun
tor hX : C - Set takes an obje
t Y to hX(Y ) def= Hom(Y;X) and an arrow Y1 '- Y2to the 
omposition map hX(') : hX(Y2) = Hom(Y2; X)  7→ ◦'- Hom(Y1; X) = hX(Y1) .Exer
ise 14.1. Show that in the 
ategory Mod(K), of modules over 
ommutative ring K with K-linear mor-phisms, the fun
tor hX takes any exa
t triple of modules 0 - A - B - C - 0 to an exa
ttriple 0 - Hom(X;A) - Hom(X;B) - Hom(X;C)whose rightmost arrow is non surje
tive in general. Formulate and prove the similar property of the 
on-travariant fun
tor hX .14.3.Natural transformations. Given two (
ovariant) fun
tors F;G : C - D , a morphism offun
tors2 F f7−→ G is a 
olle
tion of arrows F (X) fX- G(X) ∈ HomD(F (X); G(X)) (parameterized byX ∈ ObC ) su
h that for any morphism X '- Y in C we have the following 
ommutative square3 ofmorphisms in D : F (X) F (') - F (Y )G(Y )fX
? G(') - G(Y )fY?

(14-1)For example, the 
anoni
al embedding V ⊂
iV- V ∗∗ of a ve
tor spa
e into double dual4 is a naturaltransformation from the identi
al fun
tor on the 
ategory of ve
tor spa
es to the fun
tor of doubledualization.Of 
ourse, the identity maps give an identity transformation from any fun
tor to itself. Clearly, twonatural transformations 
an be 
omposed. Thus, we get14.3.1.CLAIM. For any two 
ategories C , D all 
ovariant fun
tors C

F- D form a 
ategory
Fun(C ;D) whose morphisms are natural transformations of fun
tors. �1it may be geometri
, like a topology, a di�erentiable manifold stru
ture e. t. 
. , or algebrai
, like a stru
ture of group,ring, e. t. 
. ; the morphisms in su
h a 
ategory are the set theoreti
al maps preserving this extra stru
ture2also 
alled a natural transformation of fun
tors3a diagram of morphisms in a 
ategory is 
alled 
ommutative, if the 
ompositions of arrows taken along di�erent passesjoining the same pair of vertexes always 
oin
ide4sending a ve
tor v ∈ V to the 
orresponding evaluation fun
tional V ∗ evv- k



§ 14. General nonsense appendix. 7314.4.Equivalen
e of 
ategories. A fun
tor C
F- D is 
alled an equivalen
e of 
ategories, if thereis a fun
tor D

G- C (
alled quasi-inverse to F ) su
h that the 
omposition GF is isomorphi
 to IdCin 
ategory Fun(C ;C ) and the 
omposition FG is isomorphi
 to IdD in 
ategory Fun(D ;D).Note that our requirement �be isomorphi
� to the identi
al fun
tor is mu
h weaker than anotherpossible request �
oin
ide with� the identi
al fun
tor.For example, 
onsider the 
ategory kn, whi
h has only one obje
t | n-dimensional 
oordinate ve
torspa
e over k. The arrows in this 
ategory are linear maps kn - kn. There is a natural fun
tor
kn F- Ve
tn(k), whi
h embeds kn to the 
ategory of all n-dimensional ve
tor spa
e over k. This isan equivalen
e of 
ategories. To 
onstru
t (some) quasi-inverse to F fun
tor Ve
tn(k) G- kn, we �xfor ea
h V some isomorphism fV : V ∼- kn, and send an arrow V '- W from HomVe
tn(k)(V;W )to the arrow fW ◦'◦f−1V ;kn - kn. In other words, we �x some basis in ea
h ve
tor spa
e and presentea
h linear map by its matrix in these bases. Then GF 
oin
ides with the identity fun
tor on kn. Theopposite 
omposition FG : Ve
tn(k) - Ve
tn(k) is not the identity fun
tor, be
ause the image of FG
ontains just one obje
t kn ∈ ObVe
tn(k). But FG is isomorphi
 to the identity fun
tor via the naturaltransformation provided by isomorphisms V fV - kn.This example has a straightforward generalization. Let C

F- D be a (
ovariant) fun
tor. It is
alled full , if all maps HomC (X;Y ) '7→F (') - HomD(F (X); F (Y )) (14-2)are surje
tive. If all maps (14-2) are inje
tive, F is 
alled faithful .14.4.1.CLAIM. A fun
tor C
F- D is an equivalen
e of 
ategories i� it is full faithful and ea
hY ∈ ObD is isomorphi
 to F (X) for some X ∈ ObD (depending on Y ).Proof. For any Y ∈ ObD �x some isomorphism iY : Y ∼- F (X), whi
h exists by our assertion, and putG(Y ) = X. For any arrow Y1 '- Y2 de�ne G(') : G(Y1) - G(Y2) as an arrow that 
orresponds to the arrowiY2◦'◦i−1Y1 : F (G(Y1)) - F (G(Y2))under the isomorphisms (14-2) : HomC (G(Y1); G(Y2)) ∼- HomD(FG(Y1); FG(Y2)) provided by F . Remainingveri�
ations are 
olle
ted in the exer
ise below. �Exer
ise 14.2. Che
k that D

G- C a) is a fun
tor; b) is quasi-inverse to F .14.5.Representable fun
tors. A 
ontravariant fun
tor C opp F- Set is 
alled representable, if thereexist an obje
t X ∈ ObC su
h that in the 
ategory Fun(C opp;Set) the fun
torhX : Y 7−→ Hom(Y;X)(from n◦ 14.2.1) is isomorphi
 to F . In this 
ase X is 
alled the representing obje
t for F . Dually, a
ovariant fun
tor C
F- Set is 
alled 
orepresentable, if in the 
ategory Fun(C ;Set) it is isomorphi
to the fun
tor hX : Y 7−→ Hom(X;Y )for some X ∈ ObC , whi
h is 
alled the 
orepresenting obje
t of F .It is easy to see that the mapping % : A 7−→ hA gives a 
ovariant fun
tor % : C - Fun(C opp;Set) ,whi
h sends an arrow A �- B in C to the natural transformation

(hA %(�)- hB) ∈ HomFun(C opp;Set)(%(A); %(B))whose a
tion over X ∈ ObC is %(')X : hA(X) = Hom(X;A)  7→'◦ - Hom(X;B) = hB(X) .Exer
ise 14.3. Che
k that %(') is a natural transformation (i. e. verify that the 
orresponding diagrams (14-1)are 
ommutative), and show that %('1◦'2) = %('1)◦%('2).Thus, there is a bifun
tor C opp ×Fun(C opp;Set) - Set that takes a pair (A;F ) to the setHomFun(C opp;Set)(hA; F ) ;



74 Algebrai
 Geometry. Start Up Course.of all natural transformations from hA to F . At the same time, there is the tautologi
al evaluationbifun
tor ev : C opp×Fun(C opp;Set) - Set , whi
h takes (A;F ) to F (A). These two bifun
tors areisomorphi
.14.5.1.CLAIM (YONEDA LEMMA). For any 
ategory C there is an isomorphismHomFun(C opp;Set)(hA; F ) ∼- F (A) (14-3)fun
torial in A ∈ C , F ∈ Fun(C opp;Set). It takes a natural transformation f : hA - F to anelement fA(IdA) ∈ F (A), where IdA ∈ HomC (A;A) = hA(A) is the identity and hA(A) fA- F (A) is ana
tion of the natural transformation f over the obje
t A. The inverse map takes an element a ∈ F (A)to a natural transformation {Hom(X;A) fX- F (X)}X∈ObCthat sends an arrow X '- A to a value of the map F (A) F (')- F (X) at the element a.Proof. It is a kind of tautology. For any X ∈ ObC and any arrow X '- A we have 
ommutative diagram (14-1)hA(A) = Hom(A;A) hA(')- Hom(X;A) = hA(X)F (A)fA
? F (') - F (X) :fX

?
(14-4)The upper map sends IdA to '. So, fX(') = F (')(fA(IdA)). This means that ea
h natural transformationhA f- F is 
ompletely re
overed as soon the element a = fA(IdA) ∈ F (A) is given, and any element a ∈ F (A)leads to the natural transformation f de�ned by pres
ription that the diagrams (14-4) are 
ommutative for allX ∈ ObC . Bifun
toriality of the diagram (14-4) in A , F is evident. �14.5.2.COROLLARY. Fun
tor C

%- Fun(C opp;Set) : A 7−→ hA is full and faithful1.Proof. Required bifun
torial identi�
ation HomFun(C opp;Set)(hA; hB) = HomC (A;B) follows from the Yonedalemma applied to the fun
tor F = hB . �Thus, representable fun
tors form a full sub
ategory of Fun(C opp;Set). and this sub
ategory isequivalent to the initial sub
ategory C . In parti
ular, a representing obje
t (if exists) is unique up to
anoni
al isomorphism. More pre
isely, given two isomorphismshX1 �f1 F f2- hX2in the 
ategory Fun(C opp;Set), then there exists a unique isomorphism X1 �- X2 in the original
ategory C su
h that for any Y ∈ ObC the a
tion of natural transformation f2f−11 over Y(f2f−11 )Y : hX1(Y ) - hX2(Y )
oin
ides with the 
omposition map Hom(Y;X1)  7→�◦ - Hom(Y;X2).Exer
ise 14.4. State and prove the dual version of the Yoneda lemma, whi
h serves 
ovariant fun
tors hA ,and 
onstru
t full faithful 
ontravariant embedding C opp %◦ - Fun(C ;D), whi
h sends an obje
t A ∈ObC to the 
ovariant fun
tor %◦(A) = hA and sends an arrow A '- B to the natural transformationhB %◦(')- hA, whose a
tion over X ∈ ObC is%◦(')X : hB(X) = Hom(B; Y )  7→ ◦'- Hom(X1; Y ) = hX1(Y ) :Hint. Just reverse all the arrows in the previous 
onstru
tions.14.6.De�ning obje
ts by �universal properties�. The fun
toriality of the representing obje
tsallows to transfer many set-theoreti
al 
onstru
tions2 to an arbitrary 
ategory C . Namely, one 
an1re
all that this means 
oin
iden
e HomFun(Copp;Set)(hA; hB) = HomC (A;B)2su
h as a dire
t produ
t of sets e. t. 
.



§ 14. General nonsense appendix. 75de�ne a result of some set theoreti
al operation with obje
ts Xi in C as an obje
t X su
h that forany Y a set Hom(Y;X) 
oin
ides with the result of the original set theoreti
al operation applied to setsHom(Y;Xi). In other words, X should represent a fun
tor that takes Y to the result of the set-theoreti
aloperation with Hom(Y;Xi)'s. Of 
ourse, this de�nition is impli
it and does not guarantee the existen
eof X, be
ause the fun
tor in question 
ould be not representable. But if a representing obje
t exists, thenit automati
ally 
arries some �universal properties� and is unique up to unique isomorphism preservingthese properties.14.6.1.Example: a produ
t A×B, of A;B ∈ ObC , is an obje
t representing a fun
torY 7→ Hom(Y;A) ×Hom(Y;B)from C opp to Set (as soon it is representable). In more details, for any Y we should have an isomorphism�Y : Hom(Y;A×B) ∼- Hom(Y;A)×Hom(Y;B) fun
torial w. r. t. arrows Y1 - Y2. Following the proof fromn◦ 14.5.2, we 
an put here Y = A×B and write�A×B(IdA×B) ∈ Hom(A×B;A)×Hom(A×B;B)as (�A; �B) for appropriate arrows A ��A A×B �B- B.Exer
ise 14.5. Show that the triple A ��A A×B �B- B satis�es the following universal property: for any twomorphisms A �' Y  - B there exists a unique morphism Y '× - A×B su
h that ' = �A◦('×  )and  = �B◦('×  ).Exer
ise 14.6. Show that for any other triple A ��′A C �′B- B satisfying the above universal property thereexists a unique isomorphism 
 : C ∼- A×B su
h that �A◦
 = �′A and �B◦
 = �′B .14.6.2.Example: a 
oprodu
t A⊗B in an arbitrary 
ategory C is an obje
t 
orepresenting a fun
torY 7→ Hom(A; Y )×Hom(B; Y )from C to Set . Reversing arrows in the previous example, we 
an 
hara
terize it by the following universalproperty: there are two morphisms A iA- A⊗ B �iB B su
h that for any two arrows A '- Y � B in Cthere exists a unique morphism A⊗B '⊗ - Y su
h that ' = ('⊗  )◦iA and  = ('⊗  )◦iB.Exer
ise 14.7. Show that su
h a triple A iA- A ⊗ B �iB B (if exists) is unique up unique isomorphism
ommuting with i-arrows.Exer
ise 14.8. Show that if one of two 
oprodu
ts A⊗ (B ⊗ C), (A⊗B)⊗ C exists, then the other one existsas well and is isomorphi
 to the �rst. Prove a similar statement for the produ
ts.14.7.Limits. Two examples above are just very parti
ular 
ases of mu
h more general 
onstru
tion. Fixsome 
ategory N (
alled a 
ategory of indexes. A fun
tor N
X- C is nothing but a family of obje
tsX� ∈ ObC indexed by � ∈ ObN and morphisms X� '�� - X� indexed by the arrows i - j of

N .For example, if N is a partially ordered set satisfying the extra 
ondition ∀ i; j ∃ k : k > i, k > j,then a fun
tor N
X- C is 
alled a dire
t spe
trum or a dire
t system of morphisms in C . Dually, afun
tor N opp X- C is 
alled in an inverse spe
trum or a inverse system of morphisms in C .Further, there is a fun
tor C

X 7→X - Fun(N ;C ) , whi
h atta
hes to ea
h obje
t X ∈ ObC a
onstant family X (whose X� ≡ X, '�� ≡ IdX) and takes ea
h arrow X  - Y to the 
orrespondingmorphism of 
onstant families X  7→ Y .Given an arbitrary family {X� ; '��} : N - C , then an obje
t lim
←
X� ∈ C representing a 
on-travariant fun
tor Y 7−→ HomFun(N ;C )(Y ;X) from C to Set is 
alled a proje
tive limit of the givenfamily. By the de�nition, there is a fun
torial in Y isomorphismHomC (Y; lim

←
X�) = HomFun(N ;C )(Y ;X) :
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←
X� , we get a natural transformation lim

←
X� �- X 
orresponding toIdlim

←
X� ∈ HomC (lim

←
X� ; lim

←
X�) :This transformation is a family of morphisms lim

←
X� ��- X� su
h that �� = '���� for all arrows '��in the family {X�}. It satis�es the following universal property: for any obje
t Y ∈ ObC equipped witha family of arrows1 Y  �- X� su
h that  � = '�� � there exists a unique morphism Y �- lim

←
X�su
h that  � = ��◦� ∀�.Exer
ise 14.9. Show that proje
tive limit is uniquely 
hara
terized by this universal property (up to uniqueisomorphism 
ommuting with �� 's).Dually, an indu
tive limit lim

→
X� 
orepresents a 
ovariant fun
tor Y 7−→ HomFun(N ;C )(X;Y ) .Exer
ise 14.10. Show that indu
tive limit lim

→
X� is equipped with 
anoni
al maps X� i�- lim

→
X� and satis�esthe following universal property: given an obje
t Y ∈ ObC with a family of arrows X�  �- Y su
h that � =  �'�� (whi
h give a natural transformation X  7−→ Y in Fun(N ;C )), then there exists a uniquemorphism lim

→
X� �- Y su
h that  � = �◦�� ∀�.Exer
ise 14.11. Let N be an arbitrary partially ordered set (
onsidered as a 
ategory). Show that any familyof N -indexed sets N

X- Set has lim
→
X.Hint. A right queue of X is a sequen
e of elements x� ∈ X� indexed by some S ⊂ ObN su
h that all � > �belong to S as soon as � ∈ S and '��(x�) = x� ∀�; � ∈ S. Two right queues {x�}, {y�} are 
alledequivalent, if ∀ x�; y� ∃ 
 > �; � : '�
(x�) = '�
(y�). Che
k that a set of all equivalen
e 
lasses of rightqueues satis�es the universal properties de�ning lim

→
X.Exer
ise 14.12. Let N = N be the set of all positive integers with the standard order. Find lim

←
An and lim

→
Anof abelian groups An = Z=pnZ w. r. t. an inverse system of 
anoni
al fa
torizations  nm : Z=pnZ -- Z=pmZ(∀ m < n) and w. r. t. a dire
t system of standard in
lusions 'mn : Z=pmZ ⊂

[1℄7→[pn−m℄ - Z=pnZ (again
∀ m < n).Hint. lim

←
An = Zp is the set of all p-adi
 integers and lim

→
An ⊂ Q=Z 
onsists of (mod Z)-
lasses of fra
tionsz=p` whose denominator is a power of p (so 
alled p-rational numbers).Exer
ise 14.13. Let N = N as above but with the partial ordering pres
ribed by the divisibility. Find lim

←
Anand lim

→
An of An = Z=nZ w. r. t. an inverse system of fa
torizations  nm : Z=nZ -- Z=mZ (∀m|n) andw. r. t. a dire
t system of in
lusions 'mn : Z=mZ ⊂

[1℄7→[n=m℄- Z=nZ (again ∀m|n).Hint. lim
→

An = Q=Z and lim
←

An = Qp Zp is the produ
t of all rings of p-adi
 integer numbers.14.7.1.Example: �bered produ
ts (also 
alled Cartesian squares, or 
oamalgams) are de�ned in an arbitrary
ategory C as proje
tive limits w. r. t. the 
ategory of indexes N = {• - • � •} (3 obje
ts and 2 non-identi
al arrows). Any fun
tor N - C is a diagram X �- B �� Y in C . Its proje
tive limit is denotedby X ×B Y and 
alled a �bered produ
t of X, Y over B. It 
omes with the following 
ommutative square (
alled aCartesian square) X ×B YX �
' Y 

-

B �
�� -

(14-5)
1that is for any natural transformation Y  

7−→ X in Fun(N ;C )
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h is universal in the following sense: for any other 
ommutative squareZX �

'′ Y 
′

-

B �
�� -there exists a unique morphism Z '′× ′

- X ×B Y : '′ = '◦('′ ×  ′),  ′ =  ◦('′ ×  ′). Upper part of diagram(14-5) is uniquely (up to unique isomorphism 
ommuting with ',  ) de�ned by this universality.14.7.2.Example: amalgams (also 
alled 
o-Cartesian squares, or 
oprodu
ts) are indu
tive limits w. r. t. the index
ategory N opp = {• � • - •}. Their expanded de�nition is obtained from the previous one by reversingthe arrows: an amalgam of a diagram X �� B �- Y is an universal (
o-Cartesian) 
ommutative squareX ⊗B YX ' - Y�  
B �-� �su
h that for any other 
ommutative square ZX '′ - Y�  

′

B �-� �there exists a unique morphism X ⊗B Y '′⊗ ′

- Z satisfying '′ = ('′ ⊗  ′)◦',  ′ = ('′ ⊗  ′)◦ .14.8.Additive 
ategories. Categories appearing in 
ommutative algebra and geometry typi
ally haveextra stru
tures on their morphisms Hom(X;Y ): usually we 
an add morphisms, form their kernels,images e. t. 
. A 
ategory C is 
alled additive, if it satis�es the following properties:
• bifun
tor X;Y 7−→ Hom(X;Y ) takes its values in the 
ategory of abelian groups Ab instead of

Set , i. e. Hom(X;Y ) is an abelian group ∀ X;Y ∈ ObC and the 
ompositionHom(Y;Z)×Hom(X;Y ) ('; )7→'◦ - Hom(X;Z) ;is bilinear (or distributive): ('1 + '2)◦( 1 +  2) = f1◦ 1 + f1◦ 2 + f2◦ 1 + f2◦ 2;
• there is a zero obje
t 0 ∈ ObC su
h that Hom(0; 0) = 0 is the zero group;Exer
ise 14.14. Dedu
e from the previous property that Hom(X; 0) = Hom(0; X) = 0 ∀X ∈ ObC and 0is de�ned by this property up to unique isomorphism (namely, the zero morphism 0 0- 0′).
• for any pair of obje
ts A;B there exist a diagram1:A iA-��A A⊕B �iB�B- B (14-6)1its middle term A⊕B is 
alled a dire
t sum of A, B and all the diagram is 
alled a splitted exa
t triple



78 Algebrai
 Geometry. Start Up Course.su
h that �b◦iA = 0, �A◦iB = 0, �A◦iA = IdA, �B◦iB = IdB and iA◦�A + iB◦�B = IdA⊕B.Exer
ise 14.15. Show that A⊕B is de�ned by this property up to unique isomorphism 
ommuting withi's and �'s.One 
an emulate all natural 
onstru
tions known for abelian groups in a 
ontext of an arbitrary additive
ategory C . For example, de�ne a kernel of an arrow A '- B in C as an obje
t representing a fun
torC 7−→ ker(Hom(C;A) 
 7→'◦
 - Hom(C;B))from C to Ab. If exists, the representing obje
t ker(') 
omes with 
anoni
al map1 ker(') κ- Asatisfying '◦κ = 0 and the following universality: for any arrow C 
- A su
h that '◦
 = 0 thereexists a unique morphism C  - ker(') su
h that κ◦ = 
. This property �xes the kernel up to uniqueisomorphism 
ommuting with κ. Reversing arrows, we de�ne a 
okernel of A '- B as a universalmorphism B �- 
oker (') su
h that �◦' = 0 and for any arrow B 
- C su
h that 
◦' = 0 thereexists a unique morphism 
oker (')  - C su
h that  ◦� = 
. Again, 
oker (') is uniquely de�ned bythis property (up to unique isomorphism 
ommuting with �).Exer
ise 14.16. Show that in the dire
t sum diagram (14-6) the arrow A iA- A ⊕ B gives the kernel of thearrow A⊕B �B- B and the arrow B iB- A⊕B gives the kernel of the arrow A⊕B �A- A.From the main theorem about homomorphisms of groups we expe
t two ways in whi
h an image of arrowA '- B 
ould be de�ned. Namely, im' should be isomorphi
 to both: the kernel of B �- 
oker (')and the 
okernel of ker(') κ- A.Exer
ise 14.17. Let C be an arbitrary additive 
ategory and A '- B be any arrow in C su
h that both ker'and 
oker' exist. Show that there is a 
anoni
al arrow 
oker (ker(') κ- A) - ker(B �- 
oker (')) .14.9.Abelian 
ategories. An additive 
ategory C is 
alled abelian, if it satis�es
• ea
h arrow A '- B has kernel ker('), 
okernel 
oker (') and is de
omposed asim (')A ' -

� - B�
-where im' ≃ 
oker (ker(') κ- A) ≃ ker(B �- 
oker (')).A morphism ' in abelian 
ategory is 
alled surje
tive (or an epimorphism), if 
oker' = 0. If ker' = 0,then ' is 
alled inje
tive (or an monomorphism).Exer
ise 14.18. Show that in abelian 
ategory:a) ker(') κ- A is inje
tive and B �- 
oker (') is surje
tive for any arrow A '- B;b) ' is an isomorphism i� it is simultaneously surje
tive and inje
tive.Exer
ise 14.19. Che
k that in any additive 
ategory all squaresA⊕B �B-�iB BAiA 6�A

? 0 -� 0 00 60
?1that is the image of Idker' under the 
anoni
al identi�
ationHom(ker'; ker') ≃ ker“Hom(ker';A) 
 7→'◦
- Hom(ker';B)”
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oming from (14-6)) are simultaneously Cartesian and 
o-Cartesian.14.9.1.CLAIM. In any abelian 
ategory there exist all �bered produ
ts and amalgams.Proof. To 
omplete an arbitrary triple X �- B �� Y to Cartesian square, write K κ- X ⊕ Y for the kernelof morphism Æ = �◦�X − �◦�Y : X ⊕ Y - B. Then a squareKX �

' Y 
-

B �
�� -where ' = �X◦κ,  = �Y ◦κ is 
ommutative (be
ause �' − � = Æκ = 0) and universal (be
ause for any othertriple X �'′ Z  ′

- Y su
h that �'′ = � ′ only the 
anoni
al map1 � = '′ ⊕  ′ : Z - X ⊕ Y satis�es�X� = '′, �Y � =  ′ and 
an be lifted to an arrow Z �′- K, sin
e of Æ� = �'′ − � ′ = 0). �Exer
ise 14.20. Show that a diagram X �� B �- Y is 
ompleted to 
o-Cartesian square by a 
okernelX ⊕ Y �- Q of a morphism Æ = iX◦� − iY ◦� : B - X ⊕ Y .Exer
ise 14.21. Show that for any �bered produ
t (14-5) in abelian 
ategory:a) � is surje
tive ⇒  is surje
tive;b) K κ- X ×B Y is the kernel of ' ⇒ K  ◦κ- Y is the kernel of �.

1predi
ted by ex. 14.19
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§15.Ve
tor bundles.15.1.Fibered produ
ts. Given two families Y1 �1- X, Y2 �2- X of algebrai
 manifolds over X(
omp. with n◦ 12.6.3), then their �bered produ
t over X isY1×X Y2 def= {(y1; y2) ∈ Y1 × Y2 | '1(y1) = '2(y2)} :In fa
t, this produ
t 
omes with a natural stru
ture of a geometri
 s
heme. Namely, ifX = Spe
mK, Yi =Spe
mAi, where K, A1, A2 are (�nitely generated redu
ed) k-algebras, then the pull-ba
ks K �∗i- Aiequip Ai with K-algebra stru
ture and Y1×X Y2 = Spe
mA1⊗K A2, where A1⊗K A2 is the tensor produ
tof K-algebras Ai over K, that is the quotient algebra of A1 ⊗ A2 by an ideal spanned by all di�eren
es(κa1)⊗ a2 − a1 ⊗ (κa2), where κ ∈ K, ai ∈ Ai.Exer
ise 15.1. Write Ai �∗i- A1⊗K A2 for two K-algebra homomorphisms sending a1 ∈ A1 and a2 ∈ A2 to a1⊗1and 1⊗a2 respe
tively. Show that for anyK-algebraB and any two homomorphisms ofK-algebrasAi g∗i- Bthere exists a unique homomorphism of K-algebras A1⊗K A2 g∗1⊗g∗2- B su
h that g∗i = (g∗1 ⊗ g∗2)◦�∗i for bothi = 1; 2. Show also that this universality determinate the triple (�∗1; �∗2; A1⊗K A2) uniquely up to uniqueisomorphism 
ommuting with �∗i 's.Hint. This is 
ompletely similar to ex. 11.3.So, Y1×X Y2 ⊂ Y1×Y2 is a 
losed submanifold equipped with two proje
tions Y1×X Y2 �i- Yi and satisfyingthe following universal property1: for any family Z f- X and any two morphisms ofX-families Z gi-there exists a unique morphism of X-families Z g1×g2 - Y1×X Y2 su
h that gi = �i◦(g1 × g2), i = 1; 2.It is very important that k-algebra A1⊗K A2 
an be non redu
ed even if all three algebras in ques-tion are redu
ed (see n◦ 15.1.2 below). In this 
ase Y1×X Y2 is always 
onsidered as geometri
 s
heme
anoni
ally equipped with the stru
ture algebra k[Y1℄ ⊗

k[X℄k[Y2℄.15.1.1.Example: base 
hange. Any family Y �- X 
an be lifted along any morphism2 X ′ f- X to thefamily Y ×X X ′ f∗(�)- X ′ �tting into 
ommutative diagramY ×X X ′ - YX ′f∗(�)
? f- X�?This pro
edure is 
alled a basis 
hange. Algebrai
ally, it is known as extension of s
alars. For example, given

R-algebra (or just a ve
tor spa
e) V , then its 
omplexi�
ation is nothing but C⊗
R

V .15.1.2.Example: s
heme restri
tions and s
heme preimages. Given a 
losed embedding Z ⊂
'- X and anarbitrary family (i. e. a regular map) Y f- X, then the basis 
hange Y ×X Z f∗(')- Z, of f along ', is 
alleda s
heme restri
tion of the family Y onto the 
losed submanifold Z and the basis 
hange Z ×X Y ⊂
f∗(')- Y , off along ', is 
alled a s
heme preimage of the 
losed submanifold Z ⊂ X under the morphism Y f- X. If Xis aÆne and Z is given by an ideal I ⊂ k[X℄, then geometri
ally Z ×X Y ⊂

f∗(')- Y is a 
losed embedding of1note that it is stronger than the set theoreti
al de�nition of Y1×X Y2 given before and obtained by the spe
ialization ofthe universality in question to Z = �−11 (x)× �−12 (x) for x ∈ X2mathemati
ally, �family� and �morphism� mean the same; we use di�erent words just to outline the di�erent roles ofthese maps but it is extremely important that these roles are 
ompletely symmetri
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m (k[X℄=I) ⊗
k[X℄ k[Y ℄)red into Y , whi
h identi�es f−1(Z) with the zero set of ideal (f∗)−1 (I). But in generalthe stru
ture algebra k[X℄=I) ⊗

k[X℄ k[Y ℄ is non redu
ed.For example, 
onsider a s
heme preimage of 
uspidal 
ubi
 Z ⊂ A2 given by equation y2 = x3 along the map
A1 t7→(t;t2)- A2 whose image is the parabola y = x2. It 
onsists of two points t = 0 and t = 1 but is equippedwith non redu
ed stru
ture algebra1 k[t℄ ⊗

k[x;y℄(k[x; y℄=(y2−x3)) = k[t℄=(t4− t3) , whi
h keeps the lo
al interse
tionmultipli
ities.15.2.Algebrai
 ve
tor bundle over an algebrai
 manifold X is an algebrai
 family of ve
tor spa
esover X, i. e. a regular map of algebrai
 manifolds E �- X whose �ber �−1(x) over any x ∈ X has astru
ture of a ve
tor spa
e over k and this stru
ture algebrai
ally depends on x in a sense that �berwiseoperations2:
• pi
k up the zero: X x7→[0℄x - E
• add ve
tors: E×X E ([u℄x;[v℄x) 7→[u+v℄x - E
• multiply ve
tors by 
onstants (X × A1)×X E ([�℄x;[v℄x)7→[�v℄x - Eare the regular morphisms of algebrai
 manifolds and 
ommute with the proje
tions onto X.Two ve
tor bundles E1 �1- X, E2 �2- X are 
alled isomorphi
, if there is an isomorphism ofalgebrai
 varieties E1 '- E2 su
h that �2◦' = �1 and ∀x∈X the restri
tion �−11 (x) '|�−11 (x)- �−12 (x)is linear isomorphism of ve
tor spa
es.A ve
tor bundle is 
alled trivial of rank d, if it is isomorphi
 to the dire
t produ
t X × Ad with thestandard ve
tor spa
e stru
ture on Ad = k⊕d, whi
h does not depend on x ∈ X.A regular map X s- E is 
alled a se
tion, if �◦s = IdX , i. e. s(x) ∈ �−1(x) ∀x. Ea
h ve
tor bundlehas 
anoni
al zero se
tion, whi
h takes the zero at ea
h �ber. A ve
tor bundle E �- X is trivial ofrank d i� there are d regular se
tions X si- E su
h that {s1(x); : : : ; sd(x)} form a basis of �−1(x)

∀x ∈X . Indeed, the �berwise 
oordinate fun
tions on E w. r. t. these basi
 ve
tors give the requiredisomorphism E ∼- X × Ad.15.3.Lo
ally trivial ve
tor bundle of rank d is a ve
tor bundle E �- X su
h that any x ∈ X has anopen neighborhood U su
h that the restri
ted bundle �−1(U) - U is trivial of rank d, i. e. has d basi
se
tions (s(U)1 ; s(U)2 ; : : : ; s(U)d ) : U - �−1(U). If there are two su
h trivializations (s(U)1 ; s(U)2 ; : : : ; s(U)d )and (s(V )1 ; s(V )2 ; : : : ; s(V )d ) de�ned, respe
tively, over some open U , V , then over ea
h x ∈ U ∩ V these twobasises are expressed through ea
h other as3(s(U)1 ; s(U)2 ; : : : ; s(U)d ) = (s(V )1 ; s(V )2 ; : : : ; s(V )d ) · 'V U ;where 'V U = 'V U(x) is a non degenerate d×d - matrix whose entries are regular fun
tions on U ∩V . So,we get the regular maps U ∩V 'V U- GLd(k) 
alled transition fun
tions between two given trivializations.They 
learly satisfy the 
onditions 'UV = '−1V U ; 'V U'UW = 'VW (15-1)(the latter hold over any triple interse
tion U ∩ V ∩W ). If we 
hange lo
al basis over ea
h open set Uby some other (s̃(U)1 ; s̃(U)2 ; : : : ; s̃(U)d ) = (s(U)1 ; s(U)2 ; : : : ; s(U)d ) ·  U ;1note that both x and y a
t on k[t℄ as t and t2 respe
tively2we write [v℄x for elements in the �ber �−1(x) over x ∈ X3i. e. i-th 
olumn of 'V U 
ontains the 
oordinates of s(U)i (x) w. r. t. the basis {s(V )1 (x); : : : ; s(V )d (x)}
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 Geometry. Start Up Course.where  U =  U(x) is any non degenerate d× d matrix whose entries are regular fun
tions on the wholeof U , then the transition fun
tions also will be 
hanged by '̃V U =  −1V 'V U U .15.4.GLd(k)-valued �Che
h's 1-
o
y
le on X asso
iated with an open 
overing X = ∪U� is a seriesof regular maps U� ∩ U� '��- GLd(k) de�ned for any ordered pair of indexes (�; �) and su
h that'�� = '−1�� over U� ∩ U� for all �, � and '��'�
 = '�
 over U� ∩ U� ∩ U
 for all �, �, 
. Anysu
h 
o
y
le produ
es a 
o
y
le asso
iated with any �ner1 
overing ins
ribed in the initial one (justrestri
t '�� onto the smaller open sets). Two Che
h 1-
o
y
les are 
alled equivalent or (
o)homologous,if there exist some 
ommon re�nement X = ∪U� of their initial open 
overings and some regular mapsU�  �- GLd(k) su
h that the fun
tions '�� , '̃�� , indu
ed by these 
o
y
les on the re�nement, satisfythe equation '̃�� =  −1� '�� � over ea
h U� ∩ U�. An equivalen
e 
lass of �Che
h 1-
o
y
les is 
alled a�rst �Ce
h 
ohomology . The set of these 
ohomologies is denoted by H1(X;GLd(k)).15.4.1.CLAIM. Isomorphism 
lasses of lo
ally trivial ve
tor bundles of rank d are in 1{1 
orrespon-den
e with the �rst �Ce
h 
ohomologies {'��} ∈ H1(X;GLd(k)).Proof. Given a �Ce
h 
o
y
le '�� , 
onstru
t E as a manifold whose atlas 
onsists of aÆne 
harts are U�×Ad gluedalong (U� ∩ U�)× Ad by the ruleU� × Ad ∋ (x; v)←→ (x; '��(x) · v) ∈ U� × Ad ;where v ∈ Ad is a 
olumn ve
tor. The 
o
y
le 
onditions imply that these 
hard form an atlas and linearity of'(��)(x) for ea
h x implies that the ve
tor spa
e stru
tures of �bers are 
orre
tly glued together. Conversely, wehave seen in the previous se
tion that for a given ve
tor bundle the transition fun
tions between its trivializationsform a �Ce
h 
o
y
le, whi
h is 
hanged by a homologous one under a 
hanging of the trivialization or (what is thesame) under a a �berwise linear isomorphism of the bundle. �15.4.2.Example: a tautologi
al ve
tor bundle S -- P(V ) is rank 1 ve
tor subbundle of the trivial bundle
P(V )×V su
h that a �ber of S over v ∈ P(V ) is 1-dimensional subspa
e of V spanned by v. Over any aÆne 
hartU� = {v ∈ P(V ) | �(v) 6= 0}, where � ∈ V ∗, it 
an be trivialized by the se
tion s(�)(v) = (v; v=�(v)) ∈ P(V )× V ,whi
h is a well de�ned regular fun
tion U� s(�)- S ⊂ P(V ) × V . Sin
e s(�)(v) = s(�)(v) · (�(v)=�(v)) over ea
hv ∈ U� ∩U�, the transition fun
tions between these trivializations are '��(v) = �(v)=�(v), whi
h are well de�nedregular maps U� ∩ U� - GL1(k) = k∗.15.4.3.Example: a tautologi
al ve
tor bundle S -- Gr(m;V ) over the Grassmannian, whose points are m-dimensional subspa
es W ⊂ V , is a rank m ve
tor subbundle S ⊂ Gr(m;V )× V whose �ber over W ∈ Gr(m;V )is the m-dimensional subspa
e W ⊂ V itself. If we �x a basis {e1; e2; : : : ; en} in V and for ea
hI = (i1 < i2 < · · · < im) ⊂ (1; 2; : : : ; n)
onsider the standard aÆne 
hard UI ⊂ Gr(m;V ), whi
h 
onsists of allW proje
ted isomorphi
ally onto the linearspan of {ei1; ei2; : : : ; eim}, then S is trivialized over UI by m se
tions s(I)� (W ) ⊂ W that form a unique basisof W su
h that the 
oordinates of the basi
 ve
tors form m × n matrix MI(W ) 
ontaining the identity m × m- submatrix in the rows I. Sin
e for any W ∈ UI ∩ UJ we have MI(W ) = MJ(W ) · 'JI(W ), where 'JI(W ) isthe inverse matrix for the m ×m submatrix of MJ situated in the rows I, the transition fun
tions between twotrivializations s(I)� (W ) and s(J)� (W ) are given by the maps W 7−→ 'JI(W ) ∈ GLm(k). Clearly, these are regularmaps well de�ned everywhere in UI ∩ UJ .15.5.Linear 
onstru
tions with ve
tor bundles. Given two lo
ally trivial ve
tor bundles E, F ofranks r, s presented by �Ce
h 
o
y
les '�� ,  �� over the same open 
overing X = ∪U� , one 
an formtheir �berwise dire
t sum E⊕F , whi
h has rank r+ s and �Ce
h 
o
y
le '�� ⊕ �� (dire
t sum of linearoperators), and �berwise tensor produ
t E ⊗ F , whi
h has rank rs and �Ce
h 
o
y
le '�� ⊗  �� (tensorprodu
t of linear operators). Similarly one 
an make other tensor 
onstru
tions, say �berwise exterioror symmetri
 powers �mE, SmE of a given lo
ally trivial ve
tor bundle E e. t. 
.15.6.Pull ba
k. Given a regular map X f- Y , then any ve
tor bundle E -- Y indu
es a ve
torbundle f∗(E) def= X ×Y E -- X over X 
alled a pull ba
k of E along f . For lo
ally trivial E presented1a 
overing X = ∪W� is 
alled �ner than a 
overing X = ∪U� , if ∀� ∃� : W� ⊂ U�)
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h 
o
y
le '�� over some open 
overing Y = ∪U� , the pull ba
k f∗E is also lo
ally trivial bundlepresented by f∗('��) = '��◦f over the indu
ed open 
overing X = ∪f−1(U�).Exer
ise 15.2. Let Gr(m;V ) ⊂
p- P(�mV ) be the Pl�u
ker embedding. Che
k that the pull ba
k p∗SP of thetautologi
al line bundle on P(�mV ) is the maximal exterior power �mSGr of the tautologi
al line bundle onGr(m;V ).15.7.Pi
ard group. Isomorphism 
lasses of lo
ally trivial algebrai
 ve
tor bundles of rank one onX 
arry a natural stru
ture of abelian group w. r. t. the tensor multipli
ation. This group is 
alled thePi
ard group and is denoted Pi
 (X). Given two line bundles L, K with �Ce
h 
o
y
les '�� ,  ��, whi
hare k∗ - valued fun
tions on U� ∩ U� in this 
ase, then their sum in Pi
 (X) equals to the line bundleE⊗K with the �Ce
h 
o
y
le '�� · ��. The zero element of Pi
 (X) is the trivial line bundle I = X×A1.The opposite element for a line bundle L with �Ce
h 
o
y
le 'ij is the dual bundle L∗ = Hom(L; I) wjth�Ce
h 
o
y
le equals '∗ij = 1='ij.15.7.1.THEOREM. If X is aÆne and k[X℄ is fa
torial, then Pi
 (X) = 0.Proof. Given line bundle L, we 
an always 
hose a trivializing 
overing X = ∪U� su
h that U� = D(f�) for some�nite 
olle
tion f1; f2; : : : ; fn ∈ k[X℄. Let us �x a trivializing se
tion s� over ea
h U� and 
onsider 
orrespondingtransition fun
tions '�� = s�=s�, whi
h are nowhere vanishing elements of OX(U� ∩ U�) = k[X℄[1=(f�f�)℄,i. e. have a form fr�fs� for some r; s ∈ Z. Consider some irredu
ible element q ∈ k[X℄ and m�� ∈ Z for a powerof q in the prime de
omposition of '��. If at least one of these powers is not zero, we 
an split all f�'s into twononempty subsets: '� 's, whi
h are divisible by q, and '
 's, whi
h are not. Then, for ea
h � the power m
� doesnot depend on 
, be
ause q must disappear in '
1
2 = '
1�='
2�. Let us write m� for this power and 
hange allse
tions s� by s′� = qm� ·s� (this leads to a new basi
 se
tion, be
ause Zq ⊂ Zf� ). After that q, 
learly, disappearsin all '
� as well as in all '�1�2 = '
�2='
�1 . Sin
e the set of all q's having some non zero m�� is exhaustedby a �nite number of irredu
ible divisors of f�'s, after a number of su
h the repla
ements we 
ome to transitionfun
tions that have no irredu
ible fa
tors, i. e. are non zero 
onstants. Res
aling all but one basi
 se
tions, we
ome to a global trivialization for L. �15.7.2.COROLLARY. Pi
 (An) = 0. �15.7.3.PROPOSITION. Pi
 (Pn) = Z is spanned by the tautologi
al ve
tor bundle S.Proof. By n◦ 15.7.2, any line bundle L 
an be trivialized over the standard aÆne 
hart Uxi by some lo
al nowherevanishing se
tion si. Let us write t(i)� , � 6= i, for the restri
tions of linear forms x� onto aÆne hyperplane xi = 0in An+1 and use them as aÆne 
oordinates on Uxi . The transition fun
tion 'ij = si=sj ∈ k(Uxi) is a rationalfun
tion of t(i)� su
h that its numerator and denominator do not vanish anywhere in Uxi ex
ept for Zt(i)j . Hen
e,'ij = (t(i)j )dij . Sin
e t(j)k = xk=xj = (xk=xi) : (xj=xi) = t(i)k =t(i)j , the 
o
y
le 
onditions 'ij = 1='ji and'jk = 'ik='ij for
e dij = −dji = d with the same d for all i, j. On the other side, for any d ∈ Z the fun
tions'ij = (t(i)j )d = (xj=xi)d form �Ce
h 1-
o
y
le, i. e. de�ne a line bundle, whi
h we will denote by O(−d).Exer
ise 15.3. Che
k that O(−d) = S⊗d.So, it remains to show that all O(d) are pairwise non isomorphi
. To this aim let us des
ribe spa
es �(X;O(d)),of their regular global se
tions. A lo
al se
tion de�ned everywhere on Ux0 has a form s = f(t(0)1 ; t(0)2 ; : : : ; t(0)n ) · s0,where f is an arbitrary polynomial of n variables. Rewriting s in terms of 
hart Uxi we gets = f ( (t(i)1 =t(i)0 ) ; : : : ; (t(i)n =t(i)0 ) ) · (t(i)0 )d · si :So, s is extended onto Uxi i� deg f 6 d. Hen
e, dim�(X;O(d)) = 0 for d < 0 anddim�(X;O(d)) = (n+ dd ) for d > 0 :In parti
ular, all positive O(d) are mutually di�erent and non isomorphi
 to negative. Sin
e O(−d) = O(d)∗, thebundles O(d) with negative d are pairwise di�erent as well. �15.8. Sheaves of se
tions. Let E �-- X be a lo
ally trivial ve
tor bundle. Then for any open U ⊂ Xall regular lo
al se
tions U ⊂

s- �−1(U) ⊂ E form a module over an algebra of lo
al regular fun
tions
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OX(U). This module is denoted by �(U;E) or E(U). The 
orresponden
e U 7−→ �(U;E) is 
alled asheaf of lo
al se
tions of the ve
tor bundle E. Regardless of an evident ambiguity, it is usually denotedby the same letter E. Sin
e the bundle E is lo
ally trivial, the sheaf E is lo
ally free, i. e. ea
h pointx ∈ X has an open neighborhood U ∋ x su
h that �(U;E) is �nitely generated free OX(U) - module ofrank rkE. Indeed, any 
olle
tion of trivializing se
tions for E over U gives a free basis for �(U;E) over
OX(U).15.8.1.LEMMA. Let E be a ve
tor bundle over an aÆne irredu
ible variety X and PE = �(E;X) be
k[X℄-module of its global se
tions. Then PE is �nitely generated and torsion free1. For any g ∈ k[X℄module of lo
al se
tions �(D(g); E) 
oin
ides with k[X℄[g−1℄ ⊗

k[X℄PE, whi
h is the module of fra
tions2s=gm, where s ∈ PE, m ∈ Z.Proof. Let E be trivialized over some prin
ipal open 
overing X = ∪D(f�) by lo
al se
tionss(�)1 ; s(�)2 ; : : : ; s(�)r ∈ �(D(f�); E) :Then the restri
tion of any se
tion s ∈ �(D(g); E) onto D(g) ∩D(f�) = D(gf�) 
an be written ass|D(gf� ) = r∑i=1 hi(gf�)m� · s(�)i |D(gf� )So, s̃ = gmaxm� · s is extended onto ea
h D(f�), that is to a global se
tion of E, and s = s̃=gm as required inthe last assertion. To prove the �rst assertion, write s(�)i as s(�)i = s̃(�)i =fmi�� , where s̃(�)i ∈ PE are global se
tions.Then s̃(�)i generate PE over k[X℄. Indeed, for any s ∈ PE and any � we 
an write: s|D(f� = 1fm� ∑i g(�)i · s̃(�)i forsome g(�)i ∈ k[X℄ and m ∈ N. Hen
e, fm� · s = ∑i g(�)i · s̃(�)i is a k[X℄-linear 
ombination of s̃(�)i 's. On the otherhand, we 
an write 1 = ∑� h�fm� , be
ause f� 's have no 
ommon zeros. So, s = ∑� h�fm� · s = ∑�i h�g(�)i · s̃(�)i .Absen
e of torsion is evident. �15.8.2.COROLLARY. Under the previous 
laim 
onditions, E is trivial i� PE is free.Proof. If s1; s2; : : : ; sr form the basis of PE, then, by the 
laim, their restri
tions onto ea
h D(f) form the basis of�(D(f); E) over OX(D(f)). In parti
ular, r 
oin
ides with the number of lo
al trivializing se
tions, i. e. with therank of E. Moreover, s1; s2; : : : ; sr form a basis in ea
h �ber. Indeed, if some �ber 
ontains a ve
tor lying outsidea linear span of si's, then a lo
al se
tion drawn through this ve
tor 
an not be expressed as OX-linear 
ombinationof si's. �15.8.3.COROLLARY. Ea
h algebrai
 lo
ally trivial ve
tor bundle over A1 is trivial.Proof. PE is free, be
ause any �nitely generated torsion free k[t℄-module is free3. �Exer
ise 15.4. Show that any nowhere vanishing regular se
tion of an algebrai
 ve
tor bundle over A1 
an bein
luded in some system of global regular se
tions forming a basis in ea
h �ber.15.8.4.THEOREM (BIRKHOFF{GROTHENDIECK). Ea
h lo
ally trivial algebrai
 ve
tor bundle ofrank r over P1 is a dire
t sum of line bundles OP1(di) for appropriate d1; d2; : : : ; dr ∈ Z.Proof. Write t for aÆne 
oordinate on A1 = P1 \ {∞} and 
onsider two trivializations for a given ve
tor bundle E(e01; e02; : : : ; e0r) ; (e∞1 ; e∞2 ; : : : ; e∞r )1A-module M is 
alled torsion free, if am = 0 ⇒ a = 0 or m = 0 for a ∈ A, m ∈ M2also 
alled a lo
alization of PE w. r. t. multipli
ative set {fk}3The same is true for any prin
ipal ideal domain. For proof, present the moduleM in question as F=K, where F = k[t℄⊕nand K ⊂ F is the kernel of surje
tion F -- M sending basi
 ve
tors of F to generators of M . The result follows aton
e from the elementary divisors theorem: ea
h submodule K ⊂ F is free and there exist some bases {e1; e2; : : : ; en} ⊂ F ,
{u1; u2; : : : ; um} ⊂ K and f1; f2; : : : ; fm ∈ k[t℄ su
h that ui = fi · ei for 1 6 i 6 m (moreover, fi divides fj for i < j andthe set of those elementary divisors does not depend on a 
hoi
e of bases). Indeed, theorem for
es F=K = k[t℄⊕(n−m) ⊕ T ,where T = ⊕i (k[t℄=(fi)) is torsion submodule. The elementary divisors theorem also holds over any prin
ipal ideal domain(see Artin's or Van der Warden's � Algebra� textbook; spe
ial proof for either Z or k[t℄ is extremely fruitful exer
ise on theGauss diagonalization and Eu
lid's division algorithms).
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h are de�ned over A1 and over U∞ = {∞}∪ (A1 \ {0}). These trivialization are expressed through ea
h otherover A1 \ {0} as (e∞1 ; e∞2 ; : : : ; e∞r ) = (e01; e02; : : : ; e0r) · ' ; (15-2)where ' is the transition matrix whose entries are rational fun
tions of t without zeros and poles in A1 \ {0},i. e. some polynomials in t, t−1. Repla
ing E by E(m) def= E ⊗ O(m) , we multiply all entries of ' by tm. We 
an
hose m su
h that the �rst 
olumn of ' has no negative powers of t but does not vanish at t = 0. This means thate∞1 be
omes nowhere vanishing global se
tion of E over P1.Exer
ise 15.5. Show that �(P1; E(m)) = 0 for m≪ 0.Let us �x the minimal m su
h that E(m) admits some nowhere vanishing global se
tion e and repla
e E by E(m)for this m. Thus, we will assume that �(P1; E(d)) = 0 for all d < 0.Using indu
tion over r, we 
an suppose that the fa
tor bundle Q = E=e · O splits asQ = O(d2)⊕ O(d3)⊕ · · · ⊕O(dr) ; where d2 6 d3 6 · · · 6 drBy ex. 15.4, we 
an 
hose trivializations (15-2) su
h that e01 = e∞1 = e. Then the transition rule takes a form(e∞1 ; e∞2 ; : : : ; e∞r ) = (e01; e02; : : : ; e0r) ·1 f2 f3 f4 : : : fr0 td2 0 0 : : : 00 0 td3 0 : : : 00 0 0 td4 : : : 0... ... ... . . . ...0 0 0 0 : : : tdr

where f� = f�(t; t−1) are some polynomials in t, t−1. Moreover, by appropriate 
hange of e∞� with � > 2 we 
anput all f� into ideal (t) ⊂ k[t℄. Indeed, it is enough to add the �rst 
olumn multiplied by appropriate polynomialsin t−1 to the other 
olumns.As soon all f� ∈ (t) ⊂ k[t℄, we should have all d� 6 0. Indeed, if d� > 0 for some �, then e∞� is extended tonowhere vanishing se
tion of E(−d) with d = g
d(td� ; f�) > 0. But this 
ontradi
ts to the assumption made before.Now we 
an annihilate all f� by adding to the �rst row with other rows multiplied by appropriate polynomials int (this 
orresponds to an invertible 
hange of e01). The resulting transition matrix be
omes diagonal as required.

�



86 Algebrai
 Geometry Start Up. Home tasks.Task 1. Proje
tive spa
es.Problem 1.1. Let SdV ∗ be the spa
e of all homogeneous degree d polynomials on n-dimensional ve
torspa
e V . Find dimSdV ∗.Problem 1.2 (Veronese map). Under the previous problem 
onditions, let V ∗ vd - SdV ∗ take a linearform  ∈ V ∗ to its d-th power  d ∈ SdV ∗. Does the image of vd lie in a hyperplane or its linearspan is the whole of SdV ∗ ?Problem 1.3. Consider the proje
tive 
losures of aÆne 
urvesa) y = x2 b) y = x3 
) y2 + (x− 1)2 = 1 d) y2 = x2(x+ 1)Write down their homogeneous equations and their aÆne equations in two other standard aÆne
harts on P2. Try to draw all these aÆne 
urves.Problem 1.4. Let the real Eu
lidian plane R2 be in
luded in CP2 as the real part of the standard aÆne 
hartU0. Find two points of CP2 su
h that any Eu
lidean 
ir
le will 
ontain them after 
omlexi�
ationand proje
tive 
losuring.Problem 1.5 (Pythagorean triples). Consider P2 with homogeneous 
oordinates (t0 : t1 : t2). Let ` ⊂ P2 bethe line t2 = 0, Q ⊂ P2 be the 
oni
 t20+ t21 = t22, and O = (1 : 0 : 1) ∈ Q. For ea
h P = (p : q : 0) ∈ `�nd 
oordinates of the interse
tion point Q ∩ (OP ) di�erent from O and show that the proje
tionfrom O maps Q bije
tively onto `. Find some polynomials a(p; q), b(p; q), 
(p; q) whose values on
Z× Z give, up to a 
ommon fa
tor, all integer Pythagorian triples a2 + b2 = 
2 (and only su
h thetriples).Problem 1.6 (proje
ting twisted 
ubi
). Let P1 = P(U∗) be the spa
e of linear forms (up to proportionality)in two variables (t0; t1) and P3 = P(S3V ∗) be the spa
e of 
ubi
 forms (up to proportionality) in(t0; t1). An image of the Veronese map P1 ⊂ v3- P3 is 
alled a twisted 
ubi
 and is denoted byC3 ⊂ P3 (
omp. with Problem 1.5). Des
ribe a proje
tion of C3:a) from the point t30 to the plane spanned by 3 t20t1, 3 t0t21, and t31b) from the point 3 t20t1 to the plane spanned by t30, 3 t0t21, and t31
) from the point t30 + t31 to the plane spanned by t30, 3 t20t1, and 3 t0t21More pre
isely, write an expli
it parametri
 representation for the proje
tion in appropriate 
oor-dinates, then �nd its aÆne and homogeneous equation. Do that for several aÆne 
harts on theproje
tion target plane. In ea
h 
ase, �nd degree of the the 
urve and try to draw it. Has itsel�nterse
tions and/or 
usps?Problem 1.7. Let V be an n-dimensional ve
tor spa
e over a �nite �eld Fq of q elements. How manya) basises b) k-dimensional subspa
es are there in V ? 
) How many points are there in P(V )?Problem 1.8∗. Let Gkn(q) be a number of k-dimensional ve
tor subspa
es in n-dimensional ve
tor spa
eover a �nite �eld of q elements. Compute limq→1Gkn(q).Problem 1.9. Let f : P(V ) - P(V ) be a proje
tive linear isomorphism indu
ed by some linear isomor-phism f̂ : V - V , dimV = n + 1. Assume that all �xed points of f are isolated. Estimate anumber of them.



Task 2. Quadri
s and 
oni
s 87Task 2. Quadri
s and 
oni
s.Problem 2.1. Consider the quadrati
 form q(A) = detA on the spa
e of square 2 × 2-matri
es Mat2(k).Des
ribe its polarization, i. e. what is the bilinear form of two 2 × 2-matri
es1 q̃(A;B) su
h thatq̃(A;A) = det(A)?Problem 2.2 (
ontinuation of Problem 1.5). Under the 
onditions of Problem 1.5, show that any 
oni
 on
CP2, whi
h pass through two points you have found in Problem 1.5 and has at least 3 points insidethe initial real Eu
lidian plane, looks there as a 
ir
le.Problem 2.3 (Eu
lidean polarities). Consider a 
ir
le in the real Eu
lidean aÆne plane. How to draw2:a) the polar of a given point (espe
ially, when the point is inside the 
ir
le)b) the pole of a given line (espe
ially, when the line does not interse
t the 
ir
le)Des
ribe geometri
ally a polarity w. r. t. an `imaginary 
ir
le' x2 + y2 = −1.Problem 2.4. Show that all 
oni
s passing through the points a = (1 : 0 : 0), b = (0 : 1 : 0), 
 = (0 : 0 : 1),d = (1 : 1 : 1) form a line in the spa
e of all 
oni
s. Write an expli
it equation3 for these 
oni
family and �nd all singular 
oni
s inside it.Problem 2.5 (1 { 1 
orresponden
e on a 
oni
). Let Q ⊂ P2 be a smooth 
oni
 
onsidered together with some�xed rational parameterization P1 ∼−−→ Q. Show that for any bije
tion Q 
−−→ Q indu
ed by alinear automorphism of P1 there exist two points p1; p2 ∈ Q and a line ` ⊂ P2 su
h that x 
7−→ yi� �p1` x = �p2` y. Were are the �xed points of this map? Is it possible, using only the ruler, to �nd(some) p1; p2; ` for 
 given by its a
tion on 3 points a; b; 
;∈ Q?Problem 2.6∗. Using only the ruler, draw a triangle ins
ribed in a given non singular 
oni
 Q and su
hthat his sides a, b, 
 pass through 3 given points A, B, C. How many solutions may have thisproblem?Hint. Start `naive' drawing from any p∈Q and denote by 
(p) your return point after passing trough A;B;C.Is p 7−→ 
(p) a proje
tive isomorphism of kind des
ribed in Problem 2.5?Problem 2.7∗. Formulate and solve proje
tively dual problem to the previous one.Problem 2.8∗. Des
ribe a general algorithm for redu
ing a trigonometri
 equation f(sin(x); 
os(x)) = 0,where f is an arbitrary quadrati
 polynomial in two variables, to a simple equation 
os(x) = �,where � 
ontains at most 
ubi
 irrationalities.Hint. The problem is how to 
ompute expli
itly 4 interse
tion points of 2 quadri
s f(x; y) = 0 and x2+y2 = 1;but the same interse
tion points 
an be produ
ed by any two quadri
s from the same pen
il. A goodidea is to interse
t two singular 
oni
s of this pen
il.Problem 2.9. Consider two lines `1; `2 ⊂ P3 and denote by `×1 ; `×2 ⊂ P×3 two pen
ils of planes passingthrough these lines. Take any 3 non 
ollinear points a, b, 
 su
h that no two of them are 
oplanarwith either `1 or `2. Write `×1 
ab
−−−−→ `×2 for a linear proje
tive isomorphism that sends 3 planespassing through a, b, 
 in `×1 to the similar planes in `×2 . Des
ribe the in
iden
e graph�ab
 def= ⋃�∈`×1 (� ∩ 
ab
(�))ruled by the interse
tion lines of 
ab
-in
ident planes, if: a) `1 ∩ `2 = ∅ b) `1 ∩ `2 6= ∅Problem 2.10. How many lines 
ross ea
h of 4 given pairwise skew lines in: a) CP3 b) RP3 
*) C3 d*) R3?Find all possible answers and indi
ate those are stable under small perturbations of 4 given lines.

1for example, the standard Eu
lidean norm || (aij) || def= P a2ij is polarized to (A;B) = tr `A · tB´; one 
ould expe
t thatpolarization of det(A) should look quite similarly with something else instead of tB . . .2using ruler and 
ompasses3it should be a quadrati
 form whose 
oeÆ
ients depend linearly on two homogeneous parameters



88 Algebrai
 Geometry Start Up. Home tasks.Task 3. Some multilinear algebra.Problem 3.1. Is it true that any rank 1 matrix of size m× n 
an be written as a produ
t of some m× 1and 1× n matri
es?Problem 3.2. Let {e1; e2; : : : ; ed} ⊂ V and {x1; x2; : : : ; xd} ⊂ V ∗ be dual bases. Does the tensor∑� x�⊗e� ∈V ∗ ⊗ V depend on a 
hoi
e of the dual bases?Problem 3.3. Let A ∈ Hom(U; V ) ≃ U∗ ⊗ V , B ∈ Hom(V;W ) ≃ V ∗ ⊗W be two linear maps de
omposedas A =∑�� ⊗ a� , B =∑�� ⊗ b� with �� ∈ U∗, a� ∈ V , �� ∈ V ∗, b� ∈ W . De
ompose similarlytheir produ
t B◦A ∈ Hom(U;W ) ≃ U∗ ⊗W .Problem 3.4. Che
k for any ve
tor spa
e V a series of 
anoni
al isomorphisms:Hom(V; V ) ≃ V ∗ ⊗ V �- (V ⊗ V ∗)∗ ≃ Hom(V; V )∗where � takes �⊗v to a linear form that sends v′⊗�′ to the full 
ontra
tion �(v′)�′(v). The resulting
orrelation Hom(V; V ) ∼- Hom(V; V )∗ 
orresponds to some bilinear form t(A;B) def= �A(B) onHom(V; V ). Is this form symmetri
? How it looks in terms of matri
es? What is the 
orrespondingquadrati
 form?Problem 3.5. Let A = (aij) be n× n - matrix whose entries are 
onsidered as independent variables. Fixa 
olle
tion of m matrix elements ai�j� , where 1 6 � 6 m. Compute �m detA�ai1j1 �ai2j2 ··· �aimjm for:a) m = 1; b) m = 2; 
*) any m. d*) Is the Taylor expansion (15-1), written below, 
orre
t?det(�A+ �B) = ∑p+q=n�p�q · ∑IJ:#I=#J=p(−1)|I|+|J |aIJbbI bJ : (15-1)Here I = (i1; i2; : : : ; ip), J = (j1; j2; : : : ; jp), Î = {1; : : : ; n} \ I, Ĵ = {1; : : : ; n} \ J , (aIJ) isp×p-minor of A situated in I-rows and J-
olumns, and (b
bI bJ) is the 
omplementary q×q-minorof B = (bij).Hint. Use the Sylvester relations relations: let Am be `nm´

×
`nm´ matrix whose entries arem×m-minors of A andwrite bAm for a matrix of algebrai
 
omplements to the entries of Am; then detA = `nm´−1tr “Am · tbAm”and the rightmost sum in (15-1) equals tr “Ap · tbBq”.Problem 3.6. Is there a 2×4 - matrix whose 2×2 - minors are: a) {2; 3; 4; 5; 6; 7} b) {3; 4; 5; 6; 7; 8}(If no, explain why, if yes, give an expli
it example.)Problem 3.7. Are the following de
ompositions valid for any ve
tor spa
e V over a �eld of zero 
hara
-teristi
: a) V ⊗2 ≃ S2V ⊕ �2V b) V ⊗3 ≃ S3V ⊕ �3V ? If yes, give a proof, if no, give anexpli
it example of a tensor that 
an not be de
omposed in this way.Problem 3.8 (spinor de
omposition). Let V = Hom(U−; U+), where dimU± = 2. Show thatV ⊗2 = ( (S2U∗− ⊗ S2U+)⊕ (�2U∗− ⊗ �2U+) )︸ ︷︷ ︸S2V ⊕((S2U∗− ⊗ �2U+)⊕ (�2U∗− ⊗ S2U+) )︸ ︷︷ ︸�2V :Hint. Write V = U∗− ⊗ U+ and use the de
omposition U⊗2± = S2U± ⊕ �2U±.



Task 4. More quadri
s and other hypersurfa
es 89Task 4. More quadri
s and other hypersurfa
es.Problem 4.1. Let G ⊂ P3 = P(V ) be a non singular quadri
 given by a quadrati
 form g whose polarizationis g̃. Show that bilinear form �2g̃ on �2V , whi
h a
ts on de
omposable bive
tors as�2g̃( v1 ∧ v2 ; w1 ∧ w2 ) def= det(g̃(v1; w1) g̃(v1; w2)g̃(v2; w1) g̃(v2; w2)) ;is symmetri
 and non degenerate, and write its expli
it Gram matrix in a 
onvenient base (say,
oming from an orthonormal base for g in V ). Show that the interse
tion of the 
orrespondingquadri
 �2G ⊂ P5 = P(�2V ) with the Pl�u
ker quadri
 
onsists of all tangent lines to G ⊂ P3.Problem 4.2. Under the previous problem notations, let Gr(2; V ) be the Grassmannian variety, of lines in
P3 = P(V ). Show that the Pl�u
ker embedding Gr(2; V ) ⊂ - P(�2V ) sends two line families livingon the Segre quadri
 G ⊂ P(V ) = P(Hom(U−; U+)) to a pair of non singular plane 
oni
s that are
ut out the Pl�u
ker quadri
 P ⊂ P(�2V ) by two 
omplementary planes �− = P (S2U∗− ⊗ �2U+) and�+ = P (�2U∗− ⊗ S2U+) laying in P(�2Hom(U−; U+)) via Problem 3.5. Moreover, the both 
oni
sare embedded into these planes via Veronese, that is, we have the following 
ommutative diagram(Pl�u
ker is dotted, be
ause it maps lines into points):

P(U+) ⊂ Veronese - P(S2U+) ≃ �+
P+1 × P−1�+ 66 Segre

∼
- G ⊂ PHom(U−; U+) Pl�u
ker - P ⊂ P0

@

�2U∗− ⊗ S2U+
⊕S2U∗− ⊗ �2U+1

A

?
∩

P(U∗−)�− ??
⊂ Veronese - P(S2U∗−) ≃ �−∪

6Problem 4.3. Let us �x a 2-dimensional plane � ⊂ Pn and a pair of 
odimension 2 subspa
es L1; L2 ⊂ Pnsu
h that p1 = L1 ∩ � and p2 = L2 ∩ � are two distin
t points on �. Write `1 = L×1 ⊂ P×n ,`2 = L×2 ⊂ P×n for two pen
ils of hyperplanes passing through L1, L2 respe
tively and take anya; b; 
 ∈ � su
h that any 3 of 5 points p1; p2; a; b; 
 are non-
ollinear. Then we get a proje
tive linearisomorphism 
ab
 : `1 ∼- `2 de�ned by a; b; 
 like in Problem 2.5. Show that its in
iden
e graph
⋃H∈`1 (H ∩ 
ab
 (H)) ⊂ Pnis a quadri
, �nd its rank, and des
ribe its singular points in both possible 
ases:a) dim(L1 ∩ L2) = (n− 3) b) dim(L1 ∩ L2) = (n− 4).Problem 4.4. Let S ⊂ P5 = P(S2V ∗) be the spa
e of singular 
oni
s on P2 = P(V ). Show that singularpoints of S 
orrespond to double lines in P(V ) and Sing (S) 
oin
ides with an image of the Veroneseembedding P(V ∗) ⊂ v2- P5. For non singular q ∈ S, whi
h 
orresponds to splitted 
oni
 `1 ∪ `2 ⊂

P(V ), prove that the tangent spa
e TqS, for S at q, 
onsits of all 
oni
s passing through `1 ∩ `2.Problem 4.5. Let S ⊂ P3 be a surfa
e ruled by all lines tangent to the twisted 
ubi
 C3 ⊂ P3. Write downan expli
it equation for S, �nd its degree and all singular points.Problem 4.6. Find all lines on a singular proje
tive 
ubi
 surfa
e with aÆne equation xyz = 1.Hint. Show that there are no lines in the initial aÆne 
hart



90 Algebrai
 Geometry Start Up. Home tasks.Task 5. Plane 
urves.Problem 5.1 (plane 
ubi
s).a) How many singular points may have a plane 
ubi
 
urve and what 
ould be their multipli
ities?b) Classify all redu
ible 
ubi
s up to a proje
tive linear isomorphism.
) Show that irredu
ible singular 
ubi
s are rational and (up to a proje
tive linear isomorphism)are exhausted by y2 = x3 (nodal 
ubi
) and y2 = x2(x+ 1) (
uspidal 
ubi
).Hint. Rationality may be proved via proje
tion from a singular point.d) How many tangent lines 
ome to a smooth 
ubi
 
urve from a generi
 point on P2?e) How many in
e
tion points are there on a smooth 
ubi
?f*) Show that any non singular 
ubi
 may be presented in appropriate aÆne 
oordinates by equa-tion y2 = x3 + px+ q.Hint. See: C. H. Clemens. A s
rapbook of 
omplex 
urve theory . Plenum Press. But try to simplify (or tomodify) the arguments by your own geometri
 and/or multilinear argumentsg*) Show that 3 non-in
e
tion tangents whi
h are drown from an in
e
tion point on a smooth
ubi
 meet this 
ubi
 in 3 
ollinear points.Hint. Look at the Clemens book (lo
. 
it.) but make his arguments more solid by adding your own detailsProblem 5.2. Let a 
urve C ⊂ A2 be given by by equation x2y + x y2 = x4 + y4.a) What kind of singularity has C at the origin?b) Has the proje
tive 
losure of C any other singularities (say, at the in�nity) ?
) Find a lo
al interse
tion multipli
ity at the origin between C and a 
urve with a simple 
uspwhose 
uspidal tangent is x = y.Problem 5.3. For plane 
urves a) (x0 + x1 + x2)3 = 27x0x1x2 b) (x2 − y + 1)2 = y2(x2 + 1)�nd all1 singular points, 
ompute their multipli
ities, look how many bran
hes 
ome to ea
h singu-larity and what are their geometri
 tangents.Hint. To analyze lo
al geometry, blow up the singularity, i. e. take aÆne 
oordinates (x; y) 
entered at thesingularity and substitute x = � t, y = � t in the equation of 
urve; then the geometri
 tangent lineshave slopes (� : �) for whi
h a multipli
ity of the zero root t = 0 jumps.Problem 5.4. Using the Pl�u
ker relations, list all 
omplex plane quarti
s with the simplest singularities(i. e. ordinary double nodes and 
usps only) w. r. t. how many 
usps, nodes, double tangents andin
exion points may they have. Whi
h of them have to be redu
ible?Problem 5.5. Des
ribe all 
omplex plane proje
tive quinti
s that have singularities of multipli
ity 4 at twogiven distin
t points a; b ∈ P2.Hint. They have to 
ontain a (multiple) line (a; b) and form 3-dimensional proje
tive spa
e.Problem 5.6. For a 
urve C ⊂ P2 of degree d 
urve let us �x some point q 6∈ C that does not lie eitheron an in
e
tion tangent or on a geometri
 tangent through a singular point of C. Write C(d−1)q for(d − 1)-th degree polar of q w. r. t. C. Compute a lo
al interse
tion index (C;C(d−1)q )p at a pointp ∈ C whena) p is smooth; b) p is an ordinary 
usp; 
) p is an ordinary m-typle node m(m− 1).Hint. In (a), (b) p is smooth on C(d−1)q as well and TpC(d−1)q 6= TpC in (a) but TpC(d−1)q 
oin
ides with the
uspidal tangent in (b). In (
) p is an (m− 1)-typle point on C(d−1)q but ea
h geometri
al tangen
y ofC at p is transversal to C(d−1)q and hen
e interse
ts it with multipli
ity (m− 1).Problem 5.7. Show that smooth plane quarti
 
urve either has a tangent line interse
ting the 
urve justones with multipli
ity 4 or has 28 bitangent lines (tou
hing the 
urve in two distin
t points).
1in
luding possible singularities at the in�nity in (b)



Task 6. Polynomial ideals 91Task 6. Polynomial ideals.Problem 6.1. Give an example of proper non-prin
ipal ideal in a) C[x; y℄ b) Z[x℄.Problem 6.2. Let a polynomial f vanish along a hypersurfa
e given in Cn by a polynomial equation g = 0.Prove that ea
h irredu
ible fa
tor of g divides f .Problem 6.3. Prove that any algebrai
 set in C2 is a �nite union of points and 
urves (re
all that a 
urveis a zero set of one polynomial).Problem 6.4. Let J = (xy; yz; zx) ⊂ C[x; y; z℄. Des
ribe V (J) ⊂ A3 and I(V (J)) ⊂ C[x; y; z℄. Is it possibleto de�ne the same variety by 2 polynomial equations?Problem 6.5. Find f ∈ I(V (J)) \ J for J = (x2 + y2 − 1; y − 1) ⊂ C[x; y℄.Problem 6.6. Des
ribe V (J) ⊂ A3 and I(V (J)) ⊂ C[x; y; z℄ for:a) J = (xy; (x − y)z) b) J = (xy + yz + zx; x2 + y2 + z2)Problem 6.7. Whi
h of the following three fa
ts about ideals in k[x1; x2; : : : ; xn℄ (where k is an arbitrary�eld) are true? (Prove the true ones and give 
ounter-examples for the other.)a) √IJ = √I ∩ Jb) √IJ = √I√J
) (I = √I & J = √J) ⇒ IJ = √IJProblem 6.8. Let B ⊃ A be an extension of 
ommutative rings su
h that B is �nitely generated asA-module. Prove that mB 6= B for any maximal ideal m ⊂ A.Problem 6.9. Whi
h of the following three rings are Noetherian?a) {f(z) = p(z)q(z) ∈ C(z) ∣∣∣∣ q(z) 6= 0 for |z| 6 1};b) power series f(z) ∈ C[[z℄℄ 
onverging everywhere on C;
) {f(x; y) ∈ C[x; y℄ ∣∣∣∣ �i+jf�xi�yj = 0 ∀ 0 6 i+ j 6 n}, where n ∈ N is �xed.Problem 6.10∗. Show that any �nitely generated1 �eld is �nite as a set.Problem 6.11∗. Show that an ideal I(C3), whi
h is generated by all homogeneous f ∈ C[x0; x1; x2; x3℄vanishing along the twisted 
ubi
 C3 ⊂ P3a) is generated by 3 quadrati
 polynomials b) 
an't be generated by 2 polynomials

1in absolute sense, i. e. as Z-algebra w. r. t. the a
tion m · a def= a+ a+ · · · + a
| {z }m times



92 Algebrai
 Geometry Start Up. Home tasks.Task 7. Algebrai
 manifolds.Problem 7.1 (Zariski topology). Let X = Spe
mA be aÆne algebrai
 set. Che
k that the setsV (I) = {x ∈ X | f(x) = 0 ∀ f ∈I }produ
ed by all ideals I ⊂ A satisfy the 
losed sets axioms of the topology.Problem 7.2. Prove that any open 
overing of aÆne algebrai
 variety 
ontains a �nite sub-
overing.Problem 7.3. Give an example if aÆne algebrai
 set X and open U ⊂ X su
h that OX(U) is not �nitelygenerated as k-algebra.Problem 7.4. Let X ⊂ An, Y ⊂ Am be aÆne algebrai
 sets.a) Show that X × Y is aÆne algebrai
 subset in An+m.b) Give X × Y ⊂ An+m by expli
it equations (assuming that the equations for X, Y are known).
) Show that X × Y is irredu
ible as soon both X, Y are.Problem 7.5. Prove that the maximal spe
trum of a �nite dimensional1 k-algebra is a �nite set and dedu
efrom this that any �nite morphism has only �nite (or empty) �bers.Problem 7.6. Give an example of regular morphism of aÆne algebrai
 sets X '- Y su
h that all �bersof ' are �nite (or empty) but ' is not a �nite morphism.Problem 7.7. Prove that a proje
tion of aÆne hypersurfa
e V (f) ⊂ An from any point p 6∈ V (f) onto anyhyperplane H 6∋ p is dominant.Problem 7.8 (Noether's normalization). Show that any aÆne hypersurfa
e V (f) ⊂ An admits a �nitesurje
tion onto some hyperplane An−1 ⊂ An.Problem 7.9. Prove that dim(X × Y ) = dimX + dimYProblem 7.10. Let X '- Y be a regular morphism of algebrai
 manifolds. Show that isolated2 points of�bers '−1(y) draw an open subset of X when y runs through Y .Hint. Use Chevalley's theorem on semi-
ontinuity (le
ture 13).Problem 7.11. Show that an image of a regular dominant morphism 
ontains an open dense subset.Problem 7.12∗ (Chevalley's 
onstru
tivity theorem). Prove that an image of any regular morphism of algebrai
varieties is 
onstru
tive, i. e. 
an be 
onstru
ted from a �nite number of open and 
losed subsets bya �nite number of unions, interse
tions, and taking 
omplements.Problem 7.13 (quadrati
 transformation). Show that the pres
ription (t0 : t1 : t2) 7−→ (t−10 : t−11 : t−12 ) isextended to a rational map P2 q- P2 de�ned everywhere ex
ept for 3 points; �nd these points;
larify how does q a
t on a triangle (triple of lines) with the vertexes at these 3 points; �nd im q.Problem 7.14 (graph of rational map). Let X  - Y be a rational map de�ned on open dense U ⊂ X. Bythe de�nition, its graph � ⊂ X × Y is the Zariski 
losure of {(x;  (x)) ∈ X × Y | x ∈ U}.a) Show that a graph of the natural rational map An+1 - Pn, whi
h sends P ∈ An+1 to(OP ) ∈ Pn, is isomorphi
 to the blow up of the origin.b*) Try to des
ribe a graph of the quadrati
 transformation from Problem 7.5, in parti
ular,des
ribe the �bers of its proje
tions onto the both, sour
e and target, P2's.
1as a ve
tor spa
e over k2a point p ∈ M is 
alled isolated point of a subset M ⊂ X in a topologi
al spa
e X, if it has an open neighborhoodU ∋ p su
h that U ∩M = {p}



Task 8. 27 lines 93Task 8. 27 lines.Problem 8.1 (S
hl�a
is
he Doppelse
hs). The `double six line 
on�guration' is 
onstru
ted as follows. Let[0℄; [1℄; : : : ; [5℄ ⊂ P3be six lines su
h that [1℄; : : : ; [5℄ are mutually skew, [0℄ interse
ts all of them, and ea
h of [1℄; : : : ; [5℄does not either tou
h or lay on the quadri
 drown through any 3 other. Show that: a) ∀ i =1; : : : ; 5 ∃ unique line [i′℄ 6= [0℄ su
h that [i′℄ ∩ [j℄ 6= ∅ ∀ j 6= i;b) [i′℄ ∩ [i℄ = [i′℄ ∩ [j′℄ = ∅ for all i = 1; : : : ; 5 and for all j 6= i;
) ea
h of [1′℄; : : : ; [5′℄ does not either tou
h or lay on the quadri
 drown through any 3 other;d) there exists a unique line [0′℄ that interse
ts ea
h of [1′℄; : : : ; [5′℄Hint. Let [0′1℄ 6= [1℄ and [0′2℄ 6= [2℄ be the lines, whi
h interse
t all [1′℄; : : : ; [5′℄ ex
ept for [1′℄ and [2′℄respe
tively; show that they have the same interse
tion points p3, p4, p5 with [3′℄, [4′℄, [5′℄, whi
h maybe re
overed geometri
ally using only the lines [3℄, [4℄, [5℄, [3′℄, [4′℄, [5′℄, and [0℄.Problem 8.2. Show that ea
h double six line 
on�guration lies on a smooth 
ubi
 surfa
e and explain howto �nd the other 15 lines laying on it.Problem 8.3. Can a smooth 
ubi
 surfa
e S ⊂ P3 have a plane se
tion that splits into a smooth 
oni
 andits tangent line?Problem 8.4 (proje
ting a smooth 
ubi
). Let S ⊂ P3 be a smooth 
ubi
 surfa
e, p ∈ S be outside the lineslaying on S, � 6∋ p be any plane, and Q = {q ∈ � | (pq) tou
hes S outside p} be the apparent 
ontourof S visible from p and proje
ted from p onto �. Show that:a) ea
h plane se
tion passing through p and any line ` ⊂ S 
ontains pre
isely 2 distin
t tangentlines 
oming from p onto S;Hint. Look at the (smooth!) residue 
oni
 `S ∩ (p`)´ \ `.b) Q ⊂ � is a smooth quarti
;Hint. Look at the dis
riminant of S|(pq) \ {p}.
) Q has pre
isely 28 distin
t double tangents, whi
h are exhausted by TpS ∩ � and proje
tions(from p onto �) of lines laying on S;Hint. Use the Pl�u
ker relation to 
ompute the number of bitangents.d) dedu
e from the previous assertions a new proof of the existen
e of pre
isely 27 lines on asmooth 
ubi
 surfa
e are proje
tions of 27 lines laying on S.Problem 8.5∗. Show that any smooth 
ubi
 S ⊂ P3 
an be given in appropriate 
oordinate system byequation '1'2'3 +  1 2 3 = 0, where all 'i,  j are linear homogeneous forms.Hint. Use a line ` ⊂ S and 5 planes passing through it and interse
ting S in a triple of distin
t linesProblem 8.6. Let `1; `2 ⊂ S be two skew lines on a smooth 
ubi
 surfa
e S ⊂ P3. Show that thepres
ription: p 7−→ (` ∩ `1; ` ∩ `2)where p ∈ S \ (`1 ∪ `2) and ` is a unique line through p meeting the both lines `i, 
an be extendedto a regular morphism S %- P1 × P1 = `1 × `2. Show also that:a) % 
ontra
ts 5 lines on S to some points on P1 × P1;b) % is rational isomorphism1, i. e. there is a rational map U %−1- S de�ned on some open denseU ⊂ P1 × P1 su
h that %◦%−1 = IdU and %−1◦% = IdW for some open dense W ⊂ S.Problem 8.7. Let p ∈ S be a singular point of a (singular) 
ubi
 surfa
e in P3. Show that there is at leastone (but in general 6) lines laying on S and passing through p.
1this means, in parti
ular, that S is rational, i. e. admits a rational parameterization



94 Algebrai
 Geometry Start Up. Tests & Exams.Test 1 (elementary geometry).Problem 1.1. Find a 
ondition on 5 lines in P2 ne
essary and suÆ
ient for the existen
e of a uniquenon-singular 
oni
 tou
hing all these lines.Problem 1.2. Consider the 
omplex plane quarti
1(x20 + x21)2 + 3x20x1x2 + x31x2 = 0 (∗)a) Find all its singular points over C.b) Des
ribe a lo
al stru
ture of ea
h singularity (i. e. geometri
al tangents and their interse
tionmultipli
ities with the 
urve).
) Find a rational parameterization for C.Hint. Use a proje
tion from a singular point onto a line.Problem 1.3. Show that any irredu
ible plain quarti
 with a singularity of multipli
ity 3 is rational.Problem 1.4. Consider proje
tive plane P2 with homogeneous 
oordinates (t0 : t1 : t2).a) Show that all plane quinti
s2 that have an ordinary 
usp (of multipli
ity 2) at (0 : 0 : 1) withthe 
uspidal tangent t1 = 0 form a proje
tive subspa
e in the spa
e of all plane quinti
s.b) Find the dimension of this subspa
e.
) Compute lo
al interse
tion multipli
ity between su
h a quinti
 and quarti
 (∗) at (0 : 0 : 1).Problem 1.5. Prove that a spa
e of homogeneous degree d polynomials (in several variables) over a �eldof zero 
hara
teristi
 is linearly generated by pure d-th powers of linear forms3.Problem 1.6. Let A be a �nitely generated k-algebra. Show that if A is �nite dimensional as a ve
torspa
e over k, then Spe
mA is a �nite set.

1i. e. a plain 
urve of degree 42i. e. plane 
urves of degree 53this implies that any linear assertion about polynomials, e. g. the Taylor formula, is true as soon it holds for d-thpowers of all linear forms



Test 2 (advan
ed geometry) 95Test 2 (advan
ed geometry).Problem 2.1. Prove that any hypersurfa
e in An admits a �nite surje
tive morphism onto An−1.Hint. Use appropriate proje
tion.Problem 2.2. Write PN = P(S4V ∗) for the spa
e of quarti
 hypersurfa
es in P3 = P(V ) (where dimV = 4).Show that all quarti
s 
ontaining a line form a hypersurfa
e1 in PN .Problem 2.3. Show that any nowhere vanishing regular se
tion of the trivial rank r ve
tor bundle over A1
an in
luded in some system of r regular se
tions that form a base in ea
h �ber2.Problem 2.4. Consider the standard 
overing of the Grassmannian Gr(m;n), ofm-dimensional subspa
es inkn, by aÆne 
harts UI 
onsisting ofW ⊂ kn whi
h are isomorphi
ally proje
ted onto m-dimensionalsubspa
e spanned by i1-th, i2-th, : : :, im-th basi
 ve
tors of kn along all the other (n − m) basi
ve
tors3. Let us present a point W ∈ UI by n × m - matrix MI(W ), whose 
olumns are the
oordinates of ve
tors forming a unique base of W su
h that k × k - submatrix situated in i1-th,i2-th, : : :, im-th rows is the identity matrix. We 
onsider other (n−m) ·m matrix elements (stayingoutside I-rows) as aÆne 
oordinates of W in the 
hart UI . Let S -- Gr(m;n) be the tautologi
alve
tor subbundle of kn ×Gr(m;n) whose �ber over a point W ∈ Gr(m;n) is the subspa
e W ⊂ kn.a) Constru
t some trivializing basi
 se
tions s(I)1 ; s(I)2 ; : : : ; s(I)m for S over ea
h UI and des
ribe
orresponding transition matri
es æIJ = æIJ(W ), whi
h satisfy(s(I)1 ; s(I)2 ; : : : ; s(I)m ) ·æIJ = (s(J)1 ; s(J)2 ; : : : ; s(J)m )everywhere in UI ∩ UJ ⊂ UI .Hint. Write MIJ for the m×m - submatrix of MI situated in J-rows; then MJ is easily expressed throughMI and MIJ .b) Do the same for the line bundle D = �mS and for ea
h its tensor power D⊗d.
) Prove that any line bundle L over Gr(m;n) is isomorphi
 to some D⊗d.Hint. Write DIJ for determinant detMIJ of the matrix introdu
ed in the previous hint. The transitionfun
tion 'IJ , of L, is a rational fun
tion in matrix elements of MI regular and non-vanishing everywhereon UI ex
ept for the zero set of DIJ .Problem 2.5∗. How many triple interse
tion points4 have 27 lines on a smooth 
ubi
 surfa
e?

1in other words, there is a polynomial æ in the 
oeÆ
ients of variable quarti
 form F (x0 : x1 : x2 : x3) su
h thatæ (F ) = 0 i� the quarti
 F = 0 
ontains a line2more honorary (and not obligatory, 
ertainly!) problem is to do the same over An3as usually, I = (i1; i2; : : : ; im) runs through all in
reasing 
olle
tions of m elements of {1; 2; : : : ; n}4that is, the points where some 3 out of 27 lines are interse
ting simultaneously
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tual middle term test, April 04, 2006.Problem 1. Let U; V be 2-dimensional ve
tor spa
es andQ ≃ P(U∗)× P(V ) ⊂ P(U∗ ⊗ V )be the Segre quadri
 formed by rank 1 linear operators U �⊗v- V 
onsidered up to proportionality.Show that the tangent plane T�⊗vQ to Q at a point � ⊗ v ∈ Q is formed by all linear operatorsU - V that send 1-dimensional subspa
e Ann (�) = {u ∈ U | �(u) = 0} into 1-dimensionalsubspa
e spanned by v.Problem 2. Let S ⊂ P5 = P(S2V ∗) be the spa
e of all singular 
oni
s on P2 = P(V ).a) Show that the set of its singular points Sing (S) ⊂ S 
oin
ides with the image of Veroneseembedding P(V ∗) ⊂  7→ 2 - P(S2V ∗) (i. e. with the set of all double lines in P2).b) For any non-singular point q = {`1 ∪ `2} ∈ S show that the tangent spa
e TqS to S at q in P5is formed by all 
oni
s passing through `1 ∩ `2 in P2.Problem 3. Let two plane 
urves of the same degree d have d2 distin
t interse
tion points. Show that ifsome dm of these interse
tion points lay on a 
urve of degree m < d, then the rest d (d−m) pointshave to lay on a 
urve of degree (d−m).Hint. This generalizes Pas
al's theorem obtained as d = 3, m = 2. Use a pen
il of 
urves spanned by twogiven 
urves and the properties of pen
ils of plane 
urves.Problem 4. Find the 
enter1 of the grassmannian algebra in m variables over a �eld of 
har 6= 2.Problem 5. Is there a 2× 4 matrix whose (non ordered) set of 2× 2 - minors isa) { 2; 3; 4; 5; 6; 7 }b) { 3; 4; 5; 6; 7; 8 }If su
h a matrix exists, write down some expli
it example; if not, explain why.Hint. Use the Pl�u
ker quadrati
 equation for Gr(2; 4) ⊂ P5 and some 
ongruen
e reasons (instead of dire
t�ngering 720 possible permutations).Problem 6. Show that any �nite dimensional (as a ve
tor spa
e) algebra over an arbitrary �eld has onlya �nite set of prime2 ideals and all these ideals are maximal.Hint. Use properties of integer ring extensions when one of two rings is a �eld.

1i. e. all elements that 
ommute with ea
h element of the algebra2re
all that an ideal p ⊂ A is 
alled prime if A=p has no zero divisors
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tual �nal written exam, May 22, 2006.Notes on marks. Some problems are subdivided into several questions. Complete answer on ea
h questiongives you 5 points. Problems and questions 
an be solved in any order. Total sum > 35 points is suÆ
ientfor getting the maximal examination mark �A�.Problem 1 (10 points). Let A and B be two matri
es with m rows and n > m 
olumns. Prove that det(A ·Bt) =∑I detAI detBI , where the sum is running over all in
reasing sequen
es I = (i1; i2; : : : ; im) ⊂
{1; 2; : : : ; n} and AI , BI mean m×m-submatri
es formed by I-
olumns.Problem 2. Let PN = P(S2V ∗) be the spa
e of quadri
s on Pn = P(V ) and X ⊂ PN be the set of allsingular quadri
s. Show thata) (5 points) X is an algebrai
 variety and q ∈ X is smooth i� the 
orresponding singular quadri
Q ⊂ Pn has just one singular point;b) (5 points) for any smooth q ∈ X the tangent spa
e TqX ⊂ PN 
onsists of all quadri
s passingthrough the singularity of Q ⊂ Pn.Problem 3. Show that there exists a unique homogeneous polynomial P on the spa
e of homogeneousforms of degree 4 in 4 variables su
h that P vanishes at f i� the surfa
e f = 0 in P3 
ontains a line.To this aim:a) (5 points) Show that all pairs ` ⊂ S, where ` ⊂ P3 is a line, S ⊂ P3 is a quarti
 surfa
e, form aproje
tive variety � ⊂ P(�2C4)× P(S4(C4)∗).b) (5 points) Show that � is irredu
ible and �nd its dimension.
) (5 points) Show that an image of proje
tion of � on P(S4(C4)∗) is an irredu
ible hypersurfa
e.Problem 4. Fix 6 points {p1; p2; : : : ; p6} ⊂ P2 = P(V ) su
h that any 3 are not 
ollinear and all 6 do notlay on the same 
oni
. Let W = {F ∈ S3V ∗ | F (pi) = 0 for ea
h i = 1; 2; : : : ; 6} be the spa
e of
ubi
 forms on V that vanish at these 6 points. A map

P2 \ {p1; p2; : : : ; p6}  - P(W ∗)takes p 6∈ {p1; p2; : : : ; p6} to a linear form evp : F 7−→ F (p) on W (when p is multiplied by � thisform is multiplied by �3, so the map between the proje
tivizations is well de�ned). Geometri
ally,
P(W ) is the spa
e of 
ubi
 
urves passing through {p1; p2; : : : ; p6} and  sends p to a hyperplaneHp ⊂ P(W ) formed by all su
h 
ubi
s passing also through p. Show that:a) (5 points) dimW = 4;b) (5 points) S =  (P2 \ {p1; p2; : : : ; p6}) ⊂ P3 = P(W ∗) is a 
ubi
 surfa
e;
) (5 points) �nd 27 lines in P(W ) (i. e. 27 pen
ils of 
ubi
s passing through {p1; p2; : : : ; p6}) whosedual lines in P(W ∗) lay on S.Problem 5 (5 points). Let a Noetherian ring A have a unique proper maximal ideal 0 6= m ⊂ A. Showthat mM 6=M for any non zero �nitely generated A-module M .
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tual �nal written exam, May 20, 2008.Notes on marks. The problems are subdivided into several questions. Complete answer on ea
h questiongives you 5 points. Problems and questions 
an be solved in any order. Total sum > 35 points is suÆ
ientfor getting the maximal examination mark �A�.Problem 1. Let us �x (n + 1) degrees d0; d1; : : : ; dn and write PNi = PSdiV ∗ for the spa
e of degree dihypersurfa
es in Pn = P(V ).a) (5 points) Show that � = {(S0; S1; : : : ; Sn; p) ∈ PN0×· · ·PNn×Pn | p ∈ n
∩�=0S�} is an irredu
ibleproje
tive variety.b) (5 points) Find dim�.
) (5 points) Show that there exists a polynomial R in the 
oeÆ
ients of homogeneous formsF0; F1; : : : ; Fn of degrees d0; d1; : : : ; dn in variables (x0; x1; : : : ; xn) su
h that R = 0 i� thesystem of equations F�(x0; x1; : : : ; xn) = 0 (0 6 � 6 n) has a non zero solution. How does Rlook like for a system of linear forms?Problem 2. Write M for the proje
tive spa
e of m × n matri
es 
onsidered up to proportionality. Useappropriate in
iden
e variety {(L;F ) | L ⊂ kerF} (where L is a subspa
e and F is a matrix)a) (5 points) to show that the matri
es of rank 6 k form an irredu
ible proje
tive subvarietyMk ⊂M ,b) (5 points) to �nd dimMk.Problem 3. Use the 
laim that an algebra A equipped with an a
tion of a �nite group G is integer overthe subalgebra of G-invariants AG ⊂ A to solve the following problems:a) (5 points) Let a �nite group G a
t on an aÆne algebrai
 variety X by regular automorphisms.Constru
t an aÆne algebrai
 variety X=G and a �nite regular surje
tion X -- X=G whose�bers are exa
tly G-orbits.b) (5 points) Show that X=G is universal in the following sense: for any regular morphism of aÆnealgebrai
 varieties X '- Y su
h that '(gx) = '(x) for all g ∈ G and all x ∈ X there exists aunique regular morphism G=X  - Y su
h that  � = '.
) (5 points) Let the symmetri
 group Sn a
t on the aÆne spa
e An by the permutations of
oordinates. Des
ribe An=Sn.Problem 4. Let P = Gr(2; 4) ⊂ P5 = P(�2V ) be the grassmannian of lines in P3 = P(V ). Show thata) (5 points) P does not 
ontain 3-dimensional proje
tive subspa
es;b) (5 points) 2-dimensional planes on P are exhausted by two families parameterized by P(V ) and

P(V ∗) respe
tively: a plane of the �rst family �p ⊂ P , p ∈ P(V ), 
onsists of all lines passingthrough the point p; a plane of the se
ond family �� ⊂ P , � ∈ P(V ∗), 
onsists of all lines lyinginside the plane � ⊂ P(V ); moreover, any two planes of the same family are interse
ting in onepoint and any two planes from divers families either have empty interse
tion or are interse
tedalong some line lying on P ;
) (5 points) for any line L ⊂ P there exist a unique pair (p; �) ∈ P(V ) × P(V ∗) su
h thatL = �p ∩��.


