Antoine Ducros
30 мая в 15.40 в ауд. 310 Независимого Московского Университета (Б. Власьевский, 11) Antoine Ducros выступил на семинаре "Глобус" с докладом "REAL DIFFERENTIAL FORMS AND CURRENTS ON p-ADIC ANALYTIC SPACES".
Аннотация: I will present a joint work with Antoine Chambert-Loir, in which we develop kind of a 'harmonic analysis' formalism on Berkovich spaces. More precisely, we define:
- real differential forms of bidegree (p,q) on a Berkovich space X of dimension n;
- the integral of a (n,n) form (with compact support) on X;
- the boundary integral of a (n,n-1) form.
We have Stokes and Green formulas in this context. We define currents by duality, and the Poincaré-Lelong formula holds.
We are also able to associate to a metrized line bundle (L,||.||) a curvature form c_1(L,||.||) (if ||.|| is not smooth, this is not a form in general, but a current). If (L,||.||) comes from a formal model, c_1(L,||.||)^n is shown to be a measure, which coincides with a measure previously defined by Chambert-Loir in terms of intersection theory on the special fiber (in his work on p-adic equidistribution of points of small height).
Видеозаписи доклада:
Часть 1
Часть 2
В период с 21 по 29 мая 2013 г. Antoine Ducros и Jerome Poineau (Strasbourg) прочитали миникурс «Introduction to Berkovich analytic spaces».
Лекции состоялись
на факультете математики НИУ ВШЭ (ул. Вавилова, д.7).
Abstract: At the end of the eighties, Vladimir Berkovich introduced a new way to define p-adic analytic spaces. A surprising feature is that, although p-adic fields are totally discontinuous, the resulting spaces enjoy many nice topological properties: local compactness, local path-connectedness, etc. On the whole, those spaces are very similar to complex analytic spaces. They already have found numerous applications in several domains: arithmetic geometry, dynamics, motivic integration, etc.
In this course, we will introduce Berkovich spaces and study their basic properties. The program will cover the following topics: - non-Archimedean fields, absolute values - Tate algebras, affinoid algebras and their properties - affinoid spaces - Berkovich spaces - analytification of algebraic varieties - analytic curves (local structure, homotopy type).
The course will be understandable to those who know the definition of the field of p-adic numbers Qp.
Видеозаписи курса:
Лекция 1
Лекция 2
Лекция 3
Лекция 4
Лекция 5
Лекция 6
Нашли опечатку?
Выделите её, нажмите Ctrl+Enter и отправьте нам уведомление. Спасибо за участие!
Сервис предназначен только для отправки сообщений об орфографических и пунктуационных ошибках.