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THE HODGE THEORY OF SOERGEL BIMODULES

BEN ELIAS AND GEORDIE WILLIAMSON

Abstract. We prove Soergel’s conjecture on the characters of indecom-
posable Soergel bimodules. We deduce that Kazhdan-Lusztig polynomi-
als have positive coefficients for arbitrary Coxeter systems. Using results
of Soergel one may deduce an algebraic proof of the Kazhdan-Lusztig
conjecture.
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1. Introduction

In 1979 Kazhdan and Lusztig introduced the Kazhdan-Lusztig basis of the
Hecke algebra of a Coxeter system [KL1]. The definition of the Kazhdan-
Lusztig basis is elementary, however it appears to enjoy remarkable positivity
properties. For example, it is conjectured in [KL1] that Kazhdan-Lusztig
polynomials (which express the Kazhdan-Lusztig basis in terms of the stan-
dard basis of the Hecke algebra) have positive coefficients. The same paper
also proposed the Kazhdan-Lusztig conjecture, a character formula for sim-
ple highest weight modules for a complex semi-simple Lie algebra in terms
of Kazhdan-Lusztig polynomials associated to its Weyl group.

In a sequel [KL2], Kazhdan and Lusztig established that their polyno-
mials give the Poincaré polynomials of the local intersection cohomology of
Schubert varieties (using Deligne’s theory of weights), thus establishing their
positivity conjectures for finite and affine Weyl groups. In 1981 Beilinson
and Bernstein [BB] and Brylinski and Kashiwara [BK] established a con-
nection between highest weight representation theory and perverse sheaves,
using D-modules and the Riemann-Hilbert correspondence, thus proving
the Kazhdan-Lusztig conjecture. Since their introduction Kazhdan-Lusztig
polynomials have become ubiquitous throughout highest weight represen-
tation theory, giving character formulae for affine Lie algebras, quantum
groups at a root of unity, rational representations of algebraic groups, etc.

In 1990 Soergel [S1] gave an alternate proof of the Kazhdan-Lusztig con-
jecture, using certain modules over the cohomology ring of the flag variety.1

In a subsequent paper [S2] Soergel introduced equivariant analogues of these
modules, which have come to be known as Soergel bimodules.

Soergel’s approach is remarkable in its simplicity. Using only the action
of the Weyl group on a Cartan subalgebra, Soergel associates to each simple
reflection a graded bimodule over the regular functions on the Cartan sub-
algebra. He then proves that the split Grothendieck group of the monoidal
category generated by these bimodules (the category of Soergel bimodules)
is isomorphic to the Hecke algebra. Moreover, the Kazhdan-Lusztig conjec-
tures (as well as several positivity conjectures) are equivalent to the existence
of certain bimodules whose classes in the Grothendieck group coincide with
the Kazhdan-Lusztig basis. Despite its elementary appearance, this state-
ment is difficult to verify. For finite Weyl groups, Soergel deduces the exis-
tence of such bimodules by applying the decomposition theorem of Beilinson,
Bernstein, Deligne and Gabber [BBD] to identify the indecomposable So-
ergel bimodules with the equivariant intersection cohomology of Schubert
varieties. This approach was extended by Härterich to the setting of Weyl
groups of symmetrizable Kac-Moody groups [Hä]. Except for his appeal to
the decomposition theorem, Soergel’s approach is entirely algebraic. (The
decomposition theorem relies on the base field having characteristic 0, which
will be an important assumption below.)

1[S1, §1.1, Bermerkung 5]. This seems not to be as well-known as it should be.
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In [S2] and [S4] Soergel pointed out that the algebraic theory of Soergel
bimodules can be developed for an arbitrary Coxeter system. Starting with
an appropriate representation of the Coxeter group (the substitute for the
Weyl group’s action on a Cartan subalgebra) one defines the monoidal cate-
gory of Soergel bimodules by mimicking the Weyl group case. Surprisingly,
one again obtains a monoidal category whose split Grothendieck group is
canonically identified with the Hecke algebra. Soergel then conjectures the
existence (over a field of characteristic 0) of indecomposable bimodules whose
classes coincide with the Kazhdan-Lusztig basis of the Hecke algebra. At
this level of generality there is no known recourse to geometry. One does
not have a flag variety or Schubert varieties associated to arbitrary Coxeter
groups, and so one has no geometric setting in which to apply the decompo-
sition theorem. Soergel’s conjecture was established for dihedral groups by
Soergel [S2] and for “universal”Coxeter systems (where each product of sim-
ple reflections has infinite order) by Fiebig [F2] and Libedinsky. However,
in both these cases there already existed closed formulas for the Kazhdan-
Lusztig polynomials.

In this paper we prove Soergel’s conjecture for an arbitrary Coxeter sys-
tem. We thus obtain a proof of the positivity of Kazhdan-Lusztig polyno-
mials (as well as several other positivity conjectures). We also obtain an
algebraic proof of the Kazhdan-Lusztig conjecture, completing the program
initiated by Soergel. In some sense we have come full circle: the original
paper of Kazhdan and Lusztig was stated in the generality of an arbitrary
Coxeter system, this paper returns Kazhdan-Lusztig theory to this level of
generality.

Our proof is inspired by two papers of de Cataldo and Migliorini ([dCM1]
and [dCM2]) which give Hodge-theoretic proofs of the decomposition the-
orem. In essence, de Cataldo and Migliorini show that the decomposition
theorem for a proper map (from a smooth space) is implied by certain Hodge
theoretic properties of the cohomology groups of the source, under a Lef-
schetz operator induced from the target. We discuss their approach in more
detail below. Thus they are able to transform a geometric question on the
target into an algebraic question on the source. They then use classical
Hodge theory and some ingenious arguments to complete the proof. For
Weyl groups, Soergel bimodules are the equivariant intersection cohomol-
ogy of Schubert varieties, and as such have a number of remarkable Hodge-
theoretic properties which seem not to have been made explicit before. In
fact, these properties hold for any Coxeter group; Soergel bimodules always
behave as though they were intersection cohomology spaces of projective
varieties! In this paper, we give an algebraic proof of these Hodge-theoretic
properties, for any Coxeter group, and adapt the proof that these Hodge-
theoretic properties imply the “decomposition theorem”, at least insofar as
Soergel’s conjecture is concerned.

Here are some highlights of de Cataldo and Migliorini’s proof from [dCM1]:



4 BEN ELIAS AND GEORDIE WILLIAMSON

(1) “Local intersection forms” (which control the decomposition of the
direct image of the constant sheaf) can be embedded into “global
intersection forms” on the cohomology of smooth varieties.

(2) The Hodge-Riemann bilinear relations can be used to conclude that
the restriction of a form to a subspace (i.e. the image of a local
intersection form) stays definite.

(3) One should first prove the hard Lefschetz theorem, and then deduce
the Hodge-Riemann bilinear relations via a limiting argument from
a family of known cases, using that the signature of a non-degenerate
symmetric real form cannot change in a family.

It is this outline that we adapt to our algebraic situation. However the
translation of their results into the language of Soergel bimodules is by no
means automatic. The biggest obstacle is to find a replacement for the use
of hyperplane sections and the weak Lefschetz theorem. We believe that
our use of the Rouquier complex to overcome this difficulty is an important
observation and may have other applications.

There already exists a formidable collection of algebraic machinery, de-
veloped by Soergel [S2, S5], Andersen-Jantzen-Soergel [AJS], and Fiebig
[F1, F3], which provides algebraic proofs of many deep results in repre-
sentation theory once Soergel’s conjecture is known. These include the
Kazhdan-Lusztig conjecture for affine Lie algebras (in non-critical level),
the Kazhdan-Lusztig conjectures for quantum groups at a root of unity, and
the Lusztig conjecture on modular characters of reductive algebraic groups
in characteristic p � 0.

There are many formal similarities between the theory we develop here,
and the theory of intersection cohomology of non-rational polytopes, which
was developed to prove Stanley’s conjecture on the unimodularity of the
generalized h-vector [BL, Ka, BBFK]. In both cases one obtains spaces
which look like the intersection cohomology of a (in many cases non-existent)
projective algebraic variety. Dyer [D1, D2] has a proposed a conjectural
framework for understanding both of these theories in parallel. It would be
interesting to know whether the techniques of this paper shed light on this
more general theory.

1.1. Results. Fix a Coxeter system (W,S). Let H denote the Hecke al-
gebra of (W,S), with standard basis {Hx}x∈W and Kazhdan-Lusztig basis
{Hx}x∈W . We fix a reflection faithful (in the sense of [S4, Definition 1.5])
representation h of W over R and let R denote the regular functions on h,
graded with deg h∗ = 2. We denote by B the category of Soergel bimod-
ules; it is the full additive monoidal Karoubian subcategory of graded R-
bimodules generated by Bs := R⊗RsR(1) for all s ∈ S (here Rs ⊂ R denotes
the subalgebra of s-invariants). For any x there exists up to isomorphism a
unique indecomposable Soergel bimodule Bx which occurs as a direct sum-
mand of the Bott-Samelson bimodule BS(x) = Bs ⊗R Bt ⊗R · · · ⊗R Bu for
any reduced expression x = st . . . u for x, but does not occur as a summand
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of any Bott-Samelson bimodule for a shorter expression. The bimodules
Bx for x ∈ W give representatives for the isomorphism classes of all inde-
composable Soergel bimodules up to shifts. The split Grothendieck group
[B] of the category of Soergel bimodules is isomorphic to H. The character
ch(B) ∈ H of a Soergel bimodule B is an Z≥0[v

±]-linear combination of
standard basis elements {Hx} given by counting ranks of subquotients in a
certain canonical filtration; it realizes the class of B under the isomorphism
[B]

∼
→ H.

Theorem 1.1. (Soergel’s conjecture) For all x ∈ W we have ch(Bx) = Hx.

Because ch(B) is manifestly positive we obtain:

Corollary 1.2. (Kazhdan-Lusztig positivity conjecture)

(1) If we write Hx =
∑

y≤x hy,xHy then hy,x ∈ Z≥0[v].

(2) If we write HxHy =
∑

μz
x,yHz then μz

x,y ∈ Z≥0[v
±1].

We prove that Soergel bimodules have all of the algebraic properties
known for intersection cohomology. Given a Soergel bimodule B, we denote
by B := B ⊗R R the quotient by the image of positive degree polynomials
acting on the right. We let (B)i denote the degree i component of B. The
self-duality of Soergel bimodules implies that dimR(Bx)

−i = dimR(Bx)
i for

all i. For the rest of the introduction let us fix a degree two element ρ ∈ h∗

which is strictly positive on any simple coroot α∨
s ∈ h (see § 3.1).

Theorem 1.3. (Hard Lefschetz for Soergel bimodules) The action of ρ on
Bx by left multiplication induces an operator on Bx which satisfies the hard
Lefschetz theorem. That is, left multiplication by ρi induces an isomorphism

ρi : (Bx)
−i ∼

→ (Bx)
i.

We say that a graded R-valued form

〈−,−〉 : Bx ×Bx → R

is invariant if it is bilinear for the right action of R, and if 〈rb, b′〉 = 〈b, rb′〉
for all b, b′ ∈ B and r ∈ R. Theorem 1.1 and Soergel’s hom formula im-
ply that the degree zero endomorphisms of Bx consist only of scalars, i.e.
End(Bx) = R. Combining this with the self-duality of indecomposable So-
ergel bimodules, we see that there exists an invariant form 〈−,−〉Bx on Bx

which is unique up to a scalar. We write 〈−,−〉Bx
for the R-valued form

on Bx induced by 〈−,−〉Bx . We fix the sign on 〈−,−〉Bx by requiring that

〈c, ρ�(x)c〉Bx
> 0, where c is any generator of B

−�(x)
x

∼= R. With this addi-

tional positivity constraint, we call 〈−,−〉Bx the intersection form on Bx.
It is well-defined up to positive scalar.

Theorem 1.4. (Hodge-Riemann bilinear relations) For all i the Lefschetz
form on (Bx)

−i defined by

(α, β)ρ−i := 〈α, ρiβ〉Bx
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is (−1)(−�(x)+i)/2-definite when restricted to the primitive subspace

P−i
ρ = ker(ρi+1) ⊂ (Bx)

−i.

Note that B−i
x = 0 unless i and �(x) are congruent modulo 2. Throughout

this paper we adopt the convention that if m is odd then a space is (−1)
m
2 -

definite if and only it is zero. The reader need not worry too much about
the sign in this and other Hodge-Riemann statements. Throughout the
introduction the form on the lowest non-zero degree will be positive definite,
and the signs on primitive subspaces will alternate from there upwards.

As an example of our results, consider the case when W is finite. If
w0 ∈ W denotes the longest element of W , then Bw0

= R ⊗RW R(�(w0)),
where RW denotes the subalgebra of W -invariants in R. Hence

Bw0
= (R⊗RW R)⊗R R(�(w0)) = R/((RW )+)(�(w0))

is the coinvariant ring, shifted so as to have Betti numbers symmetric about
zero (here ((RW )+) denotes the ideal of R generated by elements of RW of
positive degree). The coinvariant ring is equipped with a canonical symmet-
ric form and Theorems 1.3 and 1.4 yield that left multiplication by any ρ
in the interior of the dominant chamber of h∗ satisfies the hard Lefschetz
theorem and Hodge-Riemann bilinear relations.

If W is a Weyl group of a compact Lie group G, then the coinvariant
ring above is isomorphic to the real cohomology ring of the flag variety of
G and the hard Lefschtetz theorem and Hodge-Riemann bilinear relations
follow from classical Hodge theory, because the flag variety is a projective
algebraic variety. On the other hand if W is not a Weyl group (e.g. a non-
crystallographic dihedral group, or a group of type H3 or H4) then there
is no obvious geometric reason why the hard Lefschetz theorem or Hodge-
Riemann bilinear relations should hold. The hard Lefschetz property for
coinvariant rings has been studied by a number of authors [MNW, MW,
McD] but even for the coinvariant rings of H3 and H4 the fact that the
Hodge-Riemann bilinear relations hold seems to be new.

1.2. Outline of the proof. Our proof is by induction on the Bruhat or-
der, and the hard Lefschetz property and Hodge-Riemann bilinear relations
play an essential role along the way. Throughout this paper we employ the
following abbreviations for any x ∈ W :

S(x) :
Soergel’s conjecture holds for Bx:

Theorem 1.1 holds for x.

hL(x) :
hard Lefschetz holds for Bx:
Theorem 1.3 holds for x.

HR(x) :
the Hodge-Riemann bilinear relations hold for Bx:

Theorem 1.4 holds for x.

The abbreviation hL(< x) means that hL(y) holds for all y < x. Similar
interpretations hold for abbreviations like S(≤ x), etc.
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In the statement of the Hodge-Riemann bilinear relations for Bx, we as-
sume S(x) in order for the intersection form 〈−,−〉Bx on Bx to be well-
defined up to a positive scalar. However, we need not assume S(x) in order
to ask whether a given form on Bx (not necessarily the intersection form)
induces a form on Bx satisfying the Hodge-Riemann bilinear relations. Note
that Bx appears as a summand of the Bott-Samelson bimodule BS(x) for
any reduced expression x for x. Bott-Samelson bimodules are equipped
with an explicit symmetric non-degenerate intersection form defined using
the ring structure and a trace on BS(x) (just as the intersection form on
the cohomology of a smooth projective variety is given by evaluating the
fundamental class on a product). The following stronger version of HR(x)
is more useful in induction steps, as it can be posed without assuming S(x):

HR(x) :

for a fixed embedding Bx ⊂ BS(x)
the Hodge-Riemann bilinear relations hold:
the conclusions of Theorem 1.4 hold for the

restriction of the intersection form on BS(x) to Bx.

(Here and elsewhere an “embedding” of Soergel bimodules means an “em-
bedding as a direct summand”.) Together, S(x) and HR(x) imply that the
restriction of the intersection form on BS(x) to Bx agrees with the inter-
section form on Bx up to a positive scalar, for any choice of embedding (see
Lemma 3.11). In other words:

(1.1) If S(x) holds, then HR(x) and HR(x) are equivalent.

We now give an outline of the proof. Fix x ∈ W and s ∈ S with xs > x
and assume S(< xs). By Soergel’s hom formula (see Theorem 3.6) this is
equivalent to assuming that End(By) = R for all y < xs. Consider the form
given by composition

(−,−)x,sy : Hom(By, BxBs)×Hom(BxBs, By) → End(By) = R.

Soergel’s hom formula gives an expression for the dimension of these hom
spaces in terms of an inner product on the Hecke algebra. Applying this
formula one sees that S(xs) is equivalent to the non-degeneracy of this form
for all y < xs (see [S4, Lemma 7.1(2)]). Now By and BxBs are natu-
rally equipped with symmetric invariant bilinear forms and hence there is a
canonical identification (“take adjoints”)

Hom(By, BxBs) = Hom(BxBs, By).

Hence we can view (−,−)x,sy as a bilinear form on the real vector space
Hom(By, BxBs). We call this form the local intersection form. We consider
“Soergel’s conjecture with signs”:

S±(y, x, s) : The form (−,−)x,sy is (−1)(�(x)+1−�(y))/2-definite.

This is a priori stronger than Soergel’s conjecture. By the above discussion:

(1.2) S(< xs) and S±(< xs, x, s) imply S(xs).
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In order to prove S±(y, x, s), we must digress and discuss hard Lefschetz
and the Hodge-Riemann bilinear relations for BxBs. The connection is
explained by (1.3) below. Recall that we have fixed a degree two element
ρ ∈ R such that ρ(α∨

s ) > 0 for all simple coroots α∨
s . Consider the “hard

Lefschetz” condition:

hL(x, s) : ρi : (BxBs)
−i → (BxBs)

i is an isomorphism.

BecauseBxs is a direct summand of BxBs, hL(x, s) implies hL(xs). They are
equivalent if we know hL(< xs), since every other indecomposable summand
of BxBs is of the form By for y < xs.

If we fix a reduced expression x for x and an embedding Bx ⊂ BS(x) then
Bx inherits an invariant form from BS(x) as discussed above. Similarly,
BxBs is a summand of BS(xs) and inherits an invariant form, which we
denote 〈−,−〉BxBs . We formulate the Hodge-Riemann bilinear relations for
BxBs as follows:

HR(x, s) :

the Lefschetz form (α, β)−i
ρ := 〈α, ρiβ〉BxBs

is

(−1)(�(x)+1−i)/2-definite on the primitive subspace
P−i
ρ := ker(ρi+1) ⊂ (BxBs)

−i.

Once again, using that BxBs
∼= Bxs ⊕

⊕
B

⊕my
y for some my ∈ Z≥0

one may deduce easily that HR(x, s) implies HR(xs) (see Lemma 2.2).
However HR(x, s) is slightly stronger than assuming HR(xs) and HR(y)
for all y < xs with my �= 0, because it fixes the sign of the restricted
form. Indeed, HR(x, s) is equivalent to the statement that the restriction of

〈−,−〉BxBs to any summand By of BxBs is (−1)(�(xs)−�(y))/2 times a positive
multiple of the intersection form on By. If we write HR(x, s), we refer to
HR(x, s) for some unspecified choice of embedding Bx ⊂ BS(x).

Recall that the space Hom(By, BxBs) is equipped with the local intersec-

tion form (−,−)x,sy and that (BxBs)
−�(y) is equipped with the Lefschetz form

(−,−)
−�(y)
ρ . The motivation for introducing the condition HR(x, s) is the

following (see Theorem 4.1): for any ρ as above there exists an embedding:

i : Hom(By, BxBs) ↪→ P−�(y)
ρ ⊂ (BxBs)

−�(y).

Moreover, this embedding is an isometry up to a positive scalar.
Because the restriction of a definite form to a subspace is definite, we

obtain:

(1.3) S(<xs) and HR(x, s) imply S±(< xs, x, s).

Combining (1.3) and (1.2) and the above discussion, we arrive at the core
statement of our induction:

(1.4) S(<xs) and HR(x, s) imply S(≤xs) and HR(xs).

It remains to show that S(≤ x) and HR(≤ x) implies HR(x, s). This
reduces Soergel’s conjecture to a statement about the modules BxBs and
their intersection forms.



THE HODGE THEORY OF SOERGEL BIMODULES 9

The reader might have noticed that hL seems to have disappeared from
the picture. Indeed, HR is stronger than hL, and one might ask why we
wish to treat hL separately. The reason is that it seems extremely difficult
to attack HR(x, s) directly. As we noted earlier, de Cataldo and Migliorini’s
method of proving HR consists in proving hL first for a family of operators,
and using a limiting argument to deduce HR.

We adapt their limiting argument as follows. For any ζ ≥ 0, consider the
Lefschetz operator

Lζ := (ρ · −)idBs + idBx(ζρ · −)

which we view as an endomorphism of BxBs. Here (ρ · −) (resp. (ζρ · −))
denotes the operator of left multiplication on Bx (resp. Bs) by ρ (resp. ζρ)
and juxtaposition denotes tensor product of operators. Now consider the
following “ζ-deformations” of the above statements:

hL(x, s)ζ : Li
ζ : (BxBs)

−i → (BxBs)
i is an isomorphism.

HR(x, s)ζ :

the Lefschetz form (α, β)ρ−i := 〈α,Li
ζβ〉BxBs

is

(−1)(�(x)+1−i)/2-definite on the primitive subspace

P−i
Lζ

:= ker(Li
ζ) ⊂ (BxBs)

−i.

Note that L0 is simply left multiplication by ρ, and hence hL(x, s)0 =
hL(x, s) and HR(x, s)0 = HR(x, s). The signature of a family of non-
degenerate symmetric real forms can not change within the family. There-
fore, if hL(x, s)ζ holds for all ζ ≥ 0 and HR(x, s)ζ holds for any single
non-negative value of ζ, then HR(x, s)0 also holds. (This is the essence of
de Cataldo and Migliorini’s limiting argument.)

The first hint that this deformation is promising is Theorem 5.1:

(1.5) HR(z) implies HR(z, s)ζ for ζ � 0

(which holds regardless of whether zs > z or zs < z). Therefore, we have

(1.6) hL(x, s)ζ for all ζ ≥ 0, implies HR(x, s)ζ for all ζ ≥ 0.

In particular, the fact that hL(z, s)ζ and HR(z, s)ζ hold for all ζ ≥ 0 and
all z < x with sz > z is something we may inductively assume, when trying
to prove the same facts for x.

We have reduced our problem to establishing hL(x, s)ζ for ζ ≥ 0. In de
Cataldo and Migliorini’s approach this is established using the weak Lef-
schetz theorem and the Hodge-Riemann bilinear relations in smaller dimen-
sion. In our setting the weak Lefschetz theorem is missing, and a key point is
the use of Rouquier complexes as a replacement (see the first few paragraphs
of §6 for more details). The usual proof of hL for a vector space V is to find
a map V → W of degree 1, injective on V −i for i > 0 and commuting with
the Lefschetz operator, where HR is known to hold for W . The Rouquier
complex yields a map of degree 1 from BxBs, injective on negative degrees
and commuting with L, to a direct sum of Bx and terms of the form BzBs

for summands Bz of BS(x) with z < x. This target space does not satisfy
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the Hodge-Riemann bilinear relations, but nevertheless we are able to prove
the hard Lefschetz theorem.

When ζ = 0, we have an argument which shows:
(1.7)
S(≤x), hL(<xs) and HR(z, s) for all z < x with zs > z together imply hL(x, s).

This is Theorem 6.23. One feature of the proof is that, whenever zs < z,
the decomposition BzBs

∼= Bz(1) ⊕ Bz(−1) commutes with the Lefschetz
operator L0. This decomposition allows one to bypass the fact that HR(z, s)
fails if zs < z.

When ζ > 0, the decomposition BzBs
∼= Bz(1) ⊕ Bz(−1) for zs < z

does not commute with Lζ . However, proving hL(z, s)ζ for ζ > 0 and
zs < z using hL(z) is a straightforward computation (Theorem 6.21). Our
inductive hypotheses and the limiting argument above now yield HR(z, s)ζ
for all z < x. A similar argument to the previous case shows:

(1.8) For ζ > 0, S(≤ x), HR(≤ x), and HR(< x, s)ζ imply hL(x, s)ζ .

This is Theorem 6.22.
Let us summarize the overall inductive proof. Let X ⊂ W be an ideal in

the Bruhat order (i.e. z ≤ x ∈ X =⇒ z ∈ X) and assume:

(1) HR(z, t)ζ for all ζ ≥ 0, z < zt ∈ X and t ∈ S,
(2) HR(z, t)ζ for all ζ > 0, zt < z ∈ X and t ∈ S.

We have already explained why (1) implies S(X), hL(X) and HR(X).
Now choose a minimal element x′ in the complement of X, and choose

s ∈ S and x ∈ X with x′ = xs. As we just discussed, (1.7) and (1.8)
imply that hL(x, s)ζ holds for all ζ ≥ 0. Using HR(x) and (1.5) we deduce
HR(x, s)ζ for all ζ ≥ 0. Therefore (1) holds with X replaced by X ∪ {x′},
and thus S(x′), hL(x′), and HR(x′) all hold.

As above, the straightforward calculations of Theorem 6.21 show that
hL(x′, t)ζ holds for ζ > 0 when t ∈ S satisfies x′t < x′. Again by HR(x′)
and (1.5) we have HR(x′, t)ζ for all ζ > 0 in this case. Thus (2) holds for
X ∪ {x′} as well.

By inspection, (1) and (2) hold for the set X = {w ∈ W | �(w) ≤ 2}.
Hence by induction we obtain (1) and (2) for X = W . We have already
explained why this implies all of the theorems in §1.1.

1.3. Note to the reader. In order to keep this paper short and have it cite
only available sources, we have written it in the language of [S4]. However
[S4] is not an easy paper, and we make heavy use of its results. We did
not discover the results of this paper in this language, but rather in the
diagrammatic language of [EW1] and [EW2]. These papers also provide
simpler proofs of the requisite results from [S4]. Another more leisurely
account of our arguments will be given in [EW3], where we also (hope to)
treat the Hodge theory of Bott-Samelson bimodules in the spirit of [dCM2].
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2. Lefschetz linear algebra

LetH =
⊕

i∈Z H
i be a graded finite dimensional real vector space equipped

with a non-degenerate symmetric bilinear form

〈−,−〉H : H ⊗R H → R

which is graded in the sense that 〈H i,Hj〉 = 0 unless i = −j.
Let L : H• → H•+2 denote an operator of degree 2. We may also write

L ∈ Hom(H,H(2)), where (2) indicates a grading shift. We say that L is a
Lefschetz operator if 〈Lh, h′〉 = 〈h,Lh′〉 for all h, h′ ∈ H. We assume from
now on that L is a Lefschetz operator. We say that L satisfies the hard
Lefschetz theorem if Li : H−i → H i is an isomorphism for all i ∈ Z≥0. For
i ≥ 0 set

P−i
L := kerLi+1 ⊂ H−i.

We call P−i
L the primitive subspace of H−i (with respect to L). If L satisfies

the hard Lefschetz theorem then we have a decomposition

H =
⊕

i≥0

0≤j≤i

LjP−i
L .

This is the primitive decomposition of H.
For each i ≥ 0 we define the Lefschetz form on H−i via

(h, h′)−i
L := 〈h,Lih′〉.

All Lefschetz forms are non-degenerate if and only if L satisfies the hard Lef-
schetz theorem, because 〈−,−〉 is non-degenerate by assumption. Because
L is a Lefschetz operator we have (h, h′)−i

L = (Lh,Lh′)−i+2
L for all i ≥ 2 and

h, h′ ∈ H−i. If L satisfies the hard Lefschetz theorem then the primitive
decomposition is orthogonal with respect to the Lefschetz forms.

We say that H is odd (resp. even) if Heven = 0 (resp. Hodd = 0).
Recall that a bilinear form (−,−) on a real vector space is said to be +1
definite (resp. −1 definite) if (v, v) is strictly positive (resp. negative) for
all non-zero vectors v.


