• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

На семинаре "Геометрические структуры на многообразиях": состоится предзащита Юли Горгинян

Мероприятие завершено

Quaternionic-solvable hypercomplex nilmanifolds

A hypercomplex structure on a Lie algebra is a triple of complex structures I, J, and K satisfying the quaternionic relations. A quaternionic-solvable Lie algebra is a Lie algebra, admitting a finite
filtration by quaternionic-invariant subalgebras, such that each successive quotient is abelian. We will discuss the quaternionic-solvable hypercomplex structures on a nilpotent Lie algebra and hypercomplex nilmanifolds, corresponding to them.
Доклад пройдёт онлайн с трансляцией в 306 аудитории

https://us06web.zoom.us/j/7267277375?pwd=ZW8yMVFveTZqNDRqWCszdzVmdVpYZz09

Meeting ID: 726 727 7375
Passcode: SUGV5t